Searched refs:probs_a (Results 1 – 4 of 4) sorted by relevance
/third_party/mindspore/tests/ut/python/nn/probability/distribution/ |
D | test_geometric.py | 134 def construct(self, probs_b, probs_a): argument 136 kl2 = self.g2.kl_loss('Geometric', probs_b, probs_a) 146 probs_a = Tensor([0.7], dtype=dtype.float32) 147 ans = ber_net(probs_b, probs_a) 161 def construct(self, probs_b, probs_a): argument 163 h2 = self.g2.cross_entropy('Geometric', probs_b, probs_a) 173 probs_a = Tensor([0.7], dtype=dtype.float32) 174 ans = net(probs_b, probs_a)
|
D | test_bernoulli.py | 134 def construct(self, probs_b, probs_a): argument 136 kl2 = self.b2.kl_loss('Bernoulli', probs_b, probs_a) 146 probs_a = Tensor([0.7], dtype=dtype.float32) 147 ans = ber_net(probs_b, probs_a) 161 def construct(self, probs_b, probs_a): argument 163 h2 = self.b2.cross_entropy('Bernoulli', probs_b, probs_a) 173 probs_a = Tensor([0.7], dtype=dtype.float32) 174 ans = net(probs_b, probs_a)
|
D | test_categorical.py | 158 def construct(self, probs_b, probs_a): argument 160 kl2 = self.c2.kl_loss('Categorical', probs_b, probs_a) 170 probs_a = Tensor([0.7, 0.2, 0.1], dtype=dtype.float32) 171 ans = ber_net(probs_b, probs_a) 185 def construct(self, probs_b, probs_a): argument 187 h2 = self.c2.cross_entropy('Categorical', probs_b, probs_a) 197 probs_a = Tensor([0.7, 0.2, 0.1], dtype=dtype.float32) 198 ans = net(probs_b, probs_a)
|
/third_party/mindspore/mindspore/nn/probability/distribution/ |
D | categorical.py | 241 probs_a = self._check_param_type(probs) 242 logits_a = self.log(probs_a)
|