/third_party/mindspore/tests/ut/python/dataset/ |
D | test_bucket_batch_by_length.py | 47 column_names = ["col1"] 71 … _ = dataset.bucket_batch_by_length(column_names, empty_bucket_boundaries, bucket_batch_sizes) 75 … _ = dataset.bucket_batch_by_length(column_names, invalid_bucket_boundaries, bucket_batch_sizes) 79 … _ = dataset.bucket_batch_by_length(column_names, zero_start_bucket_boundaries, bucket_batch_sizes) 83 … _ = dataset.bucket_batch_by_length(column_names, negative_bucket_boundaries, bucket_batch_sizes) 87 … _ = dataset.bucket_batch_by_length(column_names, decreasing_bucket_boundaries, bucket_batch_sizes) 91 …_ = dataset.bucket_batch_by_length(column_names, non_increasing_bucket_boundaries, bucket_batch_si… 95 … _ = dataset.bucket_batch_by_length(column_names, bucket_boundaries, invalid_bucket_batch_sizes) 99 … _ = dataset.bucket_batch_by_length(column_names, bucket_boundaries, negative_bucket_batch_sizes) 103 _ = dataset.bucket_batch_by_length(column_names, bucket_boundaries, zero_bucket_batch_sizes) [all …]
|
D | test_datasets_csv.py | 33 column_names=['1', '2', '3', '4'], 46 column_names=['col1', 'col2', 'col3', 'col4'], 59 column_names=['col1', 'col2', 'col3', 'col4'], 71 column_names=['col1', 'col2', 'col3', 'col4'], 84 column_names=['col1', 'col2', 'col3', 'col4'], 97 column_names=['col1', 'col2', 'col3', 'col4'], 114 column_names=['col1', 'col2', 'col3', 'col4'], 130 column_names=['col1', 'col2', 'col3', 'col4'], 146 column_names=['col1', 'col2', 'col3', 'col4', 'col5'], 178 column_names=['col1', 'col2', 'col3', 'col4'], [all …]
|
D | test_sync_wait.py | 44 dataset = ds.GeneratorDataset(gen, column_names=["input"]) 66 dataset = ds.GeneratorDataset(gen, column_names=["input"]) 88 dataset = ds.GeneratorDataset(gen, column_names=["input"]) 115 dataset = ds.GeneratorDataset(gen, column_names=["input"]) 138 dataset = ds.GeneratorDataset(gen, column_names=["input"]) 145 dataset2 = ds.GeneratorDataset(gen, column_names=["input"]) 168 dataset = ds.GeneratorDataset(gen, column_names=["input"]) 185 dataset = ds.GeneratorDataset(gen, column_names=["input"]) 203 dataset = ds.GeneratorDataset(gen, column_names=["input"]) 218 dataset = ds.GeneratorDataset(gen, column_names=["input"]) [all …]
|
D | test_concatenate_op.py | 32 data = ds.GeneratorDataset(gen, column_names=["col"]) 45 data = ds.GeneratorDataset(gen, column_names=["col"]) 59 data = ds.GeneratorDataset(gen, column_names=["col"]) 73 data = ds.NumpySlicesDataset(data, column_names=["col1", "col2"]) 88 data = ds.NumpySlicesDataset(data, column_names=["col1", "col2"]) 104 data = ds.GeneratorDataset(gen, column_names=["col"]) 119 data = ds.GeneratorDataset(gen, column_names=["col"]) 135 data = ds.GeneratorDataset(gen, column_names=["col"]) 156 data = ds.GeneratorDataset(gen, column_names=["col"])
|
D | test_fill_op.py | 28 data = ds.GeneratorDataset(gen, column_names=["col"]) 41 data = ds.GeneratorDataset(gen, column_names=["col"]) 54 data = ds.GeneratorDataset(gen, column_names=["col"]) 67 data = ds.GeneratorDataset(gen, column_names=["col"]) 80 data = ds.GeneratorDataset(gen, column_names=["col"]) 93 data = ds.GeneratorDataset(gen, column_names=["col"])
|
