Searched refs:bessel (Results 1 – 17 of 17) sorted by relevance
/third_party/ltp/testcases/misc/math/ |
D | .gitignore | 3 /float/bessel/genbessel 4 /float/bessel/genj0 5 /float/bessel/genj1 6 /float/bessel/genlgamma 7 /float/bessel/geny0 8 /float/bessel/geny1
|
/third_party/ffmpeg/libavcodec/ |
D | kbdwin.c | 29 double sum = 0.0, bessel, tmp; in ff_kbd_window_init() local 37 bessel = 1.0; in ff_kbd_window_init() 39 bessel = bessel * tmp / (j * j) + 1; in ff_kbd_window_init() 40 sum += bessel; in ff_kbd_window_init()
|
/third_party/skia/third_party/externals/oboe/src/flowgraph/resampler/ |
D | KaiserWindow.h | 51 mInverseBesselBeta = 1.0 / bessel(beta); in setBeta() 61 return bessel(w) * mInverseBesselBeta; in operator() 68 static double bessel(double x) { in bessel() function
|
/third_party/ltp/testcases/misc/math/float/bessel/ |
D | readme | 3 /* cd to bessel directory */ 5 /home/linux/livr/bessel
|
/third_party/ltp/testcases/misc/math/float/ |
D | README | 3 there are 5 sets of datafiles [trigo, power, iperb, exp_log, bessel] 29 2) do the same with the others (iperb, exp_log, power & bessel)
|
/third_party/boost/libs/math/doc/html/ |
D | standalone_HTML.manifest | 202 math_toolkit/bessel.html 203 math_toolkit/bessel/bessel_over.html 204 math_toolkit/bessel/bessel_first.html 205 math_toolkit/bessel/bessel_root.html 206 math_toolkit/bessel/mbessel.html 207 math_toolkit/bessel/sph_bessel.html 208 math_toolkit/bessel/bessel_derivatives.html
|
/third_party/toybox/tests/ |
D | bc.test | 34 run_bc_test bessel
|
/third_party/boost/libs/math/doc/ |
D | math.qbk | 221 [def __cyl_bessel_j [link math_toolkit.bessel.bessel_first cyl_bessel_j]] 222 [def __cyl_neumann [link math_toolkit.bessel.bessel_first cyl_neumann]] 223 [def __cyl_bessel_i [link math_toolkit.bessel.mbessel cyl_bessel_i]] 224 [def __cyl_bessel_k [link math_toolkit.bessel.mbessel cyl_bessel_k]] 225 [def __sph_bessel [link math_toolkit.bessel.sph_bessel sph_bessel]] 226 [def __sph_neumann [link math_toolkit.bessel.sph_bessel sph_neumann]] 228 [def __cyl_bessel_j_prime [link math_toolkit.bessel.bessel_derivatives cyl_bessel_j_prime]] 229 [def __cyl_neumann_prime [link math_toolkit.bessel.bessel_derivatives cyl_neumann_prime]] 230 [def __cyl_bessel_i_prime [link math_toolkit.bessel.bessel_derivatives cyl_bessel_i_prime]] 231 [def __cyl_bessel_k_prime [link math_toolkit.bessel.bessel_derivatives cyl_bessel_k_prime]] [all …]
|
/third_party/boost/libs/math/doc/sf/ |
D | bessel_ik.qbk | 5 `#include <boost/math/special_functions/bessel.hpp>` 122 [@http://www.advanpix.com/2015/11/11/rational-approximations-for-the-modified-bessel-function-of-th… 174 [:N.M. Temme, ['On the numerical evaluation of the modified bessel function
|
D | bessel_spherical.qbk | 5 `#include <boost/math/special_functions/bessel.hpp>`
|
D | bessel_jy.qbk | 5 `#include <boost/math/special_functions/bessel.hpp>` 257 `#include <boost/math/special_functions/bessel.hpp>` 544 [endsect] [/section:bessel Finding Zeros of Bessel Functions of the First and Second Kinds]
|
/third_party/pulseaudio/src/pulsecore/ffmpeg/ |
D | resample2.c | 75 static double bessel(double x){ in bessel() function 122 y *= bessel(type*sqrt(FFMAX(1-w*w, 0))); in av_build_filter()
|
/third_party/boost/libs/math/doc/tr1/ |
D | tr1_ref.qbk | 204 Returns the modified bessel function of the first kind of /nu/ and /x/: 215 Returns the bessel function of the first kind of /nu/ and /x/: 226 Returns the modified bessel function of the second kind of /nu/ and /x/: 238 Returns the bessel function of the second kind (Neumann function) of /nu/ and /x/:
|
/third_party/ffmpeg/libavresample/ |
D | resample.c | 50 static double bessel(double x) in bessel() function 102 y *= bessel(c->kaiser_beta * sqrt(FFMAX(1 - w * w, 0))); in build_filter()
|
/third_party/ffmpeg/libswresample/ |
D | resample.c | 72 static double bessel(double x) { in bessel() function 191 y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0))); in build_filter()
|
/third_party/gstreamer/gstplugins_base/gst-libs/gst/audio/ |
D | audio-resampler.c | 165 #define bessel dbesi0 macro 218 return s * bessel (beta * sqrt (MAX (1 - w * w, 0))); in get_kaiser_tap()
|
/third_party/musl/ |
D | WHATSNEW | 822 - hyperbolic, inverse hyperbolic, and inverse trig, bessel functions 832 - integer overflows in bessel functions
|