/third_party/mindspore/mindspore/nn/probability/distribution/ |
D | normal.py | 135 mean=None, argument 144 param['param_dict'] = {'mean': mean, 'sd': sd} 149 self._mean_value = self._add_parameter(mean, 'mean') 177 def _get_dist_args(self, mean=None, sd=None): argument 178 if mean is not None: 179 self.checktensor(mean, 'mean') 181 mean = self._mean_value 186 return mean, sd 188 def _mean(self, mean=None, sd=None): argument 192 mean, sd = self._check_param_type(mean, sd) [all …]
|
D | log_normal.py | 143 mean, sd = self._check_param_type(loc, scale) 144 var = self.distribution("var", mean=mean, sd=sd) 145 return self.exp(mean + 0.5 * var) 151 mean, sd = self._check_param_type(loc, scale) 152 var = self.distribution("var", mean=mean, sd=sd) 153 return self.exp(mean - var) 159 mean, sd = self._check_param_type(loc, scale) 160 var = self.distribution("var", mean=mean, sd=sd) 161 return self.expm1(var) * self.exp(2. * mean + var) 170 mean, sd = self._check_param_type(loc, scale) [all …]
|
/third_party/boost/boost/math/distributions/ |
D | poisson.hpp | 62 …inline bool check_mean(const char* function, const RealType& mean, RealType* result, const Policy&… in check_mean() argument 64 if(!(boost::math::isfinite)(mean) || (mean < 0)) in check_mean() 68 "Mean argument is %1%, but must be >= 0 !", mean, pol); in check_mean() 75 …inline bool check_mean_NZ(const char* function, const RealType& mean, RealType* result, const Poli… in check_mean_NZ() argument 77 if( !(boost::math::isfinite)(mean) || (mean <= 0)) in check_mean_NZ() 81 "Mean argument is %1%, but must be > 0 !", mean, pol); in check_mean_NZ() 88 …inline bool check_dist(const char* function, const RealType& mean, RealType* result, const Policy&… in check_dist() argument 90 return check_mean_NZ(function, mean, result, pol); in check_dist() 107 …inline bool check_dist_and_k(const char* function, RealType mean, RealType k, RealType* result, co… in check_dist_and_k() argument 109 if((check_dist(function, mean, result, pol) == false) || in check_dist_and_k() [all …]
|
D | inverse_gaussian.hpp | 88 RealType mean()const in mean() function in boost::math::inverse_gaussian_distribution 139 RealType mean = dist.mean(); in pdf() local 146 if(false == detail::check_location(function, mean, &result, Policy())) in pdf() 150 if(false == detail::check_x_gt0(function, mean, &result, Policy())) in pdf() 166 * exp(-scale * (x - mean) * (x - mean) / (2 * x * mean * mean)); in pdf() 176 RealType mean = dist.mean(); in cdf() local 183 if(false == detail::check_location(function, mean, &result, Policy())) in cdf() 187 if (false == detail::check_x_gt0(function, mean, &result, Policy())) in cdf() 209 n0 *= ((x / mean) -1); in cdf() 211 RealType expfactor = exp(2 * scale / mean); in cdf() [all …]
|
D | normal.hpp | 44 RealType mean()const in mean() function in boost::math::normal_distribution 117 RealType mean = dist.mean(); in pdf() local 126 if(false == detail::check_location(function, mean, &result, Policy())) in pdf() 144 RealType exponent = x - mean; in pdf() 160 RealType mean = dist.mean(); in cdf() local 167 if(false == detail::check_location(function, mean, &result, Policy())) in cdf() 189 RealType diff = (x - mean) / (sd * constants::root_two<RealType>()); in cdf() 200 RealType mean = dist.mean(); in quantile() local 206 if(false == detail::check_location(function, mean, &result, Policy())) in quantile() 214 result += mean; in quantile() [all …]
|
/third_party/boost/libs/accumulators/test/ |
