/third_party/mindspore/tests/st/probability/distribution/ |
D | test_categorical.py | 37 def construct(self, x_): argument 38 return self.c.prob(x_) 47 x_ = Tensor(np.array([0, 1, 0, 1, 1]).astype( 49 output = pmf(x_) 63 def construct(self, x_): argument 64 return self.c.log_prob(x_) 73 x_ = Tensor(np.array([0, 1, 0, 1, 1]).astype( 75 output = logprob(x_) 89 def construct(self, x_): argument 90 return self.c.kl_loss('Categorical', x_) [all …]
|
D | test_uniform.py | 34 def construct(self, x_): argument 35 return self.u.prob(x_) 44 x_ = Tensor(np.array([-1.0, 0.0, 0.5, 1.0, 1.5, 3.0]).astype(np.float32), dtype=dtype.float32) 45 output = pdf(x_) 57 def construct(self, x_): argument 58 return self.u.log_prob(x_) 67 x_ = Tensor(np.array([0.5]).astype(np.float32), dtype=dtype.float32) 68 output = logprob(x_) 80 def construct(self, x_, y_): argument 81 return self.u.kl_loss('Uniform', x_, y_) [all …]
|
D | test_exponential.py | 34 def construct(self, x_): argument 35 return self.e.prob(x_) 44 x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32) 45 output = pdf(x_) 57 def construct(self, x_): argument 58 return self.e.log_prob(x_) 67 x_ = Tensor(np.array([0.5, 1.0, 2.0]).astype(np.float32), dtype=dtype.float32) 68 output = logprob(x_) 80 def construct(self, x_): argument 81 return self.e.kl_loss('Exponential', x_) [all …]
|
D | test_bernoulli.py | 36 def construct(self, x_): argument 37 return self.b.prob(x_) 47 x_ = Tensor(np.array([0, 1, 0, 1, 1]).astype( 49 output = pmf(x_) 63 def construct(self, x_): argument 64 return self.b.log_prob(x_) 75 x_ = Tensor(np.array([0, 1, 0, 1, 1]).astype( 77 output = logprob(x_) 91 def construct(self, x_): argument 92 return self.b.kl_loss('Bernoulli', x_) [all …]
|
D | test_geometric.py | 36 def construct(self, x_): argument 37 return self.g.prob(x_) 47 x_ = Tensor(np.array([-1, 0, 1, 2, 3] 49 output = pdf(x_) 63 def construct(self, x_): argument 64 return self.g.log_prob(x_) 74 x_ = Tensor(np.array([0, 1, 2, 3, 4]).astype( 76 output = logprob(x_) 90 def construct(self, x_): argument 91 return self.g.kl_loss('Geometric', x_) [all …]
|
D | test_poisson.py | 34 def construct(self, x_): argument 35 return self.p.prob(x_) 44 x_ = Tensor(np.array([-1.0, 0.0, 1.0]).astype(np.float32), dtype=dtype.float32) 45 output = pdf(x_) 57 def construct(self, x_): argument 58 return self.p.log_prob(x_) 67 x_ = Tensor(np.array([1.0, 2.0]).astype(np.float32), dtype=dtype.float32) 68 output = logprob(x_) 128 def construct(self, x_): argument 129 return self.p.cdf(x_) [all …]
|
D | test_gamma.py | 35 def construct(self, x_): argument 36 return self.g.prob(x_) 57 def construct(self, x_): argument 58 return self.g.log_prob(x_) 80 def construct(self, x_, y_): argument 81 return self.g.kl_loss('Gamma', x_, y_) 164 def construct(self, x_): argument 165 return self.g.cdf(x_) 187 def construct(self, x_): argument 188 return self.g.log_cdf(x_) [all …]
|
D | test_normal.py | 34 def construct(self, x_): argument 35 return self.n.prob(x_) 56 def construct(self, x_): argument 57 return self.n.log_prob(x_) 79 def construct(self, x_, y_): argument 80 return self.n.kl_loss('Normal', x_, y_) 160 def construct(self, x_): argument 161 return self.n.cdf(x_) 183 def construct(self, x_): argument 184 return self.n.log_cdf(x_) [all …]
|
/third_party/mindspore/tests/ut/python/nn/probability/bijector/ |
D | test_softplus.py | 46 def construct(self, x_): argument 47 ans1 = self.b1.inverse(self.b1.forward(x_)) 48 ans2 = self.b2.inverse(self.b2.forward(x_)) 69 def construct(self, x_): argument 70 ans1 = self.b1.forward_log_jacobian(x_) 71 ans2 = self.b2.forward_log_jacobian(x_) 93 def construct(self, x_): argument 94 ans1 = self.b1.inverse_log_jacobian(x_) 95 ans2 = self.b2.inverse_log_jacobian(x_) 117 def construct(self, x_): argument [all …]
