/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp32/ |
D | fused_batchnorm_fp32.cc | 27 CHECK_LESS_RETURN(in_tensors_.size(), DIMENSION_5D); in ReSize() 47 auto scale = in_tensors_.at(SECOND_INPUT); in InitConstTensor() 48 auto offset = in_tensors_.at(THIRD_INPUT); in InitConstTensor() 49 auto mean = in_tensors_.at(FOURTH_INPUT); in InitConstTensor() 50 auto variance = in_tensors_.at(FIFTH_INPUT); in InitConstTensor() 77 if (IsTrain() && IsTrainable() && in_tensors_.size() >= DIMENSION_5D) { in Run() 78 float *in = static_cast<float *>(in_tensors_.at(FIRST_INPUT)->data()); in Run() 79 float *scale = static_cast<float *>(in_tensors_.at(SECOND_INPUT)->data()); in Run() 80 float *offset = static_cast<float *>(in_tensors_.at(THIRD_INPUT)->data()); in Run() 83 float *save_mean = static_cast<float *>(in_tensors_.at(FOURTH_INPUT)->data()); in Run() [all …]
|
D | space_to_batch_fp32.cc | 29 auto input_tensor = in_tensors_.at(FIRST_INPUT); in ProcessInput() 37 auto block_shape_data = in_tensors_.at(SECOND_INPUT)->data(); in ProcessInput() 40 for (int i = 0; i < in_tensors_.at(SECOND_INPUT)->ElementsNum(); i++) { in ProcessInput() 43 auto padding_data = in_tensors_.at(THIRD_INPUT)->data(); in ProcessInput() 46 for (int i = 0; i < in_tensors_.at(THIRD_INPUT)->ElementsNum(); i++) { in ProcessInput() 52 CHECK_LESS_RETURN(in_tensors_.size(), 1); in Init() 67 if (in_tensors_.size() == DIMENSION_3D) { in ReSize() 68 if (in_tensors_.at(SECOND_INPUT) != nullptr && in_tensors_.at(SECOND_INPUT)->IsConst() && in ReSize() 69 in_tensors_.at(THIRD_INPUT) != nullptr && in_tensors_.at(THIRD_INPUT)->IsConst()) { in ReSize() 73 auto input_tensor = in_tensors_.at(FIRST_INPUT); in ReSize() [all …]
|
D | batch_to_space_fp32.cc | 28 CHECK_LESS_RETURN(in_tensors_.size(), DIMENSION_3D); in Processinput() 29 CHECK_NULL_RETURN(in_tensors_[DIMENSION_1D]); in Processinput() 30 CHECK_NULL_RETURN(in_tensors_[DIMENSION_2D]); in Processinput() 31 auto block_shape_data = in_tensors_[DIMENSION_1D]->data(); in Processinput() 32 auto crops_data = in_tensors_[DIMENSION_2D]->data(); in Processinput() 37 CHECK_LESS_RETURN(in_tensors_[DIMENSION_1D]->ElementsNum(), BATCH_TO_SPACE_BLOCK_SHAPE_SIZE); in Processinput() 38 CHECK_LESS_RETURN(in_tensors_[DIMENSION_2D]->ElementsNum(), COMM_SHAPE_SIZE); in Processinput() 53 CHECK_LESS_RETURN(in_tensors_.size(), 1); in Init() 55 MS_ASSERT(in_tensors_[0]->format() == mindspore::NHWC); in Init() 63 MS_ASSERT(in_tensors_[0]->shape().size() == COMM_SHAPE_SIZE); in ReSize() [all …]
|
D | detection_post_process_fp32.cc | 30 CHECK_LESS_RETURN(in_tensors_.size(), C2NUM); in GetInputData() 31 …if ((in_tensors_.at(0)->data_type() != kNumberTypeFloat32 && in_tensors_.at(0)->data_type() != kNu… in GetInputData() 32 …(in_tensors_.at(1)->data_type() != kNumberTypeFloat32 && in_tensors_.at(1)->data_type() != kNumber… in GetInputData() 36 CHECK_NULL_RETURN(in_tensors_.at(0)->data()); in GetInputData() 37 CHECK_NULL_RETURN(in_tensors_.at(1)->data()); in GetInputData() 38 input_boxes_ = reinterpret_cast<float *>(in_tensors_.at(0)->data()); in GetInputData() 39 input_scores_ = reinterpret_cast<float *>(in_tensors_.at(1)->data()); in GetInputData()
