/third_party/boost/boost/histogram/accumulators/ |
D | mean.hpp | 37 : sum_{o.sum_}, mean_{o.mean_}, sum_of_deltas_squared_{o.sum_of_deltas_squared_} {} in mean() 41 : sum_(n), mean_(mean), sum_of_deltas_squared_(variance * (n - 1)) {} in mean() 46 const auto delta = x - mean_; in operator ()() 47 mean_ += delta / sum_; in operator ()() 48 sum_of_deltas_squared_ += delta * (x - mean_); in operator ()() 54 const auto delta = x - mean_; in operator ()() 55 mean_ += w.value * delta / sum_; in operator ()() 56 sum_of_deltas_squared_ += w.value * delta * (x - mean_); in operator ()() 62 const auto tmp = mean_ * sum_ + rhs.mean_ * rhs.sum_; in operator +=() 64 mean_ = tmp / sum_; in operator +=() [all …]
|
/third_party/abseil-cpp/absl/random/ |
D | poisson_distribution.h | 63 double mean() const { return mean_; } in mean() 66 return a.mean_ == b.mean_; 76 double mean_; variable 134 : mean_(mean), split_(0) { in param_type() 141 if (mean_ < 10) { in param_type() 144 emu_ = std::exp(-mean_); in param_type() 145 } else if (mean_ <= 50) { in param_type() 147 split_ = 1 + static_cast<int>(mean_ / 10.0); in param_type() 148 emu_ = std::exp(-mean_ / static_cast<double>(split_)); in param_type() 154 lmu_ = std::log(mean_); in param_type() [all …]
|
D | poisson_distribution_test.cc | 165 explicit PoissonModel(double mean) : mean_(mean) {} in PoissonModel() 167 double mean() const { return mean_; } in mean() 168 double variance() const { return mean_; } in variance() 170 double skew() const { return 1.0 / mean_; } in skew() 171 double kurtosis() const { return 3.0 + 1.0 / mean_; } in kurtosis() 191 ABSL_INTERNAL_LOG(INFO, absl::StrCat("CDF (mean = ", mean_, ")")); in LogCDF() 199 const double mean_; member in __anon10bc306f0111::PoissonModel 215 ABSL_ASSERT(mean_ < 201.0); in InitCDF()
|
D | gaussian_distribution.h | 96 : mean_(mean), stddev_(stddev) {} in mean_() function 100 result_type mean() const { return mean_; } in mean() 106 return a.mean_ == b.mean_ && a.stddev_ == b.stddev_; 114 result_type mean_;
|
/third_party/skia/third_party/externals/abseil-cpp/absl/random/ |
D | poisson_distribution.h | 63 double mean() const { return mean_; } in mean() 66 return a.mean_ == b.mean_; 76 double mean_; variable 134 : mean_(mean), split_(0) { in param_type() 141 if (mean_ < 10) { in param_type() 144 emu_ = std::exp(-mean_); in param_type() 145 } else if (mean_ <= 50) { in param_type() 147 split_ = 1 + static_cast<int>(mean_ / 10.0); in param_type() 148 emu_ = std::exp(-mean_ / static_cast<double>(split_)); in param_type() 154 lmu_ = std::log(mean_); in param_type() [all …]
|
D | poisson_distribution_test.cc | 165 explicit PoissonModel(double mean) : mean_(mean) {} in PoissonModel() 167 double mean() const { return mean_; } in mean() 168 double variance() const { return mean_; } in variance() 170 double skew() const { return 1.0 / mean_; } in skew() 171 double kurtosis() const { return 3.0 + 1.0 / mean_; } in kurtosis() 191 ABSL_INTERNAL_LOG(INFO, absl::StrCat("CDF (mean = ", mean_, ")")); in LogCDF() 199 const double mean_; member in __anon91352ae40111::PoissonModel 215 ABSL_ASSERT(mean_ < 201.0); in InitCDF()
|
D | gaussian_distribution.h | 96 : mean_(mean), stddev_(stddev) {} in mean_() function 100 result_type mean() const { return mean_; } in mean() 106 return a.mean_ == b.mean_ && a.stddev_ == b.stddev_; 114 result_type mean_;
|
/third_party/boost/boost/accumulators/statistics/ |
