Home
last modified time | relevance | path

Searched refs:quantiles (Results 1 – 25 of 25) sorted by relevance

/third_party/ltp/testcases/realtime/lib/
Dlibstats.c206 int stats_quantiles_init(stats_quantiles_t * quantiles, int nines) in stats_quantiles_init() argument
211 quantiles->nines = nines; in stats_quantiles_init()
213 quantiles->quantiles = calloc(sizeof(long), (nines - 1)); in stats_quantiles_init()
214 if (!quantiles->quantiles) { in stats_quantiles_init()
220 int stats_quantiles_free(stats_quantiles_t * quantiles) in stats_quantiles_free() argument
222 free(quantiles->quantiles); in stats_quantiles_free()
227 stats_quantiles_t * quantiles) in stats_quantiles_calc() argument
235 (data->index + 1) < (long)exp10(quantiles->nines)) { in stats_quantiles_calc()
242 for (i = 2; i <= quantiles->nines; i++) { in stats_quantiles_calc()
244 quantiles->quantiles[i - 2] = data->records[index].y; in stats_quantiles_calc()
[all …]
/third_party/ltp/testcases/realtime/include/
Dlibstats.h72 long *quantiles; member
126 int stats_quantiles_init(stats_quantiles_t *quantiles, int nines);
131 int stats_quantiles_free(stats_quantiles_t *quantiles);
137 int stats_quantiles_calc(stats_container_t *data, stats_quantiles_t *quantiles);
142 void stats_quantiles_print(stats_quantiles_t *quantiles);
/third_party/ltp/testcases/realtime/func/sched_latency/
Dsched_latency.c76 stats_quantiles_t quantiles; variable
234 stats_quantiles_calc(&dat, &quantiles); in periodic_thread()
235 stats_quantiles_print(&quantiles); in periodic_thread()
283 if (stats_quantiles_init(&quantiles, (int)log10(iterations))) { in main()
301 stats_quantiles_free(&quantiles); in main()
/third_party/ltp/testcases/realtime/func/periodic_cpu_load/
Dperiodic_cpu_load.c68 stats_quantiles_t quantiles[THREADS_PER_GROUP * NUM_GROUPS]; variable
199 stats_quantiles_init(&quantiles[i], (int)log10(iterations)); in main()
227 stats_quantiles_calc(&dat[i], &quantiles[i]); in main()
228 stats_quantiles_print(&quantiles[i]); in main()
243 stats_quantiles_free(&quantiles[i]); in main()
Dperiodic_cpu_load_single.c90 stats_quantiles_t quantiles; in periodic_thread() local
102 stats_quantiles_init(&quantiles, (int)log10(iterations)); in periodic_thread()
155 stats_quantiles_calc(&dat, &quantiles); in periodic_thread()
156 stats_quantiles_print(&quantiles); in periodic_thread()
/third_party/ltp/testcases/realtime/func/hrtimer-prio/
Dhrtimer-prio.c178 stats_quantiles_t quantiles; in main() local
187 if (stats_quantiles_init(&quantiles, (int)log10(iterations))) { in main()
221 stats_quantiles_calc(&dat, &quantiles); in main()
222 stats_quantiles_print(&quantiles); in main()
/third_party/ltp/testcases/realtime/func/gtod_latency/
Dgtod_latency.c235 stats_quantiles_t quantiles; in main() local
253 stats_quantiles_init(&quantiles, (int)log10(iterations)); in main()
349 stats_quantiles_calc(&dat, &quantiles); in main()
350 stats_quantiles_print(&quantiles); in main()
354 stats_quantiles_free(&quantiles); in main()
/third_party/ltp/testcases/realtime/func/pthread_kill_latency/
Dpthread_kill_latency.c121 stats_quantiles_t quantiles; in signal_receiving_thread() local
126 stats_quantiles_init(&quantiles, (int)log10(ITERATIONS)); in signal_receiving_thread()
216 stats_quantiles_calc(&dat, &quantiles); in signal_receiving_thread()
217 stats_quantiles_print(&quantiles); in signal_receiving_thread()
/third_party/python/Lib/test/
Dtest_statistics.py2254 quantiles = statistics.quantiles
2271 self.assertEqual(expected, quantiles(data, n=n))
2272 self.assertEqual(len(quantiles(data, n=n)), n - 1)
2275 result = quantiles(map(datatype, data), n=n)
2280 self.assertEqual(quantiles(expected, n=n), expected)
2289 quantiles(data, n=n),
2290 quantiles(padded_data, n=n, method='inclusive'),
2297 act = quantiles(map(f, data), n=n)
2302 q1, q2, q3 = quantiles(data)
2309 quantiles = statistics.quantiles
[all …]
/third_party/boost/libs/math/reporting/performance/
Dtest_distributions.cpp28 static const double quantiles[19]; member in distribution_tester
52 for(unsigned i = 0; i < sizeof(quantiles) / sizeof(quantiles[0]); ++i) in add_test_case()
54 tests.back().x_values.push_back(sanitize_x(f(quantiles[i]))); in add_test_case()
62 for(unsigned i = 0; i < sizeof(quantiles) / sizeof(quantiles[0]); ++i) in add_test_case()
64 tests.back().x_values.push_back(sanitize_x(f(p1, quantiles[i]))); in add_test_case()
73 for(unsigned i = 0; i < sizeof(quantiles) / sizeof(quantiles[0]); ++i) in add_test_case()