|
D | batchnorm_fp32.cc | 30 CHECK_LESS_RETURN(in_tensors_.size(), DIMENSION_3D); in Init() 32 CHECK_NULL_RETURN(in_tensors_[0]); in Init() 33 CHECK_NULL_RETURN(in_tensors_[1]); in Init() 34 CHECK_NULL_RETURN(in_tensors_[kNumInput2]); in Init() 64 auto input_shapes = in_tensors_.at(0)->shape(); in FillParam() 80 CHECK_LESS_RETURN(MAX_MALLOC_SIZE, in_tensors_.at(1)->Size()); in InitConstTensor() 81 CHECK_LESS_RETURN(MAX_MALLOC_SIZE, in_tensors_.at(kNumInput2)->Size()); in InitConstTensor() 82 mean_ = malloc(in_tensors_.at(SECOND_INPUT)->Size()); in InitConstTensor() 83 variance_ = malloc(in_tensors_.at(THIRD_INPUT)->Size()); in InitConstTensor() 89 auto in_tensor_mean_data = in_tensors_.at(SECOND_INPUT)->MutableData(); in InitConstTensor() [all …]
|
D | range_fp32.cc | 31 CHECK_LESS_RETURN(in_tensors_.size(), 1); in Init() 40 …if (in_tensors_[0]->data_type() == kNumberTypeFloat32 || in_tensors_[0]->data_type() == kNumberTyp… in ReSize() 41 in_tensors_[0]->data_type() == kNumberTypeFloat) { in ReSize() 50 if (in_tensors_.size() == 3) { in Run() 52 …rpret_cast<int *>(out_tensors_.at(0)->data()), *reinterpret_cast<int *>(in_tensors_.at(0)->data()), in Run() 53 *reinterpret_cast<int *>(in_tensors_.at(2)->data()), out_tensors_.at(0)->shape()[0]); in Run() 56 *reinterpret_cast<float *>(in_tensors_.at(0)->data()), in Run() 57 *reinterpret_cast<float *>(in_tensors_.at(2)->data()), out_tensors_.at(0)->shape()[0]); in Run() 65 MS_LOG(ERROR) << "Unsupported parameter type : " << in_tensors_.at(0)->data_type() << "."; in Run()
|
D | addn_fp32.cc | 41 CHECK_LESS_RETURN(in_tensors_.size(), C2NUM); in Init() 62 auto input0_data = reinterpret_cast<float *>(in_tensors_[0]->MutableData()); in Run() 63 auto input1_data = reinterpret_cast<float *>(in_tensors_[1]->MutableData()); in Run() 69 if (in_tensors_[0]->shape() == in_tensors_[1]->shape()) { in Run() 73 param.in_elements_num0_ = in_tensors_[0]->ElementsNum(); in Run() 74 param.in_elements_num1_ = in_tensors_[1]->ElementsNum(); in Run() 80 for (size_t i = 2; i < in_tensors_.size(); ++i) { in Run() 81 auto in_data = reinterpret_cast<float *>(in_tensors_[i]->MutableData()); in Run() 83 if (in_tensors_[i]->shape() == out_tensors_[0]->shape()) { in Run() 87 param.in_elements_num0_ = in_tensors_[i]->ElementsNum(); in Run() [all …]
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp16/ |
D | fused_batchnorm_fp16.cc | 45 std::fill(current_mean, current_mean + in_tensors_.at(kInCurrentMeanIdx)->ElementsNum(), 0.f); in CalcMeanVar() 46 std::fill(current_var, current_var + in_tensors_.at(kInCurrentVarIdx)->ElementsNum(), 0.f); in CalcMeanVar() 59 memcpy(scale_, scale, in_tensors_.at(kInScaleIdx)->Size()); in CalcMeanVar() 60 memcpy(offset_, offset, in_tensors_.at(kInOffsetIdx)->Size()); in CalcMeanVar() 68 if (in_tensors_.at(0)->data_type() == kNumberTypeFloat32) { in DoExecute() 69 MS_ASSERT(in_tensors_.size() == kMaxInIdx); in DoExecute() 71 auto input = in_tensors_.at(0); in DoExecute() 72 auto scale = in_tensors_.at(kInScaleIdx); in DoExecute() 73 auto offset = in_tensors_.at(kInOffsetIdx); in DoExecute() 74 auto mean = in_tensors_.at(kInCurrentMeanIdx); in DoExecute() [all …]
