/third_party/boost/libs/parameter/test/literate/ |
D | predicate-requirements0.cpp | 4 BOOST_PARAMETER_NAME((_graph, graphs) graph) 5 BOOST_PARAMETER_NAME((_visitor, graphs) visitor) 6 BOOST_PARAMETER_NAME((_root_vertex, graphs) in(root_vertex)) 7 BOOST_PARAMETER_NAME((_index_map, graphs) in(index_map)) 8 BOOST_PARAMETER_NAME((_color_map, graphs) in_out(color_map)) 27 , graphs::graph 76 , graphs::graph 103 , graphs::graph 140 BOOST_PARAMETER_FUNCTION((void), depth_first_search, graphs,
|
/third_party/mindspore/tests/ut/cpp/cxx_api/ |
D | serialization_test.cc | 88 std::vector<Graph> graphs; in TEST_F() local 90 ModelType::kMindIR, &graphs) == kSuccess); in TEST_F() 94 std::vector<Graph> graphs; in TEST_F() local 96 ModelType::kMindIR, &graphs) == kSuccess); in TEST_F() 100 std::vector<Graph> graphs; in TEST_F() local 102 ModelType::kMindIR, &graphs); in TEST_F() 109 std::vector<Graph> graphs; in TEST_F() local 111 …:string>(2, "./data/mindir/add_encrpty_key_0123456789ABCDEF.mindir"), ModelType::kMindIR, &graphs); in TEST_F()
|
/third_party/mindspore/mindspore/ccsrc/runtime/framework/ |
D | control_node_parser.h | 90 …void Parse(const std::vector<AnfNodePtr> &control_nodes, const std::vector<KernelGraphPtr> &graphs, 144 …tValueNode(const std::vector<AnfNodePtr> &control_nodes, const std::vector<KernelGraphPtr> &graphs, 154 void FetchFrontToBackendParameter(const std::vector<KernelGraphPtr> &graphs, 159 void FetchFrontToBackendKernel(const std::vector<KernelGraphPtr> &graphs, 180 void FetchCallInputKernelGraph(const std::vector<KernelGraphPtr> &graphs, 183 void FetchBackendInputNode(const std::vector<KernelGraphPtr> &graphs, 188 void FetchBackendParameterNode(const std::vector<KernelGraphPtr> &graphs,
|
D | control_node_parser.cc | 722 …ser::Parse(const std::vector<AnfNodePtr> &control_nodes, const std::vector<KernelGraphPtr> &graphs, in Parse() argument 724 if (graphs.size() != device_contexts.size()) { in Parse() 725 MS_LOG(EXCEPTION) << "Graph num is not equal to device context, graph:" << graphs.size() in Parse() 728 if (graphs.empty()) { in Parse() 748 FetchFrontToBackendParameter(graphs, device_contexts, real_to_formal_front_parameters, in Parse() 755 FetchCallInputKernelGraph(graphs, device_contexts); in Parse() 757 FetchFrontValueNode(control_nodes, graphs, device_contexts); in Parse() 759 FetchFrontToBackendKernel(graphs, device_contexts); in Parse() 761 FetchCallInputKernelGraph(graphs, device_contexts); in Parse() 767 …FetchBackendInputNode(graphs, device_contexts, real_to_formal_front_parameters, formal_to_real_fro… in Parse() [all …]
|
D | graph_compiler.h | 59 …GraphCompilerInfo(const std::vector<KernelGraphPtr> &graphs, const std::vector<DeviceContext *> &d… in GraphCompilerInfo() 66 : graphs_(graphs), in GraphCompilerInfo() 165 void Summary(const std::vector<KernelGraphPtr> &graphs) const;
|
/third_party/boost/libs/parameter/test/ |
D | tutorial.cpp | 8 namespace graphs { namespace 19 namespace graphs { namespace core { namespace 34 using namespace graphs; in main()
|
/third_party/mindspore/mindspore/_extends/graph_kernel/ |
D | parallel_estimate.py | 28 graphs = [] 30 graphs.append(model.load_composite(gd).graph) 31 estimation = model.parallel_estimate(graphs)
|
/third_party/mindspore/tests/st/graph_kernel/model/ |
