/third_party/ltp/testcases/realtime/lib/ |
D | libstats.c | 206 int stats_quantiles_init(stats_quantiles_t * quantiles, int nines) in stats_quantiles_init() argument 211 quantiles->nines = nines; in stats_quantiles_init() 213 quantiles->quantiles = calloc(sizeof(long), (nines - 1)); in stats_quantiles_init() 214 if (!quantiles->quantiles) { in stats_quantiles_init() 220 int stats_quantiles_free(stats_quantiles_t * quantiles) in stats_quantiles_free() argument 222 free(quantiles->quantiles); in stats_quantiles_free() 227 stats_quantiles_t * quantiles) in stats_quantiles_calc() argument 235 (data->index + 1) < (long)exp10(quantiles->nines)) { in stats_quantiles_calc() 242 for (i = 2; i <= quantiles->nines; i++) { in stats_quantiles_calc() 244 quantiles->quantiles[i - 2] = data->records[index].y; in stats_quantiles_calc() [all …]
|
/third_party/ltp/testcases/realtime/include/ |
D | libstats.h | 72 long *quantiles; member 126 int stats_quantiles_init(stats_quantiles_t *quantiles, int nines); 131 int stats_quantiles_free(stats_quantiles_t *quantiles); 137 int stats_quantiles_calc(stats_container_t *data, stats_quantiles_t *quantiles); 142 void stats_quantiles_print(stats_quantiles_t *quantiles);
|
/third_party/ltp/testcases/realtime/func/sched_latency/ |
D | sched_latency.c | 76 stats_quantiles_t quantiles; variable 234 stats_quantiles_calc(&dat, &quantiles); in periodic_thread() 235 stats_quantiles_print(&quantiles); in periodic_thread() 283 if (stats_quantiles_init(&quantiles, (int)log10(iterations))) { in main() 301 stats_quantiles_free(&quantiles); in main()
|
/third_party/ltp/testcases/realtime/func/periodic_cpu_load/ |
D | periodic_cpu_load.c | 68 stats_quantiles_t quantiles[THREADS_PER_GROUP * NUM_GROUPS]; variable 199 stats_quantiles_init(&quantiles[i], (int)log10(iterations)); in main() 227 stats_quantiles_calc(&dat[i], &quantiles[i]); in main() 228 stats_quantiles_print(&quantiles[i]); in main() 243 stats_quantiles_free(&quantiles[i]); in main()
|
D | periodic_cpu_load_single.c | 90 stats_quantiles_t quantiles; in periodic_thread() local 102 stats_quantiles_init(&quantiles, (int)log10(iterations)); in periodic_thread() 155 stats_quantiles_calc(&dat, &quantiles); in periodic_thread() 156 stats_quantiles_print(&quantiles); in periodic_thread()
|
/third_party/ltp/testcases/realtime/func/hrtimer-prio/ |
D | hrtimer-prio.c | 178 stats_quantiles_t quantiles; in main() local 187 if (stats_quantiles_init(&quantiles, (int)log10(iterations))) { in main() 221 stats_quantiles_calc(&dat, &quantiles); in main() 222 stats_quantiles_print(&quantiles); in main()
|
/third_party/ltp/testcases/realtime/func/gtod_latency/ |
D | gtod_latency.c | 235 stats_quantiles_t quantiles; in main() local 253 stats_quantiles_init(&quantiles, (int)log10(iterations)); in main() 349 stats_quantiles_calc(&dat, &quantiles); in main() 350 stats_quantiles_print(&quantiles); in main() 354 stats_quantiles_free(&quantiles); in main()
|
/third_party/ltp/testcases/realtime/func/pthread_kill_latency/ |
D | pthread_kill_latency.c | 121 stats_quantiles_t quantiles; in signal_receiving_thread() local 126 stats_quantiles_init(&quantiles, (int)log10(ITERATIONS)); in signal_receiving_thread() 216 stats_quantiles_calc(&dat, &quantiles); in signal_receiving_thread() 217 stats_quantiles_print(&quantiles); in signal_receiving_thread()
|
/third_party/python/Lib/test/ |
D | test_statistics.py | 2254 quantiles = statistics.quantiles 2271 self.assertEqual(expected, quantiles(data, n=n)) 2272 self.assertEqual(len(quantiles(data, n=n)), n - 1) 2275 result = quantiles(map(datatype, data), n=n) 2280 self.assertEqual(quantiles(expected, n=n), expected) 2289 quantiles(data, n=n), 2290 quantiles(padded_data, n=n, method='inclusive'), 2297 act = quantiles(map(f, data), n=n) 2302 q1, q2, q3 = quantiles(data) 2309 quantiles = statistics.quantiles [all …]
|
/third_party/boost/libs/math/reporting/performance/ |
D | test_distributions.cpp | 28 static const double quantiles[19]; member in distribution_tester 52 for(unsigned i = 0; i < sizeof(quantiles) / sizeof(quantiles[0]); ++i) in add_test_case() 54 tests.back().x_values.push_back(sanitize_x(f(quantiles[i]))); in add_test_case() 62 for(unsigned i = 0; i < sizeof(quantiles) / sizeof(quantiles[0]); ++i) in add_test_case() 64 tests.back().x_values.push_back(sanitize_x(f(p1, quantiles[i]))); in add_test_case() 73 for(unsigned i = 0; i < sizeof(quantiles) / sizeof(quantiles[0]); ++i) in add_test_case() 75 tests.back().x_values.push_back(sanitize_x(f(p1, p2, quantiles[i]))); in add_test_case() 85 for(unsigned i = 0; i < sizeof(quantiles) / sizeof(quantiles[0]); ++i) in add_test_case() 87 tests.back().x_values.push_back(sanitize_x(f(p1, p2, p3, quantiles[i]))); in add_test_case() 117 sum += f(tests[i].params, p_value ? quantiles[j] : tests[i].x_values[j]); in run_timed_tests() [all …]