D | droppable.cpp | 27 accumulator_set<int, stats<droppable<tag::mean> > > acc, test_acc(sample = 0); in test_stat() 30 BOOST_CHECK_CLOSE(1., mean(acc), 1e-5); in test_stat() 35 BOOST_CHECK_CLOSE(0.5, mean(acc), 1e-5); in test_stat() 39 acc.drop<tag::mean>(); in test_stat() 42 BOOST_CHECK_CLOSE(0.5, mean(acc), 1e-5); in test_stat() 46 assert_is_double(mean(acc)); in test_stat() 49 accumulator_set<int, stats<droppable<tag::mean(immediate)> > > acc2, test_acc2(sample = 0); in test_stat() 52 BOOST_CHECK_CLOSE(1., mean(acc2), 1e-5); in test_stat() 56 BOOST_CHECK_CLOSE(0.5, mean(acc2), 1e-5); in test_stat() 59 acc2.drop<tag::mean>(); in test_stat() [all …]
|
D | mean.cpp | 26 typedef accumulator_set<int, stats<tag::mean, 29 typedef accumulator_set<int, stats<tag::mean(immediate), 40 BOOST_CHECK_CLOSE(1., mean(acc), 1e-5); in test_stat() 46 BOOST_CHECK_CLOSE(0.5, mean(acc), 1e-5); in test_stat() 52 BOOST_CHECK_CLOSE(1., mean(acc), 1e-5); in test_stat() 57 assert_is_double(mean(acc)); in test_stat() 62 BOOST_CHECK_CLOSE(1., mean(acc2), 1e-5); in test_stat() 67 BOOST_CHECK_CLOSE(0.5, mean(acc2), 1e-5); in test_stat() 72 BOOST_CHECK_CLOSE(1., mean(acc2), 1e-5); in test_stat() 76 assert_is_double(mean(acc2)); in test_stat() [all …]
|
D | external_accumulator.cpp | 26 accumulator_set<int, stats<tag::mean, tag::external<tag::sum, my::tag::sum_acc> > > acc; in test_stat() 31 BOOST_CHECK_CLOSE(1., mean(acc, my::sum_acc = sum_acc), 1e-5); in test_stat() 37 BOOST_CHECK_CLOSE(0.5, mean(acc, my::sum_acc = sum_acc), 1e-5); in test_stat() 43 BOOST_CHECK_CLOSE(1., mean(acc, my::sum_acc = sum_acc), 1e-5); in test_stat() 58 tag::mean in test_reference() 66 BOOST_CHECK_CLOSE(1., mean(acc), 1e-5); in test_reference() 72 BOOST_CHECK_CLOSE(0.5, mean(acc), 1e-5); in test_reference() 78 BOOST_CHECK_CLOSE(1., mean(acc), 1e-5); in test_reference() 93 tag::mean in test_reference2() 100 BOOST_CHECK_CLOSE(1., mean(acc), 1e-5); in test_reference2() [all …]
|
/third_party/boost/libs/math/example/ |
D | find_mean_and_sd_normal.cpp | 66 double mean = 3.; // kg in main() local 68 normal packs(mean, standard_deviation); in main() 84 cout <<"Fraction of packs <= " << minimum_weight << " with a mean of " << mean in main() 100 << " with a mean of " << xpacks.mean() in main() 108 double offset = mean - low_limit - quantile(packs, under_fraction); in main() 109 double nominal_mean = mean + offset; in main() 155 cauchy cpacks(mean, standard_deviation); in main() 156 cout << "Cauchy Setting the packer to " << mean << " will mean that " in main() 227 << ", mean = " << packs.mean() << ", sd = " << packs.standard_deviation() << endl; in main() 237 normal pack05(mean, 0.05); in main() [all …]
|
D | find_root_example.cpp | 52 double mean = 3.; // kg in main() local 54 normal packs(mean, standard_deviation); in main() 61 cout <<"fraction of packs <= " << under_weight << " with a mean of " << mean in main() 70 << " with a mean of " << xpacks.mean() in main() 75 double offset = mean - low_limit - quantile(packs, under_fraction); in main() 76 double nominal_mean = mean + offset; in main() 96 << ", mean = " << packs.mean() << ", sd = " << packs.standard_deviation() << endl; // in main() 106 normal pack05(mean, 0.05); in main() 108 << ", mean = " << pack05.mean() << ", sd = " << pack05.standard_deviation() << endl; in main() 110 cout <<"Fraction of packs >= " << under_weight << " with a mean of " << mean in main() [all …]
|