D | test_split.py | 39 graphs = sp.resolve_connnected_graphs(nodes) 40 if len(graphs) != 1: 351 graphs = sp.resolve_connnected_graphs(n1) 352 print(graphs) 353 assert len(graphs) == 1 355 graphs = sp.resolve_connnected_graphs(n2) 356 print(graphs) 357 assert len(graphs) == 2 359 graphs = sp.resolve_connnected_graphs(n3) 360 print(graphs) [all …]
|
D | test_graph_parallel.py | 36 def block_fusion(graphs): argument 37 gain = model.parallel_estimate(graphs)
|
/third_party/mindspore/mindspore/ccsrc/runtime/framework/actor/ |
D | debug_actor.cc | 76 void DebugActor::DebugOnStepBegin(std::vector<KernelGraphPtr> graphs, std::vector<DeviceContext *> … in DebugOnStepBegin() argument 83 debugger->PreExecuteGraphDebugger(graphs); in DebugOnStepBegin() 90 for (size_t i = 0; i < graphs.size(); ++i) { in DebugOnStepBegin() 93 DumpJsonParser::GetInstance().SaveGraph(graphs[i].get()); in DebugOnStepBegin()
|
/third_party/mindspore/include/api/ |
D | serialization.h | 67 …tatus Load(const std::vector<std::string> &files, ModelType model_type, std::vector<Graph> *graphs, 81 …Load(const std::vector<std::vector<char>> &files, ModelType model_type, std::vector<Graph> *graphs, 95 …tion::Load(const std::vector<std::string> &files, ModelType model_type, std::vector<Graph> *graphs, in Load() argument 97 return Load(VectorStringToChar(files), model_type, graphs, dec_key, StringToChar(dec_mode)); in Load()
|
/third_party/mindspore/tests/ut/cpp/parallel/ |
D | step_parallel_test.cc | 368 FuncGraphSet graphs = manager->func_graphs(); in TEST_F() local 369 FuncGraphPtr graph = *graphs.begin(); in TEST_F() 377 FuncGraphSet graphs = manager->func_graphs(); in TEST_F() local 378 FuncGraphPtr graph = *graphs.begin(); in TEST_F() 386 FuncGraphSet graphs = manager->func_graphs(); in TEST_F() local 387 FuncGraphPtr graph = *graphs.begin(); in TEST_F() 405 FuncGraphSet graphs = manager->func_graphs(); in TEST_F() local 406 FuncGraphPtr graph = *graphs.begin(); in TEST_F() 444 FuncGraphSet graphs = manager->func_graphs(); in TEST_F() local 445 FuncGraphPtr graph = *graphs.begin(); in TEST_F() [all …]
|
/third_party/boost/libs/math/doc/sf/ |
D | gegenbauer.qbk | 51 [$../graphs/gegenbauer.svg] 101 [$../graphs/gegenbauer_ulp_3.svg] 102 [$../graphs/gegenbauer_ulp_5.svg] 103 [$../graphs/gegenbauer_ulp_9.svg]
|
D | cardinal_b_splines.qbk | 56 [$../graphs/central_b_splines.svg] 57 [$../graphs/central_b_spline_derivatives.svg] 58 [$../graphs/central_b_spline_second_derivatives.svg] 127 [$../graphs/b_spline_ulp_3.svg] 128 [$../graphs/b_spline_ulp_5.svg] 129 [$../graphs/b_spline_ulp_9.svg]
|
D | hypergeometric.qbk | 166 [? __build_html '''<?dbhtml-include href="'''__base_path__'''/graphs/hypergeometric_1f1/script_incl… 217 [? __build_html '''<?dbhtml-include href="'''__base_path__'''/graphs/hypergeometric_1f1/negative_b_… 218 [?! __build_html [$../graphs/hypergeometric_1f1/negative_b_incalculable.png]] 240 In the following graphs we ran 100000 random test cases over each domain, note that the scatter plo… 241 as otherwise the graphs are both incomprehensible and virtually unplottable (as in sudden browser d… 246 [$../graphs/hypergeometric_1f1/positive_abz_bins.svg] 247 [? __build_html '''<?dbhtml-include href="'''__base_path__'''/graphs/hypergeometric_1f1/positive_ab… 248 [?! __build_html [$../graphs/hypergeometric_1f1/positive_abz.png]] 252 [$../graphs/hypergeometric_1f1/negative_a_bins.svg] 253 [? __build_html '''<?dbhtml-include href="'''__base_path__'''/graphs/hypergeometric_1f1/negative_a.… [all …]