75 tests.back().x_values.push_back(sanitize_x(f(p1, p2, quantiles[i]))); in add_test_case()
85 for(unsigned i = 0; i < sizeof(quantiles) / sizeof(quantiles[0]); ++i) in add_test_case()
87 tests.back().x_values.push_back(sanitize_x(f(p1, p2, p3, quantiles[i]))); in add_test_case()
117 sum += f(tests[i].params, p_value ? quantiles[j] : tests[i].x_values[j]); in run_timed_tests()
[all …]
/third_party/boost/libs/math/doc/policies/
Dpolicy_tutorial.qbk68 /rounded outwards/. That is to say lower quantiles (where the probability is
69 less than 0.5) are rounded downward, and upper quantiles (where the probability
408 * Normally people calculate quantiles so that they can perform
421 The converse applies to upper-quantiles: If the probability is greater than
426 Likewise for two-sided intervals, we would round lower quantiles down,
427 and upper quantiles up. This ensures that we have ['at least the requested
433 for the 0.05 and 0.95 quantiles with the results ['rounded outwards] so that
467 Therefore if U and L are the upper and lower quantiles respectively, then
489 [This is the default policy as described above: lower quantiles
490 are rounded down (probability < 0.5), and upper quantiles
[all …]
Dpolicy.qbk318 quantiles - we can either ignore the discreteness of the distribution and return
323 discrete quantiles work, and how integer results are rounded:
354 * Lower quantiles (where the probability is less than 0.5) are rounded
356 * Upper quantiles (where the probability is greater than 0.5) are rounded up.
379 * Lower quantiles (where the probability is less than 0.5) are rounded
381 * Upper quantiles (where the probability is greater than 0.5) are rounded ['down].
595 Determines how discrete quantiles return their results: either
626 discrete quantiles to return a real-valued result (rather than round to
834 Specifies how discrete quantiles are evaluated, will be an instance
/third_party/boost/libs/math/doc/distributions/
Dbackground.qbk56 /rounded outwards/. That is to say lower quantiles (where the probability is
57 less than 0.5) are rounded downward, and upper quantiles (where the probability
Ddist_tutorial.qbk52 behaviour such as how errors are handled, or how the quantiles
109 /quantiles/ etc for these distributions.
126 And quantiles are just the same:
245 /outwards/: that is to say, lower quantiles - where the probability
246 is less than 0.5 are rounded down, while upper quantiles - where
306 [*Critical values are just quantiles]
308 Some texts talk about quantiles, or percentiles or fractiles,
Dhypergeometric.qbk87 /rounded outwards/. That is to say lower quantiles (where the probability is
88 less than 0.5) are rounded downward, and upper quantiles (where the probability
Dtriangular.qbk125 except quantiles with arguments nearing the extremes of zero and unity.
/third_party/python/Doc/library/
Dstatistics.rst55 :func:`quantiles` Divide data into intervals with equal probability.
529 .. function:: quantiles(data, *, n=4, method='exclusive')
548 The *method* for computing quantiles can be varied depending on
576 >>> [round(q, 1) for q in quantiles(data, n=10)]
788 .. method:: NormalDist.quantiles(n=4)
863 >>> list(map(round, sat.quantiles()))
865 >>> list(map(round, sat.quantiles(n=10)))
881 >>> quantiles(map(model, X, Y, Z)) # doctest: +SKIP
Drandom.rst517 from statistics import mean, quantiles
538 print('Quartiles:', [round(q, 1) for q in quantiles(waits)])
/third_party/python/Lib/
Dstatistics.py641 def quantiles(data, *, n=4, method='exclusive'): function
1111 def quantiles(self, n=4): member in NormalDist
/third_party/boost/libs/math/doc/
Dmath.qbk402 …d_dis_quant [link math_toolkit.pol_tutorial.understand_dis_quant understanding discrete quantiles]]
510 /rounded outwards/. That is to say lower quantiles (where the probability is
511 less than 0.5) are rounded downward, and upper quantiles (where the probability
/third_party/boost/libs/math/doc/overview/
Dfaq.qbk6 Nearly all are provided, and many more like mean, skewness, quantiles, complements ...
Droadmap.qbk469 * [*Breaking change:] Changed discrete quantiles to return an integer result:
/third_party/python/Misc/NEWS.d/
D3.8.0a4.rst477 Add statistics.quantiles()
D3.9.0a1.rst2794 The *dist* argument for statistics.quantiles() is now positional only. The
/third_party/python/Doc/whatsnew/
D3.8.rst163 def quantiles(dist, /, *, n=4, method='exclusive')
1200 Added :func:`statistics.quantiles` that divides data or a distribution