D | rolling_mean.hpp | 65 : mean_(numeric::fdiv(args[sample | Sample()],numeric::one<std::size_t>::value)) in immediate_rolling_mean_impl() 75 … mean_ -= numeric::fdiv(rolling_window_plus1(args).front()-args[sample],rolling_count(args)); in operator ()() 77 … mean_ += numeric::fdiv(args[sample]-rolling_window_plus1(args).front(),rolling_count(args)); in operator ()() 81 result_type prev_mean = mean_; in operator ()() 83 mean_ -= numeric::fdiv(prev_mean-args[sample],rolling_count(args)); in operator ()() 85 mean_ += numeric::fdiv(args[sample]-prev_mean,rolling_count(args)); in operator ()() 92 return mean_; in result() 99 ar & mean_; in serialize() local 104 result_type mean_; member
|
/third_party/mindspore/mindspore/lite/src/delegate/npu/op/ |
D | batchnorm_npu.cc | 67 mean_ = new (std::nothrow) hiai::op::Const(name_ + "_mean"); in SetNPUInputs() 68 if (mean_ == nullptr) { in SetNPUInputs() 73 mean_->set_attr_value(mean_tensor); in SetNPUInputs() 74 batchnorm_->set_input_mean(*mean_); in SetNPUInputs() 102 if (mean_ != nullptr) { in ~BatchnormNPUOp() 103 delete mean_; in ~BatchnormNPUOp() 104 mean_ = nullptr; in ~BatchnormNPUOp()
|
/third_party/mindspore/mindspore/ccsrc/minddata/dataset/kernels/image/ |
D | normalize_op.cc | 30 NormalizeOp::NormalizeOp(const std::vector<float> &mean, const std::vector<float> &std) : mean_(mea… in NormalizeOp() 33 mean_[i] = mean_[i] / std_[i]; in NormalizeOp() 40 return Normalize(input, output, mean_, std_); in Compute() 45 for (const auto &m : mean_) { in Print()
|
D | normalize_pad_op.cc | 27 Status s = Tensor::CreateFromVector<float>({mean_r, mean_g, mean_b}, &mean_); in NormalizePadOp() 43 return NormalizePad(input, output, mean_, std_, dtype_); in Compute() 47 …out << "NormalizeOp, mean: " << *(mean_.get()) << std::endl << "std: " << *(std_.get()) << std::en… in Print()
|
/third_party/mindspore/mindspore/ccsrc/minddata/dataset/kernels/ir/vision/ |
D | normalize_pad_ir.cc | 33 : mean_(mean), std_(std), dtype_(dtype) {} in NormalizePadOperation() 40 RETURN_IF_NOT_OK(ValidateVectorMeanStd("NormalizePad", mean_, std_)); in ValidateParams() 53 …return std::make_shared<NormalizePadOp>(mean_[dimension_zero], mean_[dimension_one], mean_[dimensi… in Build() 59 args["mean"] = mean_; in to_json()
|
D | normalize_ir.cc | 27 : mean_(mean), std_(std) {} in NormalizeOperation() 34 RETURN_IF_NOT_OK(ValidateVectorMeanStd("Normalize", mean_, std_)); in ValidateParams() 38 std::shared_ptr<TensorOp> NormalizeOperation::Build() { return std::make_shared<NormalizeOp>(mean_,… in Build() 42 args["mean"] = mean_; in to_json()
|
D | ascend_vision_ir.cc | 266 : mean_(mean), std_(std) {} in DvppNormalizeOperation() 269 if (mean_.size() != 3) { in ValidateParams() 270 …g err_msg = "DvppNormalization:: mean expecting size 3, got size: " + std::to_string(mean_.size()); in ValidateParams() 279 …if (*min_element(mean_.begin(), mean_.end()) < 0 || *max_element(mean_.begin(), mean_.end()) > 256… in ValidateParams() 299 std::shared_ptr<DvppNormalizeOp> tensor_op = std::make_shared<DvppNormalizeOp>(mean_, std_); in Build() 307 std::transform(mean_.begin(), mean_.end(), std::back_inserter(enlarge_mean_), in to_json()
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp32/ |
D | batchnorm_fp32.cc | 53 if (mean_ != nullptr) { in FreeMeanAndVariance() 54 free(mean_); in FreeMeanAndVariance() 55 mean_ = nullptr; in FreeMeanAndVariance() 82 mean_ = malloc(in_tensors_.at(SECOND_INPUT)->Size()); in InitConstTensor() 84 if (mean_ == nullptr || variance_ == nullptr) { in InitConstTensor() 95 memcpy(mean_, in_tensor_mean_data, in_tensors_.at(SECOND_INPUT)->Size()); in InitConstTensor() 114 BatchNormFp32(in_tensor_data, mean_, variance_, param, task_id, out_tensor_data); in DoExecute()