|
/third_party/mindspore/mindspore/lite/test/ut/src/runtime/kernel/arm/cxx_api/ |
D | serialization_test.cc | 38 std::vector<Graph> graphs; in TEST_F() local 40 …Load(std::vector<std::string>(2, "./nets/file_not_exist.mindir"), ModelType::kFlatBuffer, &graphs); in TEST_F()
|
/third_party/boost/libs/math/doc/quadrature/ |
D | wavelet_transforms.qbk | 36 [$../graphs/wavelet_transform_definition.svg] 40 [$../graphs/daubechies_wavelet_transform_definition.svg] 59 [$../graphs/scalogram_sin1t_light.png]
|
/third_party/boost/libs/graph_parallel/doc/ |
D | dehne_gotz_min_spanning_tree.rst | 12 graphs. The graphs need not be connected: each algorithm will compute 159 various random graphs. We see that the algorithm scales well up to 64 161 graphs. However, for sparse graphs performance tapers off as the 215 various random graphs. The algorithm only scales well for very dense 216 graphs, where most of the work is performed in the initial stage and 276 various random graphs. We see that the algorithm scales well up to 64 278 graphs. However, for sparse graphs performance tapers off as the 339 various random graphs. We see that the algorithm scales well up to 64 341 graphs. However, for sparse graphs performance tapers off as the 366 consistent performance and scalability for the graphs we
|
/third_party/mindspore/mindspore/_extends/graph_kernel/model/ |
D | graph_parallel.py | 272 def block_parallel_estimate(graphs): argument 275 for gid, g in enumerate(graphs): 287 return ParalGain("none", sum_weight, 0, [0 for _ in graphs], None) 293 def parallel_estimate(graphs): argument 295 return block_parallel_estimate(graphs)
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/graph_kernel/ |
D | parallel_cost_model.cc | 51 std::vector<AnfNodePtrList> graphs; in CalFuseInfo() local 52 std::transform(nodes.begin(), nodes.end(), std::back_inserter(graphs), in CalFuseInfo() 55 if (!AnfToJsonDesc(graphs, dump_option, &json_desc)) { in CalFuseInfo()
|
/third_party/boost/libs/graph/doc/ |
D | read_graphml.rst | 30 The GraphML format can specify both directed and undirected graphs, and 33 the same is true for directed graphs. Furthermore, ``read_graphml`` 45 If the file contains multiple graphs, the ``graph_index`` parameter controls 48 number of graphs in the file, an empty graph will be returned. 148 - Nested graphs are supported as long as they are exactly of the same 150 that since nested graphs are not directly supported by BGL, they
|
/third_party/mindspore/tests/ut/cpp/common/ |
D | backend_common_test.cc | 73 std::vector<FuncGraphPtr> graphs{func_graph}; in GetFuncGraph() local 74 FuncGraphManagerPtr manager = std::make_shared<FuncGraphManager>(graphs); in GetFuncGraph()
|
/third_party/boost/libs/graph/src/ |
D | graphml.cpp | 124 std::vector< const ptree* > graphs; in run() local 126 get_graphs(gml, desired_idx, true, graphs); in run() 127 BOOST_FOREACH (const ptree* gr, graphs) in run() 148 BOOST_FOREACH (const ptree* gr, graphs) in run()
|
/third_party/mindspore/mindspore/ccsrc/debug/data_dump/ |
D | cpu_e2e_dump.cc | 173 auto &graphs = DumpJsonParser::GetInstance().graphs(); in DumpParametersAndConst() local 174 for (auto graph : graphs) { in DumpParametersAndConst()
|
/third_party/mindspore/mindspore/core/proto/ |
D | mind_ir.proto | 42 repeated GraphProto graphs = 13; field 78 repeated GraphProto functions = 8; // all the graphs without the main graph.
|