|
D | addn_fp16.cc | 58 auto input0_data = reinterpret_cast<float16_t *>(in_tensors_[0]->MutableData()); in Run() 60 auto input1_data = reinterpret_cast<float16_t *>(in_tensors_[1]->MutableData()); in Run() 65 if (in_tensors_[0]->shape() == in_tensors_[1]->shape()) { in Run() 69 param.in_elements_num0_ = in_tensors_[0]->ElementsNum(); in Run() 70 param.in_elements_num1_ = in_tensors_[1]->ElementsNum(); in Run() 76 for (size_t i = 2; i < in_tensors_.size(); ++i) { in Run() 77 CHECK_NULL_RETURN(in_tensors_[i]->data()); in Run() 78 if (in_tensors_[i]->shape() == out_tensors_[0]->shape()) { in Run() 79 …ElementAddFp16(reinterpret_cast<float16_t *>(in_tensors_[i]->data()), out_data, out_data, elements… in Run() 82 param.in_elements_num0_ = in_tensors_[i]->ElementsNum(); in Run() [all …]
|
D | scale_fp16.cc | 34 auto scale_tensor = in_tensors_.at(1); in InitScaleOffset() 37 if (in_tensors_.size() == 2) { in InitScaleOffset() 40 auto offset_tensor = in_tensors_.at(2); in InitScaleOffset() 47 if (in_tensors_.size() < 2 || in_tensors_.size() > 3) { in Init() 48 …MS_LOG(ERROR) << "inputs to Scale operator should be 2 or 3, but " << in_tensors_.size() << " is g… in Init() 103 auto input_tensor = in_tensors_.at(0); in Run() 136 …scale_ = ConvertInputFp32toFp16(in_tensors_.at(1), static_cast<const lite::InnerContext *>(this->m… in MallocAssignTmpBuffer() 140 if (in_tensors_.size() == 3) { in MallocAssignTmpBuffer() 141 …offset_ = ConvertInputFp32toFp16(in_tensors_.at(2), static_cast<const lite::InnerContext *>(this->… in MallocAssignTmpBuffer() 146 MS_CHECK_INT_MUL_NOT_OVERFLOW(in_tensors_.at(1)->ElementsNum(), sizeof(float16_t), RET_ERROR); in MallocAssignTmpBuffer() [all …]
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/opencl/kernel/ |
D | batchnorm.cc | 39 if (in_tensors_.size() != INPUT_TENSOR_SIZE_5 || out_tensors_.size() != OUTPUT_TENSOR_SIZE_1) { in CheckSpecs() 40 MS_LOG(WARNING) << "in size: " << in_tensors_.size() << ", out size: " << out_tensors_.size(); in CheckSpecs() 43 if (in_tensors_.at(0)->shape().size() != DIMENSION_4D) { in CheckSpecs() 44 …MS_LOG(WARNING) << "The dim of in_tensors->shape must be 4 but your dim is : " << in_tensors_.at(0… in CheckSpecs() 47 if (in_tensors_.at(0)->shape()[0] > 1) { in CheckSpecs() 51 CHECK_NULL_RETURN(in_tensors_[kNumInput0]); in CheckSpecs() 52 CHECK_NULL_RETURN(in_tensors_[kNumInput1]); in CheckSpecs() 53 CHECK_NULL_RETURN(in_tensors_[kNumInput2]); in CheckSpecs() 54 CHECK_NULL_RETURN(in_tensors_[kNumInput3]); in CheckSpecs() 55 CHECK_NULL_RETURN(in_tensors_[kNumInput4]); in CheckSpecs() [all …]
|