D | test_dataset_numpy_slices.py | 38 ds = de.NumpySlicesDataset(np_data, column_names=["col1"], shuffle=False) 48 ds = de.NumpySlicesDataset(np_data, column_names=["col1"], shuffle=False) 58 ds = de.NumpySlicesDataset(np_data, column_names=["col1"], shuffle=False) 78 ds = de.NumpySlicesDataset(res, column_names=["col1"], shuffle=False) 126 ds = de.NumpySlicesDataset(data, column_names=["col1", "col2"], shuffle=False) 142 ds = de.NumpySlicesDataset(np_data, column_names=["col1", "col2"], shuffle=False) 221 de.NumpySlicesDataset(np_data, column_names=[1], shuffle=False) 230 de.NumpySlicesDataset(np_data, column_names=[""], shuffle=False) 239 de.NumpySlicesDataset(np_data, column_names=[], shuffle=False) 254 dataset = de.NumpySlicesDataset([[[1, 2], [3, 4]]], column_names=["col1"])
|
D | test_sliding_window.py | 52 dataset = ds.NumpySlicesDataset(inputs, column_names=["text"], shuffle=False) 72 dataset = ds.GeneratorDataset(gen(inputs), column_names=["number"]) 83 dataset = ds.NumpySlicesDataset(inputs, column_names=["number"], shuffle=False) 111 dataset = ds.NumpySlicesDataset(inputs, column_names=["text"], shuffle=False) 121 dataset = ds.NumpySlicesDataset(inputs, column_names=["text"], shuffle=False)
|
D | test_fade.py | 36 dataset = ds.NumpySlicesDataset(data=waveform, column_names='audio', shuffle=False) 61 dataset = ds.NumpySlicesDataset(data=waveform, column_names='audio', shuffle=False) 81 dataset = ds.NumpySlicesDataset(data=waveform, column_names='audio', shuffle=False) 103 dataset = ds.NumpySlicesDataset(data=waveform, column_names='audio', shuffle=False) 126 dataset = ds.NumpySlicesDataset(data=waveform, column_names='audio', shuffle=False)
|
D | test_ngram_op.py | 59 dataset = ds.GeneratorDataset(gen(plates_mottos), column_names=["text"]) 81 dataset = ds.GeneratorDataset(gen(plates_mottos), column_names=["text"]) 98 dataset = ds.GeneratorDataset(gen(input_line), column_names=["text"])
|
D | test_tensor_empty.py | 26 data = ds.GeneratorDataset(gen, column_names=["col1", "col2", "col3"]) 39 data = ds.GeneratorDataset(gen, column_names=["col1", "col2", "col3"]) 61 data = ds.GeneratorDataset(gen, column_names=["col1", "col2", "col3"]).batch(2)
|
D | test_input_indexes.py | 27 data = ds.NumpySlicesDataset([1, 2, 3], column_names=["col_1"]) 36 data2 = ds.NumpySlicesDataset([1, 2, 3], column_names=["col_1"])
|
D | test_from_dataset.py | 60 corpus_dataset = ds.GeneratorDataset(gen_corpus, column_names=["text"]) 108 corpus_dataset = ds.GeneratorDataset(gen_corpus, column_names=["text"]) 110 data = ds.GeneratorDataset(gen_input(texts), column_names=["text"])
|
D | test_filterop.py | 367 dataset1 = ds.GeneratorDataset(source=generator_mc_p0(), column_names=["col1", "col2"]) 368 dataset2 = ds.GeneratorDataset(source=generator_mc_p1(), column_names=["col3", "col4"]) 380 dataset1 = ds.GeneratorDataset(source=generator_mc_p0(), column_names=["col1", "col2"]) 381 dataset2 = ds.GeneratorDataset(source=generator_mc_p1(), column_names=["col3", "col4"]) 394 dataset1 = ds.GeneratorDataset(source=generator_mc_p0(), column_names=["col1", "col2"]) 395 dataset2 = ds.GeneratorDataset(source=generator_mc_p1(), column_names=["col3", "col4"]) 426 dataset = ds.GeneratorDataset(source=(lambda: generator_mc(99)), column_names=["col1", "col2"])
|
