/third_party/boost/libs/math/tools/ |
D | factorial_tables.cpp | 14 std::vector<mp_t> factorials; in write_table() local 15 factorials.push_back(1); in write_table() 22 factorials.push_back(f); in write_table() 31 std::cout << " static const boost::array<T, " << factorials.size() << "> factorials = {\n"; in write_table() 32 for(unsigned j = 0; j < factorials.size(); ++j) in write_table() 33 std::cout << " " << factorials[j] << "L,\n"; in write_table()
|
/third_party/boost/boost/math/special_functions/detail/ |
D | unchecked_factorial.hpp | 54 constexpr std::array<float, 35> factorials = { { local 56 static const boost::array<float, 35> factorials = {{ 95 return factorials[i]; 109 constexpr std::array<long double, 171> factorials = { { local 111 static const boost::array<long double, 171> factorials = {{ 286 return factorials[i]; 301 constexpr std::array<BOOST_MATH_FLOAT128_TYPE, 171> factorials = { { local 303 static const boost::array<BOOST_MATH_FLOAT128_TYPE, 171> factorials = { { 478 return factorials[i]; 539 static const boost::array<T, 101> factorials = {{ local [all …]
|
/third_party/boost/libs/math/doc/sf/ |
D | factorials.qbk | 1 [section:factorials Factorials and Binomial Coefficients] 8 #include <boost/math/special_functions/factorials.hpp> 82 inside inner loops that require fast table lookup of factorials, but requires 94 further tables that depend on the factorials. 120 #include <boost/math/special_functions/factorials.hpp> 198 #include <boost/math/special_functions/factorials.hpp> 237 The spot tests for the rising factorials use data generated by __Wolfram_functions. 241 Rising and factorials are implemented as ratios of gamma functions using __tgamma_delta_ratio. 249 #include <boost/math/special_functions/factorials.hpp> 286 The spot tests for the falling factorials use data generated by __Wolfram_functions. [all …]
|
D | tgamma.qbk | 83 The gamma is relatively easy to test: factorials and half-integer factorials
|
D | gamma_ratios.qbk | 87 are smallish integers: in which case table lookup of factorials
|
D | lgamma.qbk | 69 the factorials which can be independently calculated to very high accuracy.
|
/third_party/boost/libs/math/doc/internals/ |
D | relative_error.qbk | 91 factorials = { 109 factorials, 110 bind(funcp, ret<TestType>(_1[0])), // calls tgamma with factorials[row][0] 111 ret<TestType>(_1[1]) // extracts the expected result from factorials[row][1] 124 factorials, 125 bind(funcp, ret<TestType>(_1[0])), // calls tgamma with factorials[row][0] 126 ret<TestType>(_1[2]) // extracts the expected result from factorials[row][2]
|
/third_party/boost/libs/local_function/test/ |
D | factorial_seq.cpp | 21 void factorials(const std::vector<int>& nums) { in factorials() function 42 calc.factorials(v); in main()
|
D | factorial.cpp | 27 void factorials(const std::vector<int>& nums) { in factorials() function 49 calc.factorials(v); in main()
|
/third_party/boost/libs/math/doc/html/ |
D | standalone_HTML.manifest | 178 math_toolkit/factorials.html 179 math_toolkit/factorials/sf_factorial.html 180 math_toolkit/factorials/sf_double_factorial.html 181 math_toolkit/factorials/sf_rising_factorial.html 182 math_toolkit/factorials/sf_falling_factorial.html 183 math_toolkit/factorials/sf_binomial.html
|
/third_party/boost/libs/math/doc/distributions/ |
D | hypergeometric.qbk | 147 However, this can only be used directly when the largest of the factorials 150 in which case table lookup of the factorials gives a rapid and accurate 167 Further we can combine the factorials in the expression for the PDF 193 For much larger N, we can calculate the PDF from the factorials using
|
/third_party/boost/libs/math/test/ |
D | test_gamma_mp.cpp | 110 do_test_gamma<T>(factorials, name, "factorials"); in test_gamma()
|
D | test_gamma.hpp | 143 do_test_gamma<T>(factorials, name, "factorials"); in test_gamma()
|
D | tgamma_mp_data.hpp | 1 static const boost::array<boost::array<T, 3>, 198> factorials = { variable
|
D | test_gamma_data.ipp | 6 static const boost::array<boost::array<typename table_type<T>::type, 3>, 198> factorials = { {
|
/third_party/boost/libs/math/reporting/performance/ |
D | test_lgamma.cpp | 24 add_data(factorials); in main()
|
D | test_tgamma.cpp | 24 add_data(factorials); in main()
|
/third_party/boost/libs/math/doc/ |
D | math.qbk | 177 [/factorials] 178 [def __factorial [link math_toolkit.factorials.sf_factorial factorial]] 179 [def __unchecked_factorial [link math_toolkit.factorials.sf_factorial unchecked_factorial]] 180 [def __max_factorial [link math_toolkit.factorials.sf_factorial max_factorial]] 181 [def __double_factorial [link math_toolkit.factorials.sf_double_factorial double_factorial]] 182 [def __rising_factorial [link math_toolkit.factorials.sf_rising_factorial rising_factorial]] 183 [def __falling_factorial [link math_toolkit.factorials.sf_falling_factorial falling_factorial]] 622 [include sf/factorials.qbk]
|
/third_party/boost/libs/multiprecision/doc/html/ |
D | standalone_HTML.manifest | 9 boost_multiprecision/tut/ints/egs/factorials.html
|
/third_party/boost/libs/math/doc/background/ |
D | lanczos.qbk | 75 in the computation of the ratios of rising and falling factorials (effectively 159 of z (1 < z < 200) used to test the implementation against the factorials.
|
/third_party/python/Lib/test/ |
D | math_testcases.txt | 187 -- small positive integers give factorials 291 -- small positive integers give factorials
|
/third_party/boost/libs/local_function/doc/ |
D | advanced_topics.qbk | 292 For example, the following local function is used to recursively calculate the factorials of all th…
|
/third_party/boost/libs/math/doc/concepts/ |
D | concepts.qbk | 40 * The range of the computed value exceeds the range of the type: factorials are the textbook exampl…
|
/third_party/boost/libs/math/doc/differentiation/ |
D | autodiff.tex | 365 Multiplying both sides by the respective factorials gives
|
/third_party/python/Doc/whatsnew/ |
D | 3.2.rst | 1080 the function is related to factorials, it grows large even for small values of
|