D | stack.cc | 38 for (int i = 0; i < in_tensors_.size(); i++) { in RunAxis0() 39 auto src_data = in_tensors_[i]->data(); in RunAxis0() 74 if (in_tensors_.size() != INPUT_TENSOR_SIZE_2 && out_tensors_.size() != OUTPUT_TENSOR_SIZE_1) { in CheckSpecs() 78 for (auto &tensor : in_tensors_) { in CheckSpecs() 90 if (in_tensors_[0]->shape().size() > DIMENSION_4D || in_tensors_[0]->shape().size() <= 0) { in CheckSpecs() 94 axis_ = axis_ < 0 ? axis_ + in_tensors_[0]->shape().size() : axis_; in CheckSpecs() 99 if (axis_ > in_tensors_[0]->shape().size()) { in CheckSpecs() 107 int arg_cn = in_tensors_.size() + 1; in SetConstArgs() 109 for (int i = 0; i < in_tensors_[0]->shape().size(); ++i) { in SetConstArgs() 110 inshape_tmp.s[i] = in_tensors_[0]->shape()[i]; in SetConstArgs() [all …]
|
D | space_to_batch_nd.cc | 31 if (in_tensors_.size() != INPUT_TENSOR_SIZE_1 || out_tensors_.size() != OUTPUT_TENSOR_SIZE_1) { in CheckSpecs() 32 MS_LOG(WARNING) << "in size: " << in_tensors_.size() << ", out size: " << out_tensors_.size(); in CheckSpecs() 35 …if (in_tensors_[0]->data_type() != kNumberTypeFloat32 && in_tensors_[0]->data_type() != kNumberTyp… in CheckSpecs() 36 MS_LOG(WARNING) << "Unsupported data type " << in_tensors_[0]->data_type(); in CheckSpecs() 39 …if (in_tensors_[0]->shape().size() != DIMENSION_4D && out_tensors_[0]->shape().size() != DIMENSION… in CheckSpecs() 40 …MS_LOG(WARNING) << "input/output shape size must be 4, actual: " << in_tensors_[0]->shape().size()… in CheckSpecs() 46 param->padded_in_shape_[kNHWC_N] = in_tensors_[0]->shape().at(kNHWC_N); in CheckSpecs() 47 …param->padded_in_shape_[kNHWC_H] = in_tensors_[0]->shape().at(kNHWC_H) + param->paddings_[0] + par… in CheckSpecs() 48 …param->padded_in_shape_[kNHWC_W] = in_tensors_[0]->shape().at(kNHWC_W) + param->paddings_[2] + par… in CheckSpecs() 49 param->padded_in_shape_[kNHWC_C] = in_tensors_[0]->shape().at(kNHWC_C); in CheckSpecs() [all …]
|
D | matmul.cc | 32 bool IsUseStrassenMatmul(const std::vector<lite::Tensor *> &in_tensors_) { in IsUseStrassenMatmul() argument 33 if (in_tensors_.at(0)->shape().size() == DIMENSION_2D) { in IsUseStrassenMatmul() 34 auto shape0 = in_tensors_.at(0)->shape(); in IsUseStrassenMatmul() 35 auto shape1 = in_tensors_.at(1)->shape(); in IsUseStrassenMatmul() 36 if (in_tensors_.at(1)->IsConst() && (shape0[0] == shape0[1]) && (shape1[0] == shape1[1]) && in IsUseStrassenMatmul() 48 if (!(in_tensors_.size() == INPUT_TENSOR_SIZE_2 || in_tensors_.size() == INPUT_TENSOR_SIZE_3) || in CheckSpecs() 50 MS_LOG(WARNING) << "in size: " << in_tensors_.size() << ", out size: " << out_tensors_.size(); in CheckSpecs() 60 act_weight_ = !in_tensors_[1]->IsConst(); in CheckSpecs() 62 if (in_tensors_[0]->shape().size() != out_tensors_[0]->shape().size() || in CheckSpecs() 63 … in_tensors_[0]->shape().size() < DIMENSION_2D || in_tensors_[0]->shape().size() > DIMENSION_4D) { in CheckSpecs() [all …]
|
D | scale.cc | 43 auto in_tensor = in_tensors_.at(0); in CheckSpecs() 45 auto scale_tensor = in_tensors_.at(1); in CheckSpecs() 85 auto *in_tensor = in_tensors_[0]; in InitWeights() 86 auto *scale_tensor = in_tensors_[1]; in InitWeights() 87 auto *offset_tensor = in_tensors_[2]; in InitWeights() 159 auto in_tensor = in_tensors_.at(0); in Prepare() 161 auto scale_tensor = in_tensors_.at(1); in Prepare() 217 if (ocl_runtime_->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->data()) != CL_SUCCESS) { in SetKernelArg() 221 void *scale = scale_ptr_ == nullptr ? in_tensors_[1]->data() : scale_ptr_; in SetKernelArg() 222 void *offset = offset_ptr_ == nullptr ? in_tensors_[2]->data() : offset_ptr_; in SetKernelArg() [all …]
