/third_party/mindspore/mindspore/train/ |
D | dataset_helper.py | 63 …def __init__(self, network, dataset_types, dataset_shapes, queue_name, min_shapes=None, max_shapes… argument 67 self.info = (dataset_types, dataset_shapes) 69 self.get_next = P.GetNext(dataset_types, dataset_shapes, len(dataset_types), queue_name) 82 def _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name, argument 85 … network = _DataWrapper(network, dataset_types, dataset_shapes, queue_name, min_shapes, max_shapes) 89 def has_dynamic_shape(dataset_shapes): argument 90 for shape in dataset_shapes: 97 dataset_types, dataset_shapes = dataset_helper.types_shapes() 98 (min_shapes, max_shapes) = (None, None) if not has_dynamic_shape(dataset_shapes) \ 100 network = _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, [all …]
|
D | _utils.py | 55 dataset_shapes = dataset.output_shapes() 56 return dataset_types, dataset_shapes 65 dataset_types, dataset_shapes = _get_types_and_shapes(exec_dataset) 73 dataset_shapes, 166 def _construct_input_tensors(dataset_types, dataset_shapes, device_number=1): argument 168 tensor_list_run = _construct_tensor_list(dataset_types, dataset_shapes, batch_expand_num=1) 169 …tensor_list_compile = _construct_tensor_list(dataset_types, dataset_shapes, batch_expand_num=devic…
|
/third_party/mindspore/tests/st/data_transfer/ |
D | test_tdt_data_transfer.py | 88 dataset_shapes = dataset.output_shapes() 90 dataset_types = convert_type(dataset_shapes, np_types) 91 return dataset_shapes, dataset_types 105 def __init__(self, network, dataset_types, dataset_shapes, shared_name=''): argument 107 self.get_next = P.GetNext(dataset_types, dataset_shapes, len(dataset_shapes), shared_name) 116 dataset_shapes, dataset_types = get_dataset_shapes_and_types(dataset) 121 net = SingleOpNetwork(dataset_shapes) 122 net_with_dataset = NetWithTDT(net, dataset_types, dataset_shapes, queue_name) 124 …aph_executor.init_dataset(dataset.queue_name, 1, batch_size, dataset_types, dataset_shapes, (), "")
|
/third_party/mindspore/tests/st/networks/models/resnet50/src_thor/ |
D | dataset_helper.py | 88 dataset_types, dataset_shapes = _get_types_and_shapes(dataset) 89 self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes 102 return self.dataset_types, self.dataset_shapes 127 self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num)
|
D | model_thor.py | 59 dataset_shapes = dataset.output_shapes() 60 return dataset_types, dataset_shapes 69 dataset_types, dataset_shapes = _get_types_and_shapes(exec_dataset) 74 dataset_shapes,
|
/third_party/mindspore/tests/ut/python/train/ |
D | test_amp.py | 97 def __init__(self, dataset_types, dataset_shapes): argument 100 output_shapes=dataset_shapes, 115 dataset_shapes = ((16, 16), (16, 16)) 117 dataset = MindDataSet(dataset_types, dataset_shapes) 132 dataset_shapes = ((16, 16), (16, 16)) 134 dataset = MindDataSet(dataset_types, dataset_shapes) 149 dataset_shapes = ((16, 16), (16, 16)) 155 dataset = MindDataSet(dataset_types, dataset_shapes)
|
D | test_training.py | 83 dataset_shapes = ((32, 3, 224, 224), (32, 3)) 87 output_shapes=dataset_shapes, 137 dataset_shapes = ((32, 3, 224, 224), (32, 3)) 141 output_shapes=dataset_shapes, 167 dataset_shapes = ((32, 3, 224, 224), (32, 3)) 171 output_shapes=dataset_shapes, 256 dataset_shapes = ((32, 3, 224, 224), (32, 3)) 260 output_shapes=dataset_shapes,
|
D | test_dataset_helper.py | 27 dataset_shapes = ((batch_size, 128), (batch_size, 128), (batch_size, 128), (batch_size, 1), 31 output_shapes=dataset_shapes, input_indexs=(0, 1))
