Home
last modified time | relevance | path

Searched refs:msd (Results 1 – 25 of 57) sorted by relevance

123

/third_party/mindspore/tests/ut/python/nn/probability/distribution/
Dtest_categorical.py22 import mindspore.nn.probability.distribution as msd namespace
31 c = msd.Categorical()
32 assert isinstance(c, msd.Distribution)
33 c = msd.Categorical([0.1, 0.9], dtype=dtype.int32)
34 assert isinstance(c, msd.Distribution)
39 msd.Categorical([0.1], dtype=dtype.bool_)
44 msd.Categorical([0.1], name=1.0)
49 msd.Categorical([0.1], seed='seed')
57 msd.Categorical([-0.1], dtype=dtype.int32)
59 msd.Categorical([1.1], dtype=dtype.int32)
[all …]
Dtest_beta.py22 import mindspore.nn.probability.distribution as msd namespace
31 msd.Gamma([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
35 msd.Gamma([0.], [1.], dtype=dtype.int32)
39 msd.Gamma([0.], [1.], name=1.0)
43 msd.Gamma([0.], [1.], seed='seed')
47 msd.Gamma([0.], [1.])
49 msd.Gamma([-1.], [1.])
53 msd.Gamma([1.], [0.])
55 msd.Gamma([1.], [-1.])
59 msd.Gamma(3., [4.])
[all …]
Dtest_bernoulli.py21 import mindspore.nn.probability.distribution as msd namespace
30 b = msd.Bernoulli()
31 assert isinstance(b, msd.Distribution)
32 b = msd.Bernoulli([0.1, 0.3, 0.5, 0.9], dtype=dtype.int32)
33 assert isinstance(b, msd.Distribution)
38 msd.Bernoulli([0.1], dtype=dtype.bool_)
43 msd.Bernoulli([0.1], name=1.0)
48 msd.Bernoulli([0.1], seed='seed')
56 msd.Bernoulli([-0.1], dtype=dtype.int32)
58 msd.Bernoulli([1.1], dtype=dtype.int32)
[all …]
Dtest_geometric.py21 import mindspore.nn.probability.distribution as msd namespace
30 g = msd.Geometric()
31 assert isinstance(g, msd.Distribution)
32 g = msd.Geometric([0.1, 0.3, 0.5, 0.9], dtype=dtype.int32)
33 assert isinstance(g, msd.Distribution)
38 msd.Geometric([0.1], dtype=dtype.bool_)
43 msd.Geometric([0.1], name=1.0)
48 msd.Geometric([0.1], seed='seed')
56 msd.Geometric([-0.1], dtype=dtype.int32)
58 msd.Geometric([1.1], dtype=dtype.int32)
[all …]
Dtest_poisson.py21 import mindspore.nn.probability.distribution as msd namespace
30 p = msd.Poisson()
31 assert isinstance(p, msd.Distribution)
32 p = msd.Poisson([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
33 assert isinstance(p, msd.Distribution)
37 msd.Poisson([0.1], dtype=dtype.bool_)
41 msd.Poisson([0.1], name=1.0)
45 msd.Poisson([0.1], seed='seed')
52 msd.Poisson([-0.1], dtype=dtype.float32)
54 msd.Poisson([0.0], dtype=dtype.float32)
[all …]
Dtest_gamma.py22 import mindspore.nn.probability.distribution as msd namespace
31 msd.Gamma([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
35 msd.Gamma([0.], [1.], dtype=dtype.int32)
39 msd.Gamma([0.], [1.], name=1.0)
43 msd.Gamma([0.], [1.], seed='seed')
47 msd.Gamma([0.], [0.])
49 msd.Gamma([0.], [-1.])
53 msd.Gamma(3., [4.])
55 msd.Gamma([3.], -4.)
61 g = msd.Gamma()
[all …]
Dtest_cauchy.py21 import mindspore.nn.probability.distribution as msd namespace
30 msd.Cauchy([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
34 msd.Cauchy(0., 1., dtype=dtype.int32)
38 msd.Cauchy(0., 1., name=1.0)
42 msd.Cauchy(0., 1., seed='seed')
46 msd.Cauchy(0., 0.)
48 msd.Cauchy(0., -1.)
