/third_party/mindspore/tests/ |
D | train_step_wrap.py | 28 def __init__(self, network): argument 30 self.network = network 31 self.network.set_train() 32 self.weights = ParameterTuple(network.trainable_params()) 39 grads = self.grad(self.network, weights)(x, label) 48 def __init__(self, network): argument 51 self.network = network 54 predict = self.network(x) 58 def train_step_with_loss_warp(network): argument 59 return TrainStepWrap(NetWithLossClass(network)) [all …]
|
/third_party/mindspore/mindspore/train/ |
D | amp.py | 41 def _do_keep_batchnorm_fp32(network): argument 43 cells = network.name_cells() 47 if subcell == network: 50 network._cells[name] = _OutputTo16(subcell.to_float(mstype.float32)) 54 if isinstance(network, nn.SequentialCell) and change: 55 network.cell_list = list(network.cells()) 90 def _add_loss_network(network, loss_fn, cast_model_type): argument 108 network = WithLossCell(network, loss_fn) 110 network = nn.WithLossCell(network, loss_fn) 111 return network [all …]
|
D | dataset_helper.py | 63 …def __init__(self, network, dataset_types, dataset_shapes, queue_name, min_shapes=None, max_shapes… argument 64 super(_DataWrapper, self).__init__(auto_prefix=False, flags=network.get_flags()) 66 flags = getattr(network.__class__.construct, "_mindspore_flags", {}) 75 self.network = network 79 return self.network(*outputs) 82 def _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name, argument 84 if not isinstance(network, _DataWrapper): 85 … network = _DataWrapper(network, dataset_types, dataset_shapes, queue_name, min_shapes, max_shapes) 86 return network 96 def _generate_network_with_dataset(network, dataset_helper, queue_name): argument [all …]
|
/third_party/wpa_supplicant/wpa_supplicant-2.9_standard/wpa_supplicant/ |
D | wpa_supplicant.conf | 1679 network={ 1687 network={ 1695 network={ 1706 network={ 1718 network={ 1735 network={ 1749 network={ 1762 network={ 1775 network={ 1793 network={ [all …]
|
/third_party/wpa_supplicant/wpa_supplicant-2.9/wpa_supplicant/ |
D | wpa_supplicant.conf | 1528 network={ 1536 network={ 1544 network={ 1555 network={ 1567 network={ 1584 network={ 1598 network={ 1611 network={ 1624 network={ 1642 network={ [all …]
|
/third_party/cef/libcef/browser/net_service/ |
D | proxy_url_loader_factory.h | 54 network::ResourceRequest* request, 65 network::ResourceRequest* request, 76 const network::ResourceRequest& request, in ProcessRequestHeaders() 87 const network::ResourceRequest& request, in ProcessResponseHeaders() 109 network::ResourceRequest* request, 117 const network::ResourceRequest& request, 123 const network::ResourceRequest& request, in OnRequestComplete() 124 const network::URLLoaderCompletionStatus& status) {} in OnRequestComplete() 128 const network::ResourceRequest& request, in OnRequestError() 138 : public network::mojom::URLLoaderFactory, [all …]
|
D | proxy_url_loader_factory.cc | 53 mojo::PendingReceiver<network::mojom::URLLoaderFactory> loader_receiver, in CreateProxyHelper() 150 class CorsPreflightRequest : public network::mojom::TrustedHeaderClient { 153 mojo::PendingReceiver<network::mojom::TrustedHeaderClient> receiver) in CorsPreflightRequest() 180 mojo::Receiver<network::mojom::TrustedHeaderClient> header_client_receiver_{ 192 class InterceptedRequest : public network::mojom::URLLoader, 193 public network::mojom::URLLoaderClient, 194 public network::mojom::TrustedHeaderClient { 200 const network::ResourceRequest& request, 202 mojo::PendingReceiver<network::mojom::URLLoader> loader_receiver, 203 mojo::PendingRemote<network::mojom::URLLoaderClient> client, [all …]
|
D | url_loader_factory_getter.h | 19 namespace network { 45 scoped_refptr<network::SharedURLLoaderFactory> GetURLLoaderFactory(); 54 std::unique_ptr<network::PendingSharedURLLoaderFactory> 56 network::mojom::URLLoaderFactoryPtrInfo proxy_factory_ptr_info, 57 network::mojom::URLLoaderFactoryRequest proxy_factory_request); 62 std::unique_ptr<network::PendingSharedURLLoaderFactory> loader_factory_info_; 63 scoped_refptr<network::SharedURLLoaderFactory> lazy_factory_; 64 network::mojom::URLLoaderFactoryPtrInfo proxy_factory_ptr_info_; 65 network::mojom::URLLoaderFactoryRequest proxy_factory_request_;
|
/third_party/mindspore/tests/ut/python/communication/ |