D | students_t_example1.cpp | 67 double mean = (value[0] + value[1] + value[2]) / static_cast<double>(values); in main() local 68 …cout << "Standard = " << standard << ", mean = " << mean << ", (mean - standard) = " << mean - sta… in main() 69 … sd = sqrt(((value[0] - mean) * (value[0] - mean) + (value[1] - mean) * (value[1] - mean) + (value… in main() 78 double t = (mean - standard) * std::sqrt(static_cast<double>(values)) / sd; in main()
|
D | normal_misc_examples.cpp | 50 cout << "Standard normal distribution, mean = "<< s.mean() in main() 68 cout << "Standard normal mean = "<< s.mean() in main() 242 double mean = 140.; // sacks per week. in main() local 244 normal sacks(mean, standard_deviation); in main() 274 double mean = 3.; // kg in main() local 276 normal packs(mean, standard_deviation); in main() 283 cout <<"fraction of packs <= " << under_weight << " with a mean of " << mean in main() 292 << " with a mean of " << xpacks.mean() in main() 297 double offset = mean - low_limit - quantile(packs, under_fraction); in main() 298 double nominal_mean = mean + offset; in main() [all …]
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/fp32/ |
D | instance_norm_fp32.c | 37 double mean = 0.0f; in InstanceNorm() local 48 mean += MS_F32X4_GETI(src128, i); in InstanceNorm() 59 mean += vaddvq_f32(srcv); in InstanceNorm() 63 mean += MS_F32X4_GETI(srcv, i); in InstanceNorm() 69 mean += vget_lane_f32(src_add4, 0); in InstanceNorm() 77 mean += src[index]; in InstanceNorm() 81 mean /= (float)param->inner_size_; in InstanceNorm() 83 const double deno = gamma_data[c] / sqrt(squ_m - mean * mean + param->epsilon_); in InstanceNorm() 87 MS_FLOAT32X8 meanv8 = MS_MOV256_F32(mean); in InstanceNorm() 98 MS_FLOAT32X4 meanv4 = MS_MOVQ_F32(mean); in InstanceNorm() [all …]
|
/third_party/boost/boost/histogram/accumulators/ |
D | mean.hpp | 27 class mean { class 32 mean() = default; 36 mean(const mean<T>& o) noexcept in mean() function in boost::histogram::accumulators::mean 40 mean(const_reference n, const_reference mean, const_reference variance) noexcept in mean() argument 41 : sum_(n), mean_(mean), sum_of_deltas_squared_(variance * (n - 1)) {} in mean() 60 mean& operator+=(const mean& rhs) noexcept { in operator +=() 74 mean& operator*=(const_reference s) noexcept { in operator *=() 80 bool operator==(const mean& rhs) const noexcept { in operator ==() 85 bool operator!=(const mean& rhs) const noexcept { return !operator==(rhs); } in operator !=() 130 struct version<boost::histogram::accumulators::mean<T>> : std::integral_constant<int, 1> { [all …]
|
/third_party/boost/boost/accumulators/statistics/ |
D | kurtosis.hpp | 59 - 4. * accumulators::moment<3>(args) * mean(args) in result() 60 + 6. * accumulators::moment<2>(args) * mean(args) * mean(args) in result() 61 - 3. * mean(args) * mean(args) * mean(args) * mean(args) in result() 62 , ( accumulators::moment<2>(args) - mean(args) * mean(args) ) in result() 63 * ( accumulators::moment<2>(args) - mean(args) * mean(args) ) in result() 80 : depends_on<mean, moment<2>, moment<3>, moment<4> >
|
D | mean.hpp | 59 : mean(numeric::fdiv(args[sample | Sample()], numeric::one<std::size_t>::value)) in immediate_mean_impl() 67 this->mean = numeric::fdiv( in operator ()() 68 (this->mean * (cnt - 1)) + args[parameter::keyword<Tag>::get()] in operator ()() 75 return this->mean; in result() 81 ar & mean; in serialize() local 85 result_type mean; member 100 struct mean struct 155 extractor<tag::mean> const mean = {}; variable 159 BOOST_ACCUMULATORS_IGNORE_GLOBAL(mean) 163 using extract::mean; [all …]
|