54 l = msd.Cauchy()
55 assert isinstance(l, msd.Distribution)
56 l = msd.Cauchy([3.0], [4.0], dtype=dtype.float32)
[all …]
Dtest_exponential.py21 import mindspore.nn.probability.distribution as msd namespace
30 e = msd.Exponential()
31 assert isinstance(e, msd.Distribution)
32 e = msd.Exponential([0.1, 0.3, 0.5, 1.0], dtype=dtype.float32)
33 assert isinstance(e, msd.Distribution)
37 msd.Exponential([0.1], dtype=dtype.int32)
41 msd.Exponential([0.1], name=1.0)
45 msd.Exponential([0.1], seed='seed')
52 msd.Exponential([-0.1], dtype=dtype.float32)
54 msd.Exponential([0.0], dtype=dtype.float32)
[all …]
Dtest_logistic.py21 import mindspore.nn.probability.distribution as msd namespace
30 msd.Logistic([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
34 msd.Logistic(0., 1., dtype=dtype.int32)
38 msd.Logistic(0., 1., name=1.0)
42 msd.Logistic(0., 1., seed='seed')
46 msd.Logistic(0., 0.)
48 msd.Logistic(0., -1.)
54 l = msd.Logistic()
55 assert isinstance(l, msd.Distribution)
56 l = msd.Logistic([3.0], [4.0], dtype=dtype.float32)
[all …]
Dtest_uniform.py22 import mindspore.nn.probability.distribution as msd namespace
32 msd.Uniform([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
37 msd.Uniform(0., 1., dtype=dtype.int32)
42 msd.Uniform(0., 1., name=1.0)
47 msd.Uniform(0., 1., seed='seed')
54 u = msd.Uniform()
55 assert isinstance(u, msd.Distribution)
56 u = msd.Uniform([3.0], [4.0], dtype=dtype.float32)
57 assert isinstance(u, msd.Distribution)
65 msd.Uniform(0.0, 0.0, dtype=dtype.float32)
[all …]
Dtest_lognormal.py22 import mindspore.nn.probability.distribution as msd namespace
31 msd.LogNormal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
35 msd.LogNormal(0., 1., dtype=dtype.int32)
39 msd.LogNormal(0., 1., name=1.0)
43 msd.LogNormal(0., 1., seed='seed')
47 msd.LogNormal(0., 0.)
49 msd.LogNormal(0., -1.)
55 n = msd.LogNormal()
56 assert isinstance(n, msd.Distribution)
57 n = msd.LogNormal([3.0], [4.0], dtype=dtype.float32)
[all …]
Dtest_normal.py22 import mindspore.nn.probability.distribution as msd namespace
31 msd.Normal([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32)
35 msd.Normal(0., 1., dtype=dtype.int32)
39 msd.Normal(0., 1., name=1.0)
43 msd.Normal(0., 1., seed='seed')
47 msd.Normal(0., 0.)
49 msd.Normal(0., -1.)
55 n = msd.Normal()
56 assert isinstance(n, msd.Distribution)
57 n = msd.Normal([3.0], [4.0], dtype=dtype.float32)
[all …]
/third_party/mindspore/tests/st/probability/distribution/
Dtest_categorical.py21 import mindspore.nn.probability.distribution as msd namespace
35 self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
61 self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
87 self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
110 self.c = msd.Categorical([0.2, 0.1, 0.7], dtype=dtype.int32)
133 self.c = msd.Categorical([0.2, 0.1, 0.7], dtype=dtype.int32)
161 self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
187 self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
213 self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
239 self.c = msd.Categorical([0.7, 0.3], dtype=dtype.int32)
[all …]
Dtest_uniform.py20 import mindspore.nn.probability.distribution as msd namespace
32 self.u = msd.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32)
55 self.u = msd.Uniform([0.0], [[1.0], [2.0]], dtype=dtype.float32)
78 self.u = msd.Uniform([0.0], [1.5], dtype=dtype.float32)
103 self.u = msd.Uniform([0.0], [3.0], dtype=dtype.float32)
126 self.u = msd.Uniform([0.0], [[1.0], [2.0]], seed=seed, dtype=dtype.float32)
150 self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)
173 self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)
184 self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)
195 self.u = msd.Uniform([0.0], [1.0], dtype=dtype.float32)
[all …]
Dtest_exponential.py20 import mindspore.nn.probability.distribution as msd namespace
32 self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
55 self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
78 self.e = msd.Exponential([1.5], dtype=dtype.float32)
101 self.e = msd.Exponential([0.5], dtype=dtype.float32)
126 self.e = msd.Exponential([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
149 self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
172 self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
195 self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
218 self.e = msd.Exponential([[1.0], [0.5]], dtype=dtype.float32)
[all …]
Dtest_bernoulli.py20 import mindspore.nn.probability.distribution as msd namespace
34 self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
61 self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
89 self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
118 self.b = msd.Bernoulli([0.3, 0.5, 0.7], dtype=dtype.int32)
146 self.b = msd.Bernoulli([0.7, 0.5], seed=seed, dtype=dtype.int32)
170 self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
197 self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
225 self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
253 self.b = msd.Bernoulli(0.7, dtype=dtype.int32)
[all …]
Dtest_geometric.py20 import mindspore.nn.probability.distribution as msd namespace
34 self.g = msd.Geometric(0.7, dtype=dtype.int32)
61 self.g = msd.Geometric(0.7, dtype=dtype.int32)
88 self.g = msd.Geometric(0.7, dtype=dtype.int32)
117 self.g = msd.Geometric([0.5, 0.5], dtype=dtype.int32)
145 self.g = msd.Geometric([0.7, 0.5], seed=seed, dtype=dtype.int32)