D | test_comm.py | 150 network = AllReduceNet(2, 1, op) 152 optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), 155 network = WithLossCell(network, loss_fn) 156 network = TrainOneStepCell(network, optimizer) 157 _cell_graph_executor.compile(network, input_tensor, label_tensor) 174 network = AllGatherNet(2, 1) 176 optimizer = Momentum(filter(lambda x: x.requires_grad, network.get_parameters()), 179 network = WithLossCell(network, loss_fn) 180 network = TrainOneStepCell(network, optimizer) 181 _cell_graph_executor.compile(network, input_tensor, label_tensor) [all …]
|
/third_party/mindspore/mindspore/compression/export/ |
D | quant_export.py | 202 def __init__(self, network, mean, std_dev, *inputs, is_mindir=False): argument 203 network = Validator.check_isinstance('network', network, (nn.Cell,)) 205 self.network = copy.deepcopy(network) 206 self.network_bk = copy.deepcopy(network) 216 graph_id, _ = _executor.compile(self.network, *inputs, phase=phase_name, do_convert=False) 221 self.network.update_cell_prefix() 222 network = self.network 223 if isinstance(network, _AddFakeQuantInput): 224 network = network.network 225 network = self._convert_quant2deploy(network) [all …]
|
/third_party/mindspore/tests/st/ops/cpu/ |
D | test_dot_op.py | 41 network = NetDot() 42 ms_result_np = network(x1_tensor, x2_tensor) 55 network = NetDot() 56 ms_result_np = network(x1_tensor, x2_tensor) 69 network = NetDot() 70 ms_result_np = network(x1_tensor, x2_tensor) 112 network = NetDot() 113 ms_result_np = network(x1_tensor, x2_tensor) 128 network = NetDot() 129 ms_result_np = network(x1_tensor, x2_tensor) [all …]
|
/third_party/mindspore/tests/st/control/ |
D | test_if_mindir.py | 75 def __init__(self, network): argument 78 self.network = network 81 predict = self.network(x) 86 def __init__(self, network): argument 88 self.network = network 89 self.network.set_train() 90 self.weights = ParameterTuple(network.trainable_params()) 97 grads = self.grad(self.network, weights)(x, label) 118 network = LeNet5() 119 network.set_train() [all …]
|
/third_party/mindspore/tests/st/fl/albert/src/ |
D | utils.py | 32 def save_params(network, param_dict=None): argument 34 return {param.name: copy.deepcopy(param) for param in network.trainable_params() 36 for param in network.trainable_params(): 42 def restore_params(network, param_dict, init_adam=True): argument 43 for param in network.trainable_params(): 82 def upload_to_server(network, worker_upload_list): argument 83 for param in network.trainable_params(): 109 def download_from_server(network, worker_download_list): argument 110 for param in network.trainable_params(): 123 def freeze(network, freeze_list): argument [all …]
|
/third_party/mindspore/tests/st/export_and_load/ |
D | test_train_mindir.py | 75 def __init__(self, network): argument 78 self.network = network 81 predict = self.network(x) 86 def __init__(self, network): argument 88 self.network = network 89 self.network.set_train() 90 self.weights = ParameterTuple(network.trainable_params()) 97 grads = self.grad(self.network, weights)(x, label) 107 network = LeNet5() 108 network.set_train() [all …]
|
/third_party/mindspore/mindspore/nn/wrap/ |
D | cell_wrapper.py | 166 def __init__(self, network, loss_fn=None, sens=None): argument 168 self.network = network 170 self.weights = ParameterTuple(network.trainable_params()) 174 self.network_with_loss = network 176 self.network_with_loss = WithLossCell(self.network, self.loss_fn) 250 def __init__(self, network, weights=None, get_all=False, get_by_list=False, sens_param=False): argument 252 if not isinstance(network, (Cell, FunctionType, MethodType)): 262 self.network = network 263 if isinstance(network, Cell): 264 self.network.set_grad() [all …]
|
/third_party/mindspore/tests/mindspore_test_framework/utils/ |
D | block_util.py | 67 def __init__(self, network, output_index): argument 68 if isinstance(network, nn.Cell): 72 self.network = network 76 predict = self.network(*inputs)[self.output_index] 80 def get_output_cell(network, num_input, output_index, training=True): argument 82 net = IthOutputCell(network, output_index) 88 def __init__(self, network, output_num): argument 91 self.network = network 96 return self.reduce_sum(self.network(*inputs), None) 99 predict = self.network(*inputs)[index] [all …]
|
/third_party/mindspore/tests/st/networks/ |
D | test_gradient_accumulation.py | 75 def __init__(self, network, optimizer, grad_sum, sens=1.0): argument 77 self.network = network 78 self.network.set_grad() 79 self.network.add_flags(defer_inline=True) 80 self.weights = ParameterTuple(network.trainable_params()) 89 loss = self.network(*inputs) 91 grads = self.grad(self.network, weights)(*inputs, sens) 118 def __init__(self, network, loss_fn, optimizer): argument 119 self._network = network 132 network = self._network [all …]