|
D | fullconnection.cc | 38 if ((in_tensors_.size() != INPUT_TENSOR_SIZE_2 && in_tensors_.size() != INPUT_TENSOR_SIZE_3) || in CheckSpecs() 40 MS_LOG(WARNING) << "in size: " << in_tensors_.size() << ", out size: " << out_tensors_.size(); in CheckSpecs() 61 auto intensor_shape = GpuTensorInfo(in_tensors_[0]); in CheckSpecs() 66 if (!in_tensors_.at(kWeightIndex)->IsConst()) { in CheckSpecs() 72 if (in_tensors_.at(kWeightIndex)->shape().size() != DIMENSION_2D) { in CheckSpecs() 76 if (intensor_shape.C != in_tensors_.at(kWeightIndex)->shape()[1]) { in CheckSpecs() 82 if (in_tensors_.size() == INPUT_TENSOR_SIZE_3 && !in_tensors_.at(2)->IsConst()) { in CheckSpecs() 137 auto intensor_shape = GpuTensorInfo(in_tensors_[0]); in InitFilter() 155 …void *src_data = stored_weight_ == nullptr ? in_tensors_.at(kWeightIndex)->data() : stored_weight_; in InitFilter() 159 bool isModelFp16 = in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat16; in InitFilter() [all …]
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/base/ |
D | select.cc | 40 MS_ASSERT(in_tensors_.size() >= 3); in Run() 41 MS_ASSERT(in_tensors_.size() == out_tensors_.size() * 2 + 1); in Run() 42 auto bool_tensor = in_tensors_.front(); in Run() 52 …auto ret = MoveData(this->out_tensors_.begin(), this->out_tensors_.end(), this->in_tensors_.begin(… in Run() 53 this->in_tensors_.begin() + 1 + this->out_tensors_.size()); in Run() 60 this->in_tensors_.begin() + 1 + this->out_tensors_.size(), in Run() 61 this->in_tensors_.begin() + 1 + 2 * this->out_tensors_.size()); in Run() 68 MS_ASSERT(bool_tensor->shape().size() == in_tensors_.at(1)->shape().size()); in Run() 69 for (size_t i = 0; i < in_tensors_.at(1)->shape().size(); i++) { in Run() 70 if (bool_tensor->shape()[i] != in_tensors_.at(1)->shape()[i]) { in Run() [all …]
|
D | quant_dtype_cast.cc | 33 if (in_tensors_.size() != 1) { in Init() 34 MS_LOG(ERROR) << "inputs number should be 1, but " << in_tensors_.size() << " is given."; in Init() 41 auto in_tensor = in_tensors_.front(); in Init() 61 auto in_tensor = in_tensors_.front(); in ReSize() 79 if (in_tensors_.front()->quant_params().empty() && out_tensors_.front()->quant_params().empty()) { in QuantDTypeCast() 86 : in_tensors_.front()->quant_params().front(); in QuantDTypeCast() 109 auto input_quant_arg = in_tensors_.front()->quant_params().front(); in QuantDTypeCast() 146 if (in_tensors_[0]->data_type() == TypeId::kNumberTypeInt8 && in Run() 148 int8_ptr_ = reinterpret_cast<int8_t *>(in_tensors_[0]->data()); in Run() 153 } else if (in_tensors_[0]->data_type() == TypeId::kNumberTypeFloat32 && in Run() [all …]
|
