/third_party/mindspore/tests/ut/python/pynative_mode/ops/ |
D | test_hypermap.py | 56 tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) 58 print("test_hypermap_tensor:", mainf(tensor1, tensor2)) 71 tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) 73 print("test_hypermap_tuple_tensor", mainf((tensor1, tensor1), (tensor2, tensor2))) 78 tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) 80 print("test_hypermap_tuple_mix", mainf((tensor1, 1), (tensor2, 2))) 97 tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) 99 main_noleaf(tensor1, tensor2) 108 tensor1 = Tensor(np.array([[1.1, 2.1], [2.1, 3.1]]).astype('float32')) 112 main_noleaf((tensor1, tensor3), (tensor2, tensor4)) [all …]
|
D | test_multitype.py | 51 tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) 53 mainf(tensor1, tensor2) 58 tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) 59 params1 = Parameter(tensor1, name="params1") 87 tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) 89 out = mainf2(tensor1, tensor2)
|
/third_party/mindspore/mindspore/lite/test/ut/nnacl/infer/ |
D | infer_manager_test.cc | 33 Tensor *tensor1 = new (std::nothrow) Tensor; in TEST_F() local 35 tensor1->set_shape(tensor1_shape); in TEST_F() 37 tensor1->set_data(tensor1_data.data()); in TEST_F() 38 tensor1->set_data_type(kNumberTypeInt32); in TEST_F() 41 inputs.push_back(tensor1); in TEST_F() 107 Tensor *tensor1 = new Tensor; in TEST_F() local 110 tensor1->set_shape(tensor1_shape); in TEST_F() 111 tensor1->set_data(tensor1_data.data()); in TEST_F() 116 inputs.push_back(tensor1); in TEST_F() 152 Tensor *tensor1 = new (std::nothrow) Tensor; in TEST_F() local [all …]
|
/third_party/mindspore/mindspore/lite/test/ut/src/ |
D | scheduler_test.cc | 104 auto tensor1 = std::make_unique<mindspore::schema::TensorT>(); in TEST_F() local 105 tensor1->nodeType = mindspore::lite::NodeType_ValueNode; in TEST_F() 106 tensor1->format = mindspore::schema::Format_NHWC; in TEST_F() 107 tensor1->dataType = mindspore::TypeId::kNumberTypeFloat32; in TEST_F() 108 tensor1->dims = {1, 16, 16, 2}; in TEST_F() 109 tensor1->offset = -1; in TEST_F() 154 meta_graph->allTensors.emplace_back(std::move(tensor1)); in TEST_F() 265 auto tensor1 = std::make_unique<mindspore::schema::TensorT>(); in TEST_F() local 266 tensor1->nodeType = mindspore::lite::NodeType_ValueNode; in TEST_F() 267 tensor1->format = mindspore::schema::Format_NHWC; in TEST_F() [all …]
|
D | utils_test.cc | 41 auto tensor1 = std::make_shared<lite::Tensor>(); in TEST_F() local 51 kernel0->set_in_tensors({tensor0.get(), tensor1.get()}); in TEST_F()
|
/third_party/mindspore/mindspore/lite/test/st/ |
D | mix_data_type_test.cc | 139 auto tensor1 = std::make_unique<mindspore::schema::TensorT>(); in ConstructModel() local 140 tensor1->nodeType = mindspore::lite::NodeType_ValueNode; in ConstructModel() 141 tensor1->format = mindspore::schema::Format_NHWC; in ConstructModel() 142 tensor1->dataType = mindspore::TypeId::kNumberTypeFloat32; in ConstructModel() 143 tensor1->dims = {1, 2, 2, 1}; in ConstructModel() 144 tensor1->offset = -1; in ConstructModel() 145 tensor1->name = "tensor1"; in ConstructModel() 177 meta_graph->allTensors.emplace_back(std::move(tensor1)); in ConstructModel()