169 self.g = msd.Geometric(0.7, dtype=dtype.int32)
196 self.g = msd.Geometric(0.7, dtype=dtype.int32)
223 self.g = msd.Geometric(0.7, dtype=dtype.int32)
250 self.g = msd.Geometric(0.7, dtype=dtype.int32)
[all …]
Dtest_get_dist_args.py19 import mindspore.nn.probability.distribution as msd namespace
31 self.normal = msd.Normal(dtype=dtype.float32)
32 self.normal1 = msd.Normal(0.0, 1.0, dtype=dtype.float32)
33 self.normal2 = msd.Normal(3.0, 4.0, dtype=dtype.float32)
71 self.expon = msd.Exponential(dtype=dtype.float32)
72 self.expon1 = msd.Exponential(1.0, dtype=dtype.float32)
73 self.expon2 = msd.Exponential(2.0, dtype=dtype.float32)
Dtest_cauchy.py20 import mindspore.nn.probability.distribution as msd namespace
32 self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
54 self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
76 self.c = msd.Cauchy(np.array([3.]), np.array([4.]), dtype=dtype.float32)
109 self.c = msd.Cauchy(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
130 … self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
154 self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
177 self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
199 self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
221 self.c = msd.Cauchy(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
[all …]
Dtest_logistic.py20 import mindspore.nn.probability.distribution as msd namespace
32 self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
54 self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
76 self.l = msd.Logistic(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
100 … self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
124 self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
147 self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
169 self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
191 self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
213 self.l = msd.Logistic(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
Dtest_poisson.py20 import mindspore.nn.probability.distribution as msd namespace
32 self.p = msd.Poisson([0.5], dtype=dtype.float32)
55 self.p = msd.Poisson([0.5], dtype=dtype.float32)
78 self.p = msd.Poisson([1.44], dtype=dtype.float32)
103 self.p = msd.Poisson([[1.0], [0.5]], seed=seed, dtype=dtype.float32)
126 self.p = msd.Poisson([0.5], dtype=dtype.float32)
149 self.p = msd.Poisson([0.5], dtype=dtype.float32)
172 self.p = msd.Poisson([0.5], dtype=dtype.float32)
195 self.p = msd.Poisson([0.5], dtype=dtype.float32)
Dtest_gamma.py21 import mindspore.nn.probability.distribution as msd namespace
33 self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
55 self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
78 self.g = msd.Gamma(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
112 self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
138 self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), seed=seed, dtype=dtype.float32)
162 self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
185 self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
207 self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
229 self.g = msd.Gamma(np.array([3.0]), np.array([1.0]), dtype=dtype.float32)
[all …]
Dtest_normal.py20 import mindspore.nn.probability.distribution as msd namespace
32 self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
54 self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
77 self.n = msd.Normal(np.array([3.0]), np.array([4.0]), dtype=dtype.float32)
110 self.n = msd.Normal(np.array([3.0]), np.array([2.0, 4.0]), dtype=dtype.float32)
134 … self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), seed=seed, dtype=dtype.float32)
158 self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
181 self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
203 self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
225 self.n = msd.Normal(np.array([3.0]), np.array([[2.0], [4.0]]), dtype=dtype.float32)
[all …]
Dtest_lognormal.py20 import mindspore.nn.probability.distribution as msd namespace
32 self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
54 self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
76 self.ln = msd.LogNormal(np.array([0.3]), np.array([0.4]), dtype=dtype.float32)
108 self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
134 … self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), seed=seed, dtype=dtype.float32)
158 self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
180 self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
202 self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
224 self.ln = msd.LogNormal(np.array([0.3]), np.array([[0.2], [0.4]]), dtype=dtype.float32)
[all …]
Dtest_gumbel.py21 import mindspore.nn.probability.distribution as msd namespace
33 self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
58 self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
82 self.gum = msd.Gumbel(np.array([0.0]), np.array([1.0, 2.0]), dtype=dtype.float32)
114 self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
143 … self.gum = msd.Gumbel(np.array([0.0]), np.array([1.0, 2.0, 3.0]), dtype=dtype.float32, seed=seed)
165 self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
189 self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
213 self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
237 self.gum = msd.Gumbel(np.array([0.0]), np.array([[1.0], [2.0]]), dtype=dtype.float32)
[all …]

123