|
/third_party/mindspore/mindspore/train/train_thor/ |
D | dataset_helper.py | 115 self.dataset_types, self.dataset_shapes = _get_types_and_shapes(dataset) 128 return self.dataset_types, self.dataset_shapes 171 self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num) 189 self.op = GetNextSingleOp(self.dataset_types, self.dataset_shapes, queue_name)
|
D | model_thor.py | 53 dataset_shapes = dataset.output_shapes() 54 return dataset_types, dataset_shapes 63 dataset_types, dataset_shapes = _get_types_and_shapes(exec_dataset) 68 dataset_shapes,
|
/third_party/mindspore/tests/st/ops/ascend/ |
D | test_tdt_data_ms.py | 76 dataset_shapes = data_set.output_shapes() variable 78 dataset_types = convert_type(dataset_shapes, np_types) 81 get_next = P.GetNext(dataset_types, dataset_shapes, 2, ds1.queue_name) 96 dataset_types, dataset_shapes, (), 'dataset')
|
/third_party/mindspore/tests/ut/python/parallel/ |
D | test_auto_parallel_flag.py | 32 def __init__(self, dataset_types, dataset_shapes): argument 35 output_shapes=dataset_shapes, 100 dataset_shapes = ((16, 16), (16, 16)) 102 dataset = MindDataSet(dataset_types, dataset_shapes)
|
/third_party/mindspore/tests/ut/python/pipeline/infer/ |
D | infer.py | 53 dataset_shapes = (batch_size, 3, 224, 224) 57 output_shapes=dataset_shapes,
|
/third_party/mindspore/tests/ut/python/optimizer/ |
D | test_optimizer_with_loss_scale.py | 35 def __init__(self, dataset_types, dataset_shapes): argument 38 output_shapes=dataset_shapes, 184 dataset_shapes = ((16, 16), (16, 16)) 186 dataset = MindDataSet(dataset_types, dataset_shapes) 198 dataset_shapes = ((16, 16), (16, 16)) 200 dataset = MindDataSet(dataset_types, dataset_shapes)
|
/third_party/mindspore/tests/st/pynative/loss_scale/ |
D | test_loss_scale.py | 101 def __init__(self, dataset_types, dataset_shapes): argument 104 output_shapes=dataset_shapes, 202 dataset_shapes = ((16, 16), (16, 16)) 203 dataset = MindDataSet(dataset_types, dataset_shapes)
|
/third_party/mindspore/tests/ut/python/communication/ |
D | test_data_parallel_resnet.py | 278 dataset_shapes = [[batch_size, 3, 224, 224], [batch_size, one_hot_len]] 284 output_shapes=dataset_shapes, 302 dataset_shapes = ((32, 3, 224, 224), (32, class_num)) 306 output_shapes=dataset_shapes,
|
/third_party/mindspore/tests/ut/python/train/summary/ |
D | test_image_summary.py | 135 dataset_shapes = ((2, 3, 224, 224), (2, 3)) 139 output_shapes=dataset_shapes,
|
/third_party/mindspore/tests/mindspore_test_framework/apps/ |
D | test_bert_parts.py | 71 dataset_shapes = ((batch_size, 128), (batch_size, 128), (batch_size, 128), (batch_size, 1), \ 76 output_shapes=dataset_shapes,
|
/third_party/mindspore/tests/ut/python/ir/ |
D | test_row_tensor.py | 78 def __init__(self, dataset_types, dataset_shapes): argument 81 output_shapes=dataset_shapes, 355 dataset_shapes = ((16, 16), (16, 16)) 356 dataset = MindDataSet(dataset_types, dataset_shapes)
|
/third_party/mindspore/tests/perf_test/bert/ |
D | test_bert_train.py | 40 dataset_shapes = ((batch_size, 128), (batch_size, 128), (batch_size, 128), (batch_size, 1), \ 45 output_shapes=dataset_shapes,
|
/third_party/mindspore/mindspore/nn/wrap/ |
D | cell_wrapper.py | 395 def __init__(self, dataset_types, dataset_shapes, queue_name): argument 397 self.get_next = P.GetNext(dataset_types, dataset_shapes, len(dataset_types), queue_name)
|
/third_party/mindspore/mindspore/common/ |
D | api.py | 470 def init_dataset(self, queue_name, dataset_size, batch_size, dataset_types, dataset_shapes, argument 491 shapes=dataset_shapes,
|