D | skewness.hpp | 62 - 3. * accumulators::moment<2>(args) * mean(args) in result() 63 + 2. * mean(args) * mean(args) * mean(args) in result() 64 , ( accumulators::moment<2>(args) - mean(args) * mean(args) ) in result() 65 * std::sqrt( accumulators::moment<2>(args) - mean(args) * mean(args) ) in result() 82 : depends_on<mean, moment<2>, moment<3> >
|
/third_party/typescript/tests/baselines/reference/ |
D | maximum10SpellingSuggestions.errors.txt | 1 …er/maximum10SpellingSuggestions.ts(4,1): error TS2552: Cannot find name 'bob'. Did you mean 'blob'? 2 …er/maximum10SpellingSuggestions.ts(4,6): error TS2552: Cannot find name 'bob'. Did you mean 'blob'? 3 …r/maximum10SpellingSuggestions.ts(4,11): error TS2552: Cannot find name 'bob'. Did you mean 'blob'? 4 …r/maximum10SpellingSuggestions.ts(4,16): error TS2552: Cannot find name 'bob'. Did you mean 'blob'? 5 …r/maximum10SpellingSuggestions.ts(4,21): error TS2552: Cannot find name 'bob'. Did you mean 'blob'? 6 …r/maximum10SpellingSuggestions.ts(4,26): error TS2552: Cannot find name 'bob'. Did you mean 'blob'? 7 …r/maximum10SpellingSuggestions.ts(4,31): error TS2552: Cannot find name 'bob'. Did you mean 'blob'? 8 …r/maximum10SpellingSuggestions.ts(4,36): error TS2552: Cannot find name 'bob'. Did you mean 'blob'? 9 …r/maximum10SpellingSuggestions.ts(4,41): error TS2552: Cannot find name 'bob'. Did you mean 'blob'? 10 …r/maximum10SpellingSuggestions.ts(4,46): error TS2552: Cannot find name 'bob'. Did you mean 'blob'? [all …]
|
D | noImplicitAnyNamelessParameter.errors.txt | 1 …essParameter.ts(2,17): error TS7051: Parameter has a name but no type. Did you mean 'arg0: string'? 2 …NamelessParameter.ts(2,25): error TS7051: Parameter has a name but no type. Did you mean 'arg1: C'? 3 …NamelessParameter.ts(3,19): error TS7051: Parameter has a name but no type. Did you mean 'arg0: C'? 4 …essParameter.ts(3,22): error TS7051: Parameter has a name but no type. Did you mean 'arg1: number'? 5 …ssParameter.ts(4,20): error TS7051: Parameter has a name but no type. Did you mean 'arg0: boolean'? 6 …NamelessParameter.ts(4,29): error TS7051: Parameter has a name but no type. Did you mean 'arg1: C'? 7 …essParameter.ts(4,32): error TS7051: Parameter has a name but no type. Did you mean 'arg2: object'? 8 …Parameter.ts(4,40): error TS7051: Parameter has a name but no type. Did you mean 'arg3: undefined'? 15 !!! error TS7051: Parameter has a name but no type. Did you mean 'arg0: string'? 17 !!! error TS7051: Parameter has a name but no type. Did you mean 'arg1: C'? [all …]
|
D | jsxParsingError3.errors.txt | 1 tests/cases/conformance/jsx/Error1.tsx(1,15): error TS1381: Unexpected token. Did you mean `{'}'}` … 2 tests/cases/conformance/jsx/Error2.tsx(1,15): error TS1382: Unexpected token. Did you mean `{'>'}` … 3 tests/cases/conformance/jsx/Error3.tsx(1,22): error TS1381: Unexpected token. Did you mean `{'}'}` … 4 tests/cases/conformance/jsx/Error4.tsx(1,22): error TS1382: Unexpected token. Did you mean `{'>'}` … 5 tests/cases/conformance/jsx/Error5.tsx(1,15): error TS1381: Unexpected token. Did you mean `{'}'}` … 6 tests/cases/conformance/jsx/Error6.tsx(1,15): error TS1382: Unexpected token. Did you mean `{'>'}` … 20 !!! error TS1381: Unexpected token. Did you mean `{'}'}` or `}`? 25 !!! error TS1382: Unexpected token. Did you mean `{'>'}` or `>`? 30 !!! error TS1381: Unexpected token. Did you mean `{'}'}` or `}`? 35 !!! error TS1382: Unexpected token. Did you mean `{'>'}` or `>`? [all …]
|
/third_party/mindspore/tests/ut/python/dataset/ |