D | test_vol.py | 105 data1 = ds.NumpySlicesDataset(data, column_names=["multi_dimensional_data"]) 120 data1 = ds.NumpySlicesDataset(data, column_names=["multi_dimensional_data"]) 134 data1 = ds.NumpySlicesDataset(data, column_names=["multi_dimensional_data"])
|
/third_party/mindspore/tests/ut/cpp/dataset/ |
D | c_api_dataset_csv_test.cc | 34 std::vector<std::string> column_names = {"col1", "col2", "col3", "col4"}; in TEST_F() local 35 std::shared_ptr<Dataset> ds = CSV({train_file}, ',', {}, column_names, 0, ShuffleMode::kFalse); in TEST_F() 55 for (int j = 0; j < column_names.size(); j++) { in TEST_F() 56 auto text = row[column_names[j]]; in TEST_F() 80 std::vector<std::string> column_names = {"col1", "col2", "col3", "col4"}; in TEST_F() local 81 std::shared_ptr<Dataset> ds = CSV({train_file}, ',', {}, column_names, 0, ShuffleMode::kFalse); in TEST_F() 85 EXPECT_EQ(ds->GetColumnNames(), column_names); in TEST_F() 101 std::vector<std::string> column_names = {"col1", "col2", "col3", "col4"}; in TEST_F() local 102 std::shared_ptr<Dataset> ds = CSV({file1, file2}, ',', {}, column_names, 0, ShuffleMode::kGlobal); in TEST_F() 121 for (int j = 0; j < column_names.size(); j++) { in TEST_F() [all …]
|
D | c_api_dataset_album_test.cc | 31 std::vector<std::string> column_names = {"image", "label", "id"}; in TEST_F() local 33 std::shared_ptr<Dataset> ds = Album(folder_path, schema_file, column_names); in TEST_F() 64 std::vector<std::string> column_names = {"image", "label", "id"}; in TEST_F() local 67 std::shared_ptr<Dataset> ds1 = Album(folder_path, schema_file, column_names); in TEST_F() 68 std::shared_ptr<Dataset> ds2 = Album(folder_path, schema_file, column_names); in TEST_F() 119 std::vector<std::string> column_names = {"image", "label", "id"}; in TEST_F() local 121 std::shared_ptr<Dataset> ds = Album(folder_path, schema_file, column_names); in TEST_F() 133 EXPECT_EQ(ds->GetColumnNames(), column_names); in TEST_F() 137 std::shared_ptr<Dataset> ds2 = Album(folder_path, schema_file, column_names, false, sampler); in TEST_F() 146 std::vector<std::string> column_names = {"image", "label", "id"}; in TEST_F() local [all …]
|
D | c_api_pull_based_test.cc | 32 std::vector<std::string> column_names = {"label"}; in TEST_F() local 34 std::shared_ptr<Dataset> ds = Album(folder_path, schema_file, column_names); in TEST_F() 57 std::vector<std::string> column_names = {"label", "image"}; in TEST_F() local 59 std::shared_ptr<Dataset> ds = Album(folder_path, schema_file, column_names); in TEST_F() 68 std::shared_ptr<Dataset> ds2 = Album(folder_path, schema_file, column_names); in TEST_F()
|
D | album_op_test.cc | 41 std::vector<std::string> column_names = {}, bool shuf = false, in AlbumSchema() argument 51 (void)schema->LoadSchemaFile(schema_file, column_names); 70 std::vector<std::string> column_names = {"image", "label", "id"}; in TEST_F() local 71 auto op1 = AlbumSchema(16, 32, folder_path, schema_file, column_names, false); in TEST_F()
|
/third_party/mindspore/mindspore/lite/minddata/wrapper/ |