|
D | test_scalar_affine.py | 52 def construct(self, x_): argument 53 ans1 = self.b1.inverse(self.b1.forward(x_)) 54 ans2 = self.b2.inverse(self.b2.forward(x_)) 75 def construct(self, x_): argument 76 ans1 = self.b1.forward_log_jacobian(x_) 77 ans2 = self.b2.forward_log_jacobian(x_) 99 def construct(self, x_): argument 100 ans1 = self.b1.inverse_log_jacobian(x_) 101 ans2 = self.b2.inverse_log_jacobian(x_) 123 def construct(self, x_): argument [all …]
|
D | test_gumbel_cdf.py | 61 def construct(self, x_): argument 62 ans1 = self.b1.inverse(self.b1.forward(x_)) 63 ans2 = self.b2.inverse(self.b2.forward(x_)) 84 def construct(self, x_): argument 85 ans1 = self.b1.forward_log_jacobian(x_) 86 ans2 = self.b2.forward_log_jacobian(x_) 108 def construct(self, x_): argument 109 ans1 = self.b1.inverse_log_jacobian(x_) 110 ans2 = self.b2.inverse_log_jacobian(x_) 132 def construct(self, x_): argument [all …]
|
D | test_invert_bijector.py | 51 def construct(self, x_): argument 52 ans1 = self.inv1.inverse(x_) + self.inv1.inverse(x_) 53 ans2 = self.inv2.inverse(x_) + self.inv2.forward(x_) 75 def construct(self, x_): argument 76 ans1 = self.inv1.forward_log_jacobian(x_) 77 ans2 = self.inv2.forward_log_jacobian(x_) 99 def construct(self, x_): argument 100 ans1 = self.inv1.inverse_log_jacobian(x_) 101 ans2 = self.inv2.inverse_log_jacobian(x_) 123 def construct(self, x_): argument [all …]
|
D | test_power_transform.py | 43 def construct(self, x_): argument 44 ans1 = self.b1.inverse(self.b1.forward(x_)) 45 ans2 = self.b2.inverse(self.b2.forward(x_)) 66 def construct(self, x_): argument 67 ans1 = self.b1.forward_log_jacobian(x_) 68 ans2 = self.b2.forward_log_jacobian(x_) 69 ans3 = self.b1.inverse_log_jacobian(x_) 70 ans4 = self.b2.inverse_log_jacobian(x_)
|
/third_party/boost/boost/math/interpolators/detail/ |
D | cubic_hermite_detail.hpp | 24 : x_{std::move(x)}, y_{std::move(y)}, dydx_{std::move(dydx)} in cubic_hermite_detail() 28 if (x_.size() != y_.size()) 32 if (x_.size() != dydx_.size()) 36 if (x_.size() < 2) 40 Real x0 = x_[0]; 41 for (size_t i = 1; i < x_.size(); ++i) 43 Real x1 = x_[i]; 60 if (x <= x_.back()) in push_back() 64 x_.push_back(x); in push_back() 71 if (x < x_[0] || x > x_.back()) in operator ()() [all …]
|
D | quintic_hermite_detail.hpp | 20 …er && y, RandomAccessContainer && dydx, RandomAccessContainer && d2ydx2) : x_{std::move(x)}, y_{st… in quintic_hermite_detail() 22 if (x_.size() != y_.size()) 26 if (x_.size() != dydx_.size()) 30 if (x_.size() != d2ydx2_.size()) 34 if (x_.size() < 2) 38 Real x0 = x_[0]; 39 for (decltype(x_.size()) i = 1; i < x_.size(); ++i) 41 Real x1 = x_[i]; 54 if (x <= x_.back()) in push_back() 58 x_.push_back(x); in push_back() [all …]
|
D | septic_hermite_detail.hpp | 21 …: x_{std::move(x)}, y_{std::move(y)}, dydx_{std::move(dydx)}, d2ydx2_{std::move(d2ydx2)}, d3ydx3_{… in septic_hermite_detail() 23 if (x_.size() != y_.size()) 27 if (x_.size() != dydx_.size()) 31 if (x_.size() != d2ydx2_.size()) 35 if (x_.size() != d3ydx3_.size()) 40 if (x_.size() < 2) 44 Real x0 = x_[0]; 45 for (decltype(x_.size()) i = 1; i < x_.size(); ++i) 47 Real x1 = x_[i]; 60 if (x <= x_.back()) { in push_back() [all …]
|
/third_party/boost/boost/utility/detail/ |
D | minstd_rand.hpp | 25 boost::uint_least32_t x_; member in boost::detail::minstd_rand 31 minstd_rand(): x_( 1 ) in minstd_rand() 35 explicit minstd_rand( boost::uint_least32_t x ): x_( x % m ) in minstd_rand() 37 if( x_ == 0 ) in minstd_rand() 39 x_ = 1; in minstd_rand() 45 boost::uint_least64_t y = x_; in operator ()() 49 x_ = static_cast<boost::uint_least32_t>( y ); in operator ()() 51 return x_; in operator ()()
|
/third_party/libinput/src/ |