|
D | fused_batchnorm_fp32.cc | 54 mean_ = malloc(mean->Size()); in InitConstTensor() 56 if (scale_ == nullptr || offset_ == nullptr || mean_ == nullptr || variance_ == nullptr) { in InitConstTensor() 69 memcpy(mean_, mean->data(), mean->Size()); in InitConstTensor() 81 float *current_mean = static_cast<float *>(mean_); in Run() 132 memcpy(mean_, save_mean, in_tensors_.at(FOURTH_INPUT)->Size()); in Eval() 144 FusedBatchNormFp32(in_data, scale_, offset_, mean_, variance_, param, task_id, out_data); in DoExecute()
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/opencl/kernel/ |
D | batchnorm.cc | 116 if (allocator->UnmapBuffer(mean_) != RET_OK) { in UnmapBuffer() 133 if (allocator->MapBuffer(mean_, CL_MAP_WRITE, nullptr, true) == nullptr) { in MapBuffer() 159 mean_ = allocator->Malloc(weight_size, lite::opencl::MemType::BUF); in Initweight() 160 if (mean_ == nullptr) { in Initweight() 176 memset(mean_, 0x00, weight_size); in Initweight() 186 memcpy(mean_, in_tensors_.at(3)->data(), weight_size); in Initweight() 191 auto mean_fp32 = reinterpret_cast<float *>(mean_); in Initweight() 210 auto mean_fp16 = reinterpret_cast<float16_t *>(mean_); in Initweight() 227 memcpy(mean_, in_tensors_.at(3)->data(), weight_size); in Initweight() 283 if (ocl_runtime_->SetKernelArg(kernel_, arg_cn++, mean_, true) != CL_SUCCESS) { in Run()
|
D | layer_norm.cc | 214 mean_ = allocator->Malloc(mean_size, lite::opencl::MemType::BUF); in Prepare() 215 if (mean_ == nullptr) { in Prepare() 257 if (ocl_runtime_->SetKernelArg(kernel_mean_var_, arg1_cn++, mean_, true) != CL_SUCCESS) { in Run() 276 if (ocl_runtime_->SetKernelArg(kernel_, arg_cn++, mean_, true) != CL_SUCCESS) { in Run()
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/arm/fp16/ |
D | batchnorm_fp16.cc | 39 mean_ = malloc(mean_fp32->ElementsNum() * sizeof(float16_t)); in InitConstTensor() 41 if (mean_ == nullptr || variance_ == nullptr) { in InitConstTensor() 47 …loat32ToFloat16(reinterpret_cast<float *>(mean_fp32->data()), reinterpret_cast<float16_t *>(mean_), in InitConstTensor() 88 BatchNormFp16(input_, mean_, variance_, param, task_id, output_); in DoExecute()
|
/third_party/mindspore/mindspore/lite/src/runtime/kernel/opencl/cl/ |
D | layer_norm.cl | 21 __kernel void ComputeMeanVarAxis3NHWC4(__read_only image2d_t src_data, __global FLT *mean_, __globa… 69 mean_[position] = mean; 74 … __global FLT *mean_, __global FLT *variance_, __global FLT *gamma_, 101 …result.x = ((result_in.x - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[p… 103 …result.y = ((result_in.y - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[p… 105 …result.z = ((result_in.z - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[p… 107 …result.w = ((result_in.w - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[p…
|
/third_party/mindspore/mindspore/ccsrc/minddata/dataset/kernels/image/dvpp/ |
D | dvpp_normalize_op.h | 35 : mean_(std::move(mean)), std_(std::move(std)) {} in DvppNormalizeOp() 46 std::vector<float> mean_;
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/gpu/ |
D | batch_norm_relu_fusion.h | 30 mean_ = std::make_shared<Var>(); 42 VarPtr mean_; variable
|
D | post_batch_norm_add_relu_fusion.h | 31 mean_ = std::make_shared<Var>(); 44 VarPtr mean_; variable
|
D | batch_norm_add_relu_fusion.h | 31 mean_ = std::make_shared<Var>(); 44 VarPtr mean_; variable
|
D | batch_norm_add_relu_grad_fusion.h | 33 mean_ = std::make_shared<Var>(); 49 VarPtr mean_; variable
|