|
/third_party/mindspore/tests/st/ops/gpu/ |
D | test_tensordot_op.py | 36 def __init__(self, network): argument 39 self.network = network 42 gout = self.grad(self.network)(input_data_a, input_data_b, sens) 60 network = NetTensorDot(axes) 61 ms_result_np = network(x1_tensor, x2_tensor).asnumpy() 74 network = NetTensorDot(axes) 75 ms_result_np = network(x1_tensor, x2_tensor).asnumpy() 88 network = NetTensorDot(axes) 89 ms_result_np = network(x1_tensor, x2_tensor).asnumpy() 102 network = NetTensorDot(axes) [all …]
|
/third_party/mindspore/mindspore/boost/ |
D | boost.py | 70 def network_auto_process_train(self, network, optimizer): argument 73 network = LessBN(network, fn_flag=self._fn_flag) 75 group_params = self._param_processer.assign_parameter_group(network.trainable_params(), 80 optimizer_process.add_grad_centralization(network) 86 network, optimizer = freeze_processer.freeze_generate(network, optimizer) 90 return network, optimizer 92 def network_auto_process_eval(self, network): argument 95 network = LessBN(network) 97 return network
|
/third_party/mindspore/tests/ut/python/parallel/ |
D | test_strategy_checkpoint.py | 34 def __init__(self, network): argument 37 self.network = network 40 predict = self.network(x1, x6) 44 def __init__(self, network): argument 46 self.network = network 49 return grad_all(self.network)(x1, x6) 98 def __init__(self, network): argument 101 self.network = network 104 predict = self.network(x1, x6, x7) 108 def __init__(self, network): argument [all …]
|
D | test_semi_auto_two_subgraphs.py | 43 def __init__(self, network): argument 47 self.net = network 57 def __init__(self, network, output_index): argument 59 self.network = network 63 predict = self.network(x1)[self.output_index] 68 def __init__(self, network, sens=1000.0): argument 70 self.network = network 71 self.network.set_train() 72 self.trainable_params = network.trainable_params() 91 self.loss_net_w = IthOutputCell(network, output_index=0) [all …]
|
/third_party/mindspore/tests/ut/cpp/python_input/gtest_input/pipeline/parse/ |
D | parse_class.py | 46 def __init__(self, network, tensor, use_net=False): argument 51 self.network = network 53 self.network = None 58 z = self.network(z, x) 76 network = SimpleNet(ResNet(X), Y) 77 return network 83 network = SimpleNet(ResNet(X), Y, True) 84 print(network.parameters_dict()) 85 return _cell_graph_executor.compile(network, X, Y)
|
/third_party/mindspore/tests/st/quantization/lenet_quant/ |
D | test_lenet_quant.py | 47 network = LeNet5Fusion(cfg.num_classes) 51 load_nonquant_param_into_quant_net(network, param_dict) 69 network = quantizer.quantize(network) 74 net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) 82 model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) 95 network = LeNet5Fusion(cfg.num_classes) 113 network = quantizer.quantize(network) 118 net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum) 121 model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()}) 125 not_load_param = load_param_into_net(network, param_dict) [all …]
|
/third_party/glib/gio/ |
D | gwin32networkmonitor.c | 110 GInetAddressMask *network; in get_network_mask() local 118 network = g_inet_address_mask_new (dest_addr, len, NULL); in get_network_mask() 121 return network; in get_network_mask() 146 GInetAddressMask *network; in win_network_monitor_process_table() local 156 network = get_network_mask (family, dest, len); in win_network_monitor_process_table() 157 if (network == NULL) in win_network_monitor_process_table() 160 g_ptr_array_add (networks, network); in win_network_monitor_process_table() 176 GInetAddressMask *network; in add_network() local 178 network = get_network_mask (family, dest, dest_len); in add_network() 179 if (network != NULL) in add_network() [all …]
|
/third_party/mindspore/tests/ut/python/utils/ |
D | test_export.py | 61 def __init__(self, network): argument 64 self.network = network 67 predict = self.network(x) 72 def __init__(self, network): argument 74 self.network = network 75 self.network.set_train() 76 self.weights = ParameterTuple(network.trainable_params()) 83 grads = self.grad(self.network, weights)(x, label) 89 network = LeNet5() 90 network.set_train() [all …]
|