D | test_normalizeOp.py | 32 def normalize_np(image, mean, std): argument 39 image = image - np.array(mean) 44 def util_test_normalize(mean, std, op_type): argument 51 normalize_op = c_vision.Normalize(mean, std) 61 py_vision.Normalize(mean, std) 72 def util_test_normalize_grayscale(num_output_channels, mean, std): argument 80 py_vision.Normalize(mean, std) 94 mean = [121.0, 115.0, 100.0] 98 normalize_op = c_vision.Normalize(mean, std) 114 image_np_normalized = normalize_np(image_original, mean, std) [all …]
|
/third_party/mindspore/mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/ |
D | layer_norm_impl.cu | 26 inline __device__ void MeanAndVarAccumulation(T *mean, T *var, T *num, const T &val) { in MeanAndVarAccumulation() argument 31 T mean_new = mean[0] + (val - mean[0]) / num[0]; in MeanAndVarAccumulation() 32 var[0] = var[0] + (val - mean[0]) * (val - mean_new); in MeanAndVarAccumulation() 33 mean[0] = mean_new; in MeanAndVarAccumulation() 50 inline __device__ void ThreadReduce(const int &col_dim, const T *block_addr, T *mean, T *var, T *nu… in ThreadReduce() argument 58 MeanAndVarAccumulation(mean, var, num, block_addr[pos]); in ThreadReduce() 64 inline __device__ void WarpReduce(T *mean, T *var, T *num) { in WarpReduce() argument 66 T mean_other = __shfl_down_sync(0xffffffff, mean[0], delta); in WarpReduce() 69 MeanAndVarMerge(mean, var, num, mean_other, var_other, num_other); in WarpReduce() 74 inline __device__ void BlockReduce(const int &col_dim, T *mean, T *var, T *num, T *mean_addr, T *va… in BlockReduce() argument [all …]
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_batchnorm_fold_op.py | 31 def __init__(self, mean, variance): argument 33 self.mean = mean 39 a, b, c, d = self.op(x, self.mean, self.variance, current_step) 43 def np_result(x, mean, var, momentum, epsilon): argument 44 np_mean = x.mean(axis=(0, 2, 3)) 47 mean_update = (1 - momentum) * np_mean + momentum * mean 50 delay_mean = mean.copy() 61 mean = np.random.uniform(1, 10, size=[c]).astype('float32') 64 ms_mean_t = Tensor(mean) 71 expect1, expect2, expect3, expect4, expect5, expect6 = np_result(x, mean, variance, 0.9, 1e-12) [all …]
|
/third_party/abseil-cpp/absl/random/ |
D | poisson_distribution_test.cc | 113 const double mean = std::min(kMax, m); in TYPED_TEST() local 114 const param_type param(mean); in TYPED_TEST() 117 absl::poisson_distribution<TypeParam> before(mean); in TYPED_TEST() 118 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 137 ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ", in TYPED_TEST() 146 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 152 EXPECT_EQ(before.mean(), after.mean()) // in TYPED_TEST() 165 explicit PoissonModel(double mean) : mean_(mean) {} in PoissonModel() argument 167 double mean() const { return mean_; } in mean() function in __anon10bc306f0111::PoissonModel 217 const size_t max_i = 50 * stddev() + mean(); in InitCDF() [all …]
|
/third_party/skia/third_party/externals/abseil-cpp/absl/random/ |
D | poisson_distribution_test.cc | 113 const double mean = std::min(kMax, m); in TYPED_TEST() local 114 const param_type param(mean); in TYPED_TEST() 117 absl::poisson_distribution<TypeParam> before(mean); in TYPED_TEST() 118 EXPECT_EQ(before.mean(), param.mean()); in TYPED_TEST() 137 ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ", in TYPED_TEST() 146 EXPECT_NE(before.mean(), after.mean()); in TYPED_TEST() 152 EXPECT_EQ(before.mean(), after.mean()) // in TYPED_TEST() 165 explicit PoissonModel(double mean) : mean_(mean) {} in PoissonModel() argument 167 double mean() const { return mean_; } in mean() function in __anon91352ae40111::PoissonModel 217 const size_t max_i = 50 * stddev() + mean(); in InitCDF() [all …]
|