D | tile_base.cc | 33 CHECK_LESS_RETURN(in_tensors_.size(), 1); in Init() 44 if (in_tensors_.size() == kDoubleInputsSize) { in ReSize() 45 if (in_tensors_[1]->ElementsNum() > static_cast<int>(in_tensors_[0]->shape().size())) { in ReSize() 49 …if (in_tensors_[1]->data_type() != kNumberTypeInt && in_tensors_[1]->data_type() != kNumberTypeInt… in ReSize() 50 MS_LOG(ERROR) << "in_tensors_[1]->data_type():" << in_tensors_[1]->data_type() in ReSize() 54 auto input1_addr = reinterpret_cast<int *>(in_tensors_[1]->data()); in ReSize() 55 for (int i = 0; i < in_tensors_[1]->ElementsNum(); ++i) { in ReSize() 60 tile_parameter_->in_dim_ = in_tensors_.at(0)->shape().size(); in ReSize() 63 tile_parameter_->in_shape_[i] = in_tensors_.at(0)->shape().at(i); in ReSize() 69 auto data_type = in_tensors_.at(0)->data_type(); in ReSize() [all …]
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp32_grad/ |
D | sgd.cc | 72 auto weight = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData()); in Execute() 74 auto accumulate = reinterpret_cast<float *>(in_tensors_.at(3)->MutableData()); in Execute() 77 auto gradient = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData()); in Execute() 79 CHECK_NULL_RETURN(in_tensors_.at(4)->MutableData()); in Execute() 80 float moment = reinterpret_cast<float *>(in_tensors_.at(4)->MutableData())[0]; in Execute() 81 int length = in_tensors_.at(0)->ElementsNum(); in Execute() 96 auto weight = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData()); in ExecuteInit() 98 auto accumulate = reinterpret_cast<float *>(in_tensors_.at(3)->MutableData()); in ExecuteInit() 101 auto gradient = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData()); in ExecuteInit() 103 CHECK_NULL_RETURN(in_tensors_.at(4)->MutableData()); in ExecuteInit() [all …]
|
D | adam.cc | 65 CHECK_LESS_RETURN(in_tensors_.size(), INPUT_MAX_NUM); in Execute() 66 auto weight = reinterpret_cast<float *>(in_tensors_.at(0)->MutableData()); in Execute() 67 auto m = reinterpret_cast<float *>(in_tensors_.at(1)->MutableData()); in Execute() 68 auto v = reinterpret_cast<float *>(in_tensors_.at(2)->MutableData()); in Execute() 69 auto beta1_power = reinterpret_cast<float *>(in_tensors_.at(3)->MutableData())[0]; in Execute() 70 auto beta2_power = reinterpret_cast<float *>(in_tensors_.at(4)->MutableData())[0]; in Execute() 72 auto beta1 = reinterpret_cast<float *>(in_tensors_.at(6)->MutableData())[0]; in Execute() 73 auto beta2 = reinterpret_cast<float *>(in_tensors_.at(7)->MutableData())[0]; in Execute() 74 auto eps = reinterpret_cast<float *>(in_tensors_.at(8)->MutableData())[0]; in Execute() 75 auto gradient = reinterpret_cast<float *>(in_tensors_.at(9)->MutableData()); in Execute() [all …]
|
D | arithmetic_grad.cc | 32 CHECK_LESS_RETURN(in_tensors_.size(), FOURTH_INPUT); in Init() 33 CHECK_NULL_RETURN(in_tensors_.at(FIRST_INPUT)); in Init() 34 CHECK_NULL_RETURN(in_tensors_.at(SECOND_INPUT)); in Init() 35 CHECK_NULL_RETURN(in_tensors_.at(THIRD_INPUT)); in Init() 56 tile_data0 = new (std::nothrow) float[in_tensors_.at(0)->ElementsNum()]; in Init() 61 tile_data1 = new (std::nothrow) float[in_tensors_.at(0)->ElementsNum()]; in Init() 68 tile_data2 = new (std::nothrow) float[in_tensors_.at(0)->ElementsNum()]; in Init() 120 auto x1_data = reinterpret_cast<float *>(in_tensors_[1]->MutableData()); in ArithmeticGradMul() 121 auto x2_data = reinterpret_cast<float *>(in_tensors_[2]->MutableData()); in ArithmeticGradMul() 131 auto x1_data = reinterpret_cast<float *>(in_tensors_[1]->MutableData()); in ArithmeticGradMul1L() [all …]
