Home
last modified time | relevance | path

Searched refs:factorials (Results 1 – 25 of 27) sorted by relevance

12

/third_party/boost/libs/math/tools/
Dfactorial_tables.cpp14 std::vector<mp_t> factorials; in write_table() local
15 factorials.push_back(1); in write_table()
22 factorials.push_back(f); in write_table()
31 std::cout << " static const boost::array<T, " << factorials.size() << "> factorials = {\n"; in write_table()
32 for(unsigned j = 0; j < factorials.size(); ++j) in write_table()
33 std::cout << " " << factorials[j] << "L,\n"; in write_table()
/third_party/boost/boost/math/special_functions/detail/
Dunchecked_factorial.hpp54 constexpr std::array<float, 35> factorials = { { local
56 static const boost::array<float, 35> factorials = {{
95 return factorials[i];
109 constexpr std::array<long double, 171> factorials = { { local
111 static const boost::array<long double, 171> factorials = {{
286 return factorials[i];
301 constexpr std::array<BOOST_MATH_FLOAT128_TYPE, 171> factorials = { { local
303 static const boost::array<BOOST_MATH_FLOAT128_TYPE, 171> factorials = { {
478 return factorials[i];
539 static const boost::array<T, 101> factorials = {{ local
[all …]
/third_party/boost/libs/math/doc/sf/
Dfactorials.qbk1 [section:factorials Factorials and Binomial Coefficients]
8 #include <boost/math/special_functions/factorials.hpp>
82 inside inner loops that require fast table lookup of factorials, but requires
94 further tables that depend on the factorials.
120 #include <boost/math/special_functions/factorials.hpp>
198 #include <boost/math/special_functions/factorials.hpp>
237 The spot tests for the rising factorials use data generated by __Wolfram_functions.
241 Rising and factorials are implemented as ratios of gamma functions using __tgamma_delta_ratio.
249 #include <boost/math/special_functions/factorials.hpp>
286 The spot tests for the falling factorials use data generated by __Wolfram_functions.
[all …]
Dtgamma.qbk83 The gamma is relatively easy to test: factorials and half-integer factorials
Dgamma_ratios.qbk87 are smallish integers: in which case table lookup of factorials
Dlgamma.qbk69 the factorials which can be independently calculated to very high accuracy.
/third_party/boost/libs/math/doc/internals/
Drelative_error.qbk91 factorials = {
109 factorials,
110 bind(funcp, ret<TestType>(_1[0])), // calls tgamma with factorials[row][0]
111 ret<TestType>(_1[1]) // extracts the expected result from factorials[row][1]
124 factorials,
125 bind(funcp, ret<TestType>(_1[0])), // calls tgamma with factorials[row][0]
126 ret<TestType>(_1[2]) // extracts the expected result from factorials[row][2]
/third_party/boost/libs/local_function/test/
Dfactorial_seq.cpp21 void factorials(const std::vector<int>& nums) { in factorials() function
42 calc.factorials(v); in main()
Dfactorial.cpp27 void factorials(const std::vector<int>& nums) { in factorials() function
49 calc.factorials(v); in main()
/third_party/boost/libs/math/doc/html/
Dstandalone_HTML.manifest178 math_toolkit/factorials.html
179 math_toolkit/factorials/sf_factorial.html
180 math_toolkit/factorials/sf_double_factorial.html
181 math_toolkit/factorials/sf_rising_factorial.html
182 math_toolkit/factorials/sf_falling_factorial.html
183 math_toolkit/factorials/sf_binomial.html
/third_party/boost/libs/math/doc/distributions/
Dhypergeometric.qbk147 However, this can only be used directly when the largest of the factorials
150 in which case table lookup of the factorials gives a rapid and accurate
167 Further we can combine the factorials in the expression for the PDF
193 For much larger N, we can calculate the PDF from the factorials using
/third_party/boost/libs/math/test/
Dtest_gamma_mp.cpp110 do_test_gamma<T>(factorials, name, "factorials"); in test_gamma()
Dtest_gamma.hpp143 do_test_gamma<T>(factorials, name, "factorials"); in test_gamma()
Dtgamma_mp_data.hpp1 static const boost::array<boost::array<T, 3>, 198> factorials = { variable
Dtest_gamma_data.ipp6 static const boost::array<boost::array<typename table_type<T>::type, 3>, 198> factorials = { {
/third_party/boost/libs/math/reporting/performance/
Dtest_lgamma.cpp24 add_data(factorials); in main()
Dtest_tgamma.cpp24 add_data(factorials); in main()
/third_party/boost/libs/math/doc/
Dmath.qbk177 [/factorials]
178 [def __factorial [link math_toolkit.factorials.sf_factorial factorial]]
179 [def __unchecked_factorial [link math_toolkit.factorials.sf_factorial unchecked_factorial]]
180 [def __max_factorial [link math_toolkit.factorials.sf_factorial max_factorial]]
181 [def __double_factorial [link math_toolkit.factorials.sf_double_factorial double_factorial]]
182 [def __rising_factorial [link math_toolkit.factorials.sf_rising_factorial rising_factorial]]
183 [def __falling_factorial [link math_toolkit.factorials.sf_falling_factorial falling_factorial]]
622 [include sf/factorials.qbk]
/third_party/boost/libs/multiprecision/doc/html/
Dstandalone_HTML.manifest9 boost_multiprecision/tut/ints/egs/factorials.html
/third_party/boost/libs/math/doc/background/
Dlanczos.qbk75 in the computation of the ratios of rising and falling factorials (effectively
159 of z (1 < z < 200) used to test the implementation against the factorials.
/third_party/python/Lib/test/
Dmath_testcases.txt187 -- small positive integers give factorials
291 -- small positive integers give factorials
/third_party/boost/libs/local_function/doc/
Dadvanced_topics.qbk292 For example, the following local function is used to recursively calculate the factorials of all th…
/third_party/boost/libs/math/doc/concepts/
Dconcepts.qbk40 * The range of the computed value exceeds the range of the type: factorials are the textbook exampl…
/third_party/boost/libs/math/doc/differentiation/
Dautodiff.tex365 Multiplying both sides by the respective factorials gives
/third_party/python/Doc/whatsnew/
D3.2.rst1080 the function is related to factorials, it grows large even for small values of

12