D | MDToDApi.cc | 112 std::vector<std::string> column_names = MDToDBuffToVector(MDConf.columnsToReadBuff); in MDToDApi_createPipeLine() local 113 if (std::find(column_names.begin(), column_names.end(), "id") == column_names.end()) { in MDToDApi_createPipeLine() 115 column_names.push_back("id"); in MDToDApi_createPipeLine() 118 if (std::find(column_names.begin(), column_names.end(), "image") != column_names.end()) { in MDToDApi_createPipeLine() 152 …std::make_shared<mindspore::dataset::AlbumOp>(folder_path, true, schema_file, column_names, exts, … in MDToDApi_createPipeLine() 154 … std::make_shared<mindspore::dataset::AlbumOp>(folder_path, true, schema_file, column_names, exts); in MDToDApi_createPipeLine() 161 for (auto str : column_names) { in MDToDApi_createPipeLine()
|
/third_party/mindspore/mindspore/ccsrc/minddata/dataset/liteapi/include/ |
D | datasets.h | 457 …const std::vector<std::vector<char>> &column_names, bool decode, const std::shared_ptr<Sampler> &s… 460 … const std::vector<std::vector<char>> &column_names, bool decode, const Sampler *sampler, 463 const std::vector<std::vector<char>> &column_names, bool decode, 481 … const std::vector<std::string> &column_names = {}, bool decode = false, 485 VectorStringToChar(column_names), decode, sampler, cache); 497 … const std::vector<std::string> &column_names, bool decode, 501 VectorStringToChar(column_names), decode, sampler, cache); 513 … const std::vector<std::string> &column_names, bool decode, 517 VectorStringToChar(column_names), decode, sampler, cache);
|
/third_party/python/Lib/sqlite3/ |
D | dump.py | 51 column_names = [str(table_info[1]) for table_info in res.fetchall()] 54 … ",".join("""'||quote("{0}")||'""".format(col.replace('"', '""')) for col in column_names))
|
/third_party/mindspore/mindspore/ccsrc/minddata/dataset/engine/ir/datasetops/source/ |
D | album_node.cc | 36 const std::vector<std::string> &column_names, bool decode, in AlbumNode() argument 41 column_names_(column_names), in AlbumNode() 160 std::vector<std::string> column_names = json_obj["column_names"]; in from_json() local 166 *ds = std::make_shared<AlbumNode>(dataset_dir, data_schema, column_names, decode, sampler, cache); in from_json()
|
D | csv_node.cc | 28 … const std::vector<std::string> &column_names, int64_t num_samples, ShuffleMode shuffle, in CSVNode() argument 34 column_names_(column_names), in CSVNode() 203 std::vector<std::string> column_names = json_obj["column_names"]; in from_json() local 210 …_shared<CSVNode>(dataset_files, field_delim.c_str()[0], column_defaults, column_names, num_samples, in from_json()
|
/third_party/mindspore/mindspore/lite/minddata/example/ |
D | testresize.cpp | 46 std::vector<std::string> column_names = {"image", "label", "id"}; in main() local 50 Album(folder_path, schema_file, column_names, true, std::make_shared<SequentialSampler>(0, 1)); in main()
|
/third_party/mindspore/mindspore/dataset/engine/ |
D | validators.py | 440 column_names = param_dict.get('column_names') 441 if column_names is not None: 442 check_columns(column_names, "column_names") 444 if column_names is None and schema is None: 538 [column_names, bucket_boundaries, bucket_batch_sizes, element_length_function, pad_info, 543 … type_check_list([column_names, bucket_boundaries, bucket_batch_sizes], (list,), nreq_param_list) 549 check_columns(column_names, "column_names") 551 if element_length_function is None and len(column_names) != 1: 1002 column_names = param_dict.get("column_names") 1003 if column_names is not None: [all …]
|