|
/third_party/boost/libs/math/doc/policies/ |
D | policy_tutorial.qbk | 68 /rounded outwards/. That is to say lower quantiles (where the probability is 69 less than 0.5) are rounded downward, and upper quantiles (where the probability 408 * Normally people calculate quantiles so that they can perform 421 The converse applies to upper-quantiles: If the probability is greater than 426 Likewise for two-sided intervals, we would round lower quantiles down, 427 and upper quantiles up. This ensures that we have ['at least the requested 433 for the 0.05 and 0.95 quantiles with the results ['rounded outwards] so that 467 Therefore if U and L are the upper and lower quantiles respectively, then 489 [This is the default policy as described above: lower quantiles 490 are rounded down (probability < 0.5), and upper quantiles [all …]
|
D | policy.qbk | 318 quantiles - we can either ignore the discreteness of the distribution and return 323 discrete quantiles work, and how integer results are rounded: 354 * Lower quantiles (where the probability is less than 0.5) are rounded 356 * Upper quantiles (where the probability is greater than 0.5) are rounded up. 379 * Lower quantiles (where the probability is less than 0.5) are rounded 381 * Upper quantiles (where the probability is greater than 0.5) are rounded ['down]. 595 Determines how discrete quantiles return their results: either 626 discrete quantiles to return a real-valued result (rather than round to 834 Specifies how discrete quantiles are evaluated, will be an instance
|
/third_party/boost/libs/math/doc/distributions/ |
D | background.qbk | 56 /rounded outwards/. That is to say lower quantiles (where the probability is 57 less than 0.5) are rounded downward, and upper quantiles (where the probability
|
D | dist_tutorial.qbk | 52 behaviour such as how errors are handled, or how the quantiles 109 /quantiles/ etc for these distributions. 126 And quantiles are just the same: 245 /outwards/: that is to say, lower quantiles - where the probability 246 is less than 0.5 are rounded down, while upper quantiles - where 306 [*Critical values are just quantiles] 308 Some texts talk about quantiles, or percentiles or fractiles,
|
D | hypergeometric.qbk | 87 /rounded outwards/. That is to say lower quantiles (where the probability is 88 less than 0.5) are rounded downward, and upper quantiles (where the probability
|
D | triangular.qbk | 125 except quantiles with arguments nearing the extremes of zero and unity.
|
/third_party/python/Doc/library/ |
D | statistics.rst | 55 :func:`quantiles` Divide data into intervals with equal probability. 529 .. function:: quantiles(data, *, n=4, method='exclusive') 548 The *method* for computing quantiles can be varied depending on 576 >>> [round(q, 1) for q in quantiles(data, n=10)] 788 .. method:: NormalDist.quantiles(n=4) 863 >>> list(map(round, sat.quantiles())) 865 >>> list(map(round, sat.quantiles(n=10))) 881 >>> quantiles(map(model, X, Y, Z)) # doctest: +SKIP
|
D | random.rst | 517 from statistics import mean, quantiles 538 print('Quartiles:', [round(q, 1) for q in quantiles(waits)])
|
/third_party/python/Lib/ |
D | statistics.py | 641 def quantiles(data, *, n=4, method='exclusive'): function 1111 def quantiles(self, n=4): member in NormalDist
|
/third_party/boost/libs/math/doc/ |
D | math.qbk | 402 …d_dis_quant [link math_toolkit.pol_tutorial.understand_dis_quant understanding discrete quantiles]] 510 /rounded outwards/. That is to say lower quantiles (where the probability is 511 less than 0.5) are rounded downward, and upper quantiles (where the probability
|
/third_party/boost/libs/math/doc/overview/ |
D | faq.qbk | 6 Nearly all are provided, and many more like mean, skewness, quantiles, complements ...
|
D | roadmap.qbk | 469 * [*Breaking change:] Changed discrete quantiles to return an integer result:
|
/third_party/python/Misc/NEWS.d/ |
D | 3.8.0a4.rst | 477 Add statistics.quantiles()
|
D | 3.9.0a1.rst | 2794 The *dist* argument for statistics.quantiles() is now positional only. The
|
/third_party/python/Doc/whatsnew/ |
D | 3.8.rst | 163 def quantiles(dist, /, *, n=4, method='exclusive') 1200 Added :func:`statistics.quantiles` that divides data or a distribution
|