|
D | multiple_device_test.cc | 93 auto tensor1 = std::make_unique<mindspore::schema::TensorT>(); in CreateMultyModel1() local 94 tensor1->nodeType = mindspore::lite::NodeType_ValueNode; in CreateMultyModel1() 95 tensor1->format = mindspore::schema::Format_NHWC; in CreateMultyModel1() 96 tensor1->dataType = mindspore::TypeId::kNumberTypeFloat32; in CreateMultyModel1() 97 tensor1->dims = {1, 1, 1, 1}; in CreateMultyModel1() 98 tensor1->offset = -1; in CreateMultyModel1() 99 tensor1->name = "tensor1"; in CreateMultyModel1() 154 meta_graph->allTensors.emplace_back(std::move(tensor1)); in CreateMultyModel1() 197 auto tensor1 = std::make_unique<mindspore::schema::TensorT>(); in CreateMultyModel2() local 198 tensor1->nodeType = mindspore::lite::NodeType_ValueNode; in CreateMultyModel2() [all …]
|
/third_party/mindspore/tests/ut/python/utils/ |
D | test_initializer.py | 153 tensor1 = init.initializer(init.XavierUniform(gain=gain), [20, 22], ms.float32).init_data() 159 …tensor_dict = {tensor1: gain, tensor2: None, tensor3: gain, tensor4: None, tensor5: None, tensor6:… 183 tensor1 = init.initializer(init.HeUniform(), [20, 22], ms.float32) 187 tensors = [tensor1.init_data(), tensor2.init_data(), tensor3.init_data(), tensor4.init_data()]
|
/third_party/mindspore/tests/ut/python/debugger/gpu_tests/ |
D | test_read_tensors_nonexist_node.py | 38 tensor1 = np.array([32.0, 4096.0], np.float32) 50 tensor_list = [tensor1, tensor2]
|
D | test_read_tensors.py | 39 tensor1 = np.array([32.0, 4096.0], np.float32) 70 tensor_list = [tensor1, tensor2, tensor3, tensor4]
|
D | test_watchpoints.py | 39 tensor1 = np.array([[[-1.2808e-03, 7.7629e-03, 1.9241e-02], 71 tensor_list = [tensor1, tensor2, tensor3, tensor4]
|
/third_party/mindspore/tests/ut/cpp/python_input/gtest_input/optimizer/ |
D | opt_test.py | 1067 tensor1 = Tensor(np.array([[1.2, 2.1], [2.2, 3.2]]).astype('float32')) 1072 return Mul(tensor1, Mul(tensor2, Sqrt(x))) 1076 return Mul(tensor1, Mul(Sqrt(x), tensor2)) 1080 return Mul(Mul(Sqrt(x), tensor2), tensor1) 1084 return Mul(Mul(Sqrt(x), tensor2), tensor1) 1088 return Mul(Sqrt(x), Mul(tensor1, tensor2))
|
/third_party/mindspore/mindspore/ccsrc/frontend/optimizer/ |
D | cse.cc | 187 auto tensor1 = GetValueNode<tensor::TensorPtr>(inp1_j); in CheckReplace() local 189 if (tensor1->ValueEqual(*tensor2)) { in CheckReplace()
|
/third_party/mindspore/tests/ut/python/parameter_feature/ |
D | test_parameter.py | 51 tensor1 = Tensor(np.full((2, 3), 2).astype(np.float32)) 54 assert np.all(net(tensor1, tensor2).asnumpy() == tensor1.asnumpy())
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/somas/ |
D | somas.cc | 1203 for (auto tensor1 : tensors_list_) { in Assign() local 1204 auto ones_num = reuse_matrix_[tensor1->GetId()].CountOnesNum(); in Assign() 1205 tensor1->num_constraints_ = tensors_num - ones_num; in Assign()
|
/third_party/mindspore/mindspore/ccsrc/backend/optimizer/trt_pass/ |
D | trt_op_converter.cc | 581 nvinfer1::ITensor *tensor1 = ToTensor(&inputs[0], shape1, context); in MS_TRT_CONVERTER_FUNC_REG() local 583 …auto *layer = context->network()->addMatrixMultiply(*tensor1, trt_transpose1, *tensor2, trt_transp… in MS_TRT_CONVERTER_FUNC_REG()
|