D | evdev-tablet-pad.h | 54 #define map_init(x_) ((x_).value = (uint32_t)-1) argument 55 #define map_is_unmapped(x_) ((x_).value == (uint32_t)-1) argument 56 #define map_is_button(x_) (((x_).value & 0xFF000000) == 0) argument 57 #define map_is_key(x_) (((x_).value & 0xFF000000) != 0) argument 60 #define map_value(x_) ((x_).value & 0x00FFFFFF) argument
|
/third_party/mindspore/tests/st/probability/bijector/ |
D | test_invert.py | 34 def construct(self, x_): argument 35 return self.invert.forward(x_), self.origin.inverse(x_) 53 def construct(self, x_): argument 54 return self.invert.inverse(x_), self.origin.forward(x_) 72 def construct(self, x_): argument 73 return self.invert.forward_log_jacobian(x_),\ 74 self.origin.inverse_log_jacobian(x_) 92 def construct(self, x_): argument 93 return self.invert.inverse_log_jacobian(x_),\ 94 self.origin.forward_log_jacobian(x_)
|
D | test_scalar_affine.py | 33 def construct(self, x_): argument 34 return self.bijector.forward(x_) 52 def construct(self, x_): argument 53 return self.bijector.inverse(x_) 71 def construct(self, x_): argument 72 return self.bijector.forward_log_jacobian(x_) 90 def construct(self, x_): argument 91 return self.bijector.inverse_log_jacobian(x_)
|
/third_party/boost/libs/phoenix/test/bind/ |
D | bind_member_variable_tests.cpp | 33 T x_; in write_test() local 35 bind(&T::m, f(x_))() = 122; in write_test() 36 BOOST_TEST(x_.m == 122); in write_test() 37 bind(&T::m, arg1)(f(x_)) = 123; in write_test() 38 BOOST_TEST(x_.m == 123); in write_test() 48 T x_; in read_test() local 49 x_.m = 123; in read_test() 51 BOOST_TEST(bind(&T::m, f(x_))() == 123); in read_test() 52 BOOST_TEST(bind(&T::m, arg1)(f(x_)) == 123); in read_test()
|
/third_party/mindspore/mindspore/ccsrc/frontend/optimizer/irpass/ |
D | reshape_eliminate.h | 48 auto src_shape_abs = x_->abstract(); in operator() 63 return x_; in operator() 71 if (x_ == nullptr) { in Visit() 72 x_ = node; in Visit() 79 x_ = nullptr; in Reset() 84 AnfNodePtr x_{nullptr}, shape_{nullptr}; 95 if (fg != nullptr && x_ != nullptr && shape_ != nullptr) { in operator() 96 auto new_node = fg->NewCNode({NewValueNode(prim_), x_, shape_}); in operator() 114 x_ = inputs[1]; in Visit() 122 x_ = nullptr; in Reset() [all …]
|
D | tile_eliminate.h | 48 return x_; in operator() 53 return x_; in operator() 60 if (x_ == nullptr) { in Visit() 61 x_ = node; in Visit() 68 x_ = nullptr; in Reset() 73 AnfNodePtr x_{nullptr}, tuple_{nullptr};
|
/third_party/boost/boost/math/interpolators/ |
D | makima.hpp | 127 if (x <= impl_->x_.back()) { in push_back() 130 impl_->x_.push_back(x); in push_back() 136 Real mim2 = (impl_->y_[i-1]-impl_->y_[i-2])/(impl_->x_[i-1]-impl_->x_[i-2]); in push_back() 137 Real mim1 = (impl_->y_[i ]-impl_->y_[i-1])/(impl_->x_[i ]-impl_->x_[i-1]); in push_back() 138 Real mi = (impl_->y_[i+1]-impl_->y_[i ])/(impl_->x_[i+1]-impl_->x_[i ]); in push_back() 139 Real mip1 = (impl_->y_[i+2]-impl_->y_[i+1])/(impl_->x_[i+2]-impl_->x_[i+1]); in push_back() 147 Real mnm4 = (impl_->y_[n-3]-impl_->y_[n-4])/(impl_->x_[n-3]-impl_->x_[n-4]); in push_back() 148 Real mnm3 = (impl_->y_[n-2]-impl_->y_[n-3])/(impl_->x_[n-2]-impl_->x_[n-3]); in push_back() 149 Real mnm2 = (impl_->y_[n-1]-impl_->y_[n-2])/(impl_->x_[n-1]-impl_->x_[n-2]); in push_back()
|
/third_party/boost/libs/math/test/ |
D | test_beta_hooks.hpp | 79 double x_ = x; in ibeta() local 80 double y_ = 1-x_; in ibeta() 83 bratio_(&a_, &b_, &x_, &y_, &w, &w1, &ierr); in ibeta() 90 double x_ = x; in ibeta() local 91 double y_ = 1-x_; in ibeta() 94 bratio_(&a_, &b_, &x_, &y_, &w, &w1, &ierr); in ibeta() 101 double x_ = x; in ibeta() local 102 double y_ = 1-x_; in ibeta() 105 bratio_(&a_, &b_, &x_, &y_, &w, &w1, &ierr); in ibeta()
|