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/int8/ |
D | scale_int8.cc | 51 auto *scale_ptr = reinterpret_cast<int8_t *>(in_tensors_.at(1)->data()); in InitScaleOffset() 57 if (in_tensors_.at(0)->ElementsNum() != in_tensors_.at(1)->ElementsNum()) { in InitScaleOffset() 64 TileOneDimensionInt8(reinterpret_cast<int8_t *>(in_tensors_.at(1)->data()), in InitScaleOffset() 71 if (in_tensors_.size() == kScaleBiasInputsSize) { in InitScaleOffset() 73 auto offset_tensor = in_tensors_.at(kOffsetIndex); in InitScaleOffset() 80 if (in_tensors_.at(0)->ElementsNum() != in_tensors_.at(kOffsetIndex)->ElementsNum()) { in InitScaleOffset() 91 TileOneDimensionInt8(reinterpret_cast<int8_t *>(in_tensors_.at(kOffsetIndex)->data()), in InitScaleOffset() 102 auto in_tensor = in_tensors_.at(0); in InitParameter() 104 auto scale_tensor = in_tensors_.at(1); in InitParameter() 127 size_t input0_size = in_tensors_.at(0)->shape().size(); in InitParameter() [all …]
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/control/ |
D | tensorlist_setitem.cc | 34 CHECK_LESS_RETURN(in_tensors_.size(), kNumInputSize); in Init() 36 CHECK_NULL_RETURN(in_tensors_.at(0)); in Init() 37 CHECK_NULL_RETURN(in_tensors_.at(1)); in Init() 38 CHECK_NULL_RETURN(in_tensors_.at(kNumInput2)); in Init() 44 …if (in_tensors_[1]->data_type() != kNumberTypeInt && in_tensors_[1]->data_type() != kNumberTypeInt… in CheckParam() 45 … MS_LOG(ERROR) << "in_tensors_[1]->data_type():" << in_tensors_[1]->data_type() << " must be int"; in CheckParam() 48 if (in_tensors_[1]->ElementsNum() != 1) { in CheckParam() 49 …MS_LOG(ERROR) << "in_tensors_[1]->ElementsNum():" << in_tensors_[1]->ElementsNum() << " must be eq… in CheckParam() 59 out_shape.resize(new_tensors_size, in_tensors_[2]->shape()); in IncrementOutputSize() 60 auto ret = output0_->MallocTensorListData(in_tensors_[2]->data_type(), out_shape); in IncrementOutputSize() [all …]
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp16_grad/ |
D | bn_fp16_grad.cc | 49 CHECK_LESS_RETURN(in_tensors_.size(), 5); in ReSize() 51 CHECK_NULL_RETURN(in_tensors_.at(kNumInputDim_0)); in ReSize() 52 CHECK_NULL_RETURN(in_tensors_.at(kNumInputDim_1)); in ReSize() 53 CHECK_NULL_RETURN(in_tensors_.at(kNumInputDim_2)); in ReSize() 54 CHECK_NULL_RETURN(in_tensors_.at(kNumInputDim_3)); in ReSize() 55 CHECK_NULL_RETURN(in_tensors_.at(kNumInputDim_4)); in ReSize() 59 auto *input_x = in_tensors_.at(1); in ReSize() 67 for (int i = 0; i < in_tensors_.size(); i++) { in Init() 68 if (in_tensors_.at(i)->data_type() != kNumberTypeFloat16) { in Init() 76 auto *input_yt = in_tensors_.at(kNumInputDim_0); in DoExecute() [all …]
|