/third_party/boost/libs/math/test/ |
D | test_zeta.hpp | 42 pg funcp = boost::math::zeta<value_type>; in do_test_zeta() 44 pg funcp = boost::math::zeta; in do_test_zeta() 97 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(0.125)), static_cast<T>(-0.632775623498695255… in test_spots() 98 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(1023) / static_cast<T>(1024)), static_cast<T>… in test_spots() 99 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(1025) / static_cast<T>(1024)), static_cast<T>… in test_spots() 100 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(0.5)), static_cast<T>(-1.46035450880958681288… in test_spots() 101 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(1.125)), static_cast<T>(8.5862412945105752999… in test_spots() 102 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(2)), static_cast<T>(1.64493406684822643647241… in test_spots() 103 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(3.5)), static_cast<T>(1.126733867317056646427… in test_spots() 104 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(4)), static_cast<T>(1.08232323371113819151600… in test_spots() [all …]
|
D | test_zeta_hooks.hpp | 17 inline float zeta(float a) in zeta() function 19 inline double zeta(double a) in zeta() function 21 inline long double zeta(long double a) in zeta() function 37 inline float zeta(float a) in zeta() function 39 inline double zeta(double a) in zeta() function 41 inline long double zeta(long double a) in zeta() function 49 boost::math::concepts::real_concept zeta(boost::math::concepts::real_concept){ return 0; } in zeta() function
|
/third_party/boost/libs/math/doc/sf/ |
D | zeta.qbk | 1 [section:zeta Riemann Zeta Function] 6 #include <boost/math/special_functions/zeta.hpp> 12 ``__sf_result`` zeta(T z); 15 ``__sf_result`` zeta(T z, const ``__Policy``&); 27 ``__sf_result`` zeta(T z); 30 ``__sf_result`` zeta(T z, const ``__Policy``&); 32 Returns the [@http://mathworld.wolfram.com/RiemannZetaFunction.html zeta function] 101 [expression [zeta](z) = 1 + e[super R(z - n)]] 120 [endsect] [/section:zeta Riemann Zeta Function]
|
D | bessel_jy.qbk | 482 [expression j[sub [nu], m] [sim] [nu]x(-[zeta]) + f[sub 1](-[zeta]/[nu])] 484 where ['-[zeta] = [nu][super -2/3]a[sub m]] and ['a[sub m]] is 487 Here ['x = x(-[zeta])] is the inverse of the function 489 [expression [frac23](-[zeta])[super 3/2] = [radic](x[sup2] - 1) - cos[supminus][sup1](1/x)] (7) 493 [expression f[sub 1](-[zeta]) = [frac12]x(-[zeta]) {h(-[zeta])}[sup2] [sdot] b[sub 0](-[zeta])] 497 [expression h(-[zeta]) = {4(-[zeta]) / (x[sup2] - 1)}[super 4]] 501 [expression b[sub 0](-[zeta]) = -5/(48[zeta][sup2]) + 1/(-[zeta])[super [frac12]] [sdot] { 5/(24(x[… 503 When solving for ['x(-[zeta])] in Eq. 7 above, 507 [expression [frac23](-[zeta])[super 3/2] [approx] x + 1/2x - [pi]/2] 510 is used to find an initial estimate ['x(-[zeta])].
|
D | test_html4_symbols.qbk | 40 [zeta],
|
D | polygamma.qbk | 83 Note that the evaluation of zeta functions at integer values is essentially a table lookup
|
/third_party/boost/libs/math/test/compile_test/ |
D | sf_zeta_incl_test.cpp | 18 check_result<float>(boost::math::zeta(f)); in compile_and_link_test() 19 check_result<double>(boost::math::zeta(d)); in compile_and_link_test() 21 check_result<long double>(boost::math::zeta(l)); in compile_and_link_test()
|
/third_party/boost/boost/math/special_functions/ |
D | zeta.hpp | 1019 …static void do_init(const boost::integral_constant<int, 0>&){ boost::math::zeta(static_cast<T>(5),… in do_init() 1020 …static void do_init(const boost::integral_constant<int, 53>&){ boost::math::zeta(static_cast<T>(5)… in do_init() 1023 boost::math::zeta(static_cast<T>(0.5), Policy()); in do_init() 1024 boost::math::zeta(static_cast<T>(1.5), Policy()); in do_init() 1025 boost::math::zeta(static_cast<T>(3.5), Policy()); in do_init() 1026 boost::math::zeta(static_cast<T>(6.5), Policy()); in do_init() 1027 boost::math::zeta(static_cast<T>(14.5), Policy()); in do_init() 1028 boost::math::zeta(static_cast<T>(40.5), Policy()); in do_init() 1030 boost::math::zeta(static_cast<T>(5), Policy()); in do_init() 1034 boost::math::zeta(static_cast<T>(0.5), Policy()); in do_init() [all …]
|
/third_party/boost/boost/math/special_functions/detail/ |
D | bessel_jy_zero.hpp | 60 equation_as_9_3_39_and_its_derivative(const T& zt) : zeta(zt) { } in equation_as_9_3_39_and_its_derivative() 74 - ( acos(T(1) / z) + ((T(2) / 3U) * (zeta * sqrt(zeta))))); in operator ()() 83 const T zeta; member in boost::math::detail::bessel_zero::equation_as_9_3_39_and_its_derivative 113 const T zeta = v_pow_minus_two_thirds * (-ai_bi_root); in equation_as_9_5_26() local 115 const T zeta_sqrt = sqrt(zeta); in equation_as_9_5_26() 119 const T b = -((((zeta * zeta_sqrt) * 2U) / 3U) + boost::math::constants::half_pi<T>()); in equation_as_9_5_26() 139 boost::math::detail::bessel_zero::equation_as_9_3_39_and_its_derivative<T>(zeta), in equation_as_9_5_26() 155 const T b0_term_5_48 = T(5) / ((zeta * zeta) * 48U); in equation_as_9_5_26()
|
D | polygamma.hpp | 226 T term = factorial_part * boost::math::zeta(T(k + n + 1), pol); in polygamma_nearzero() 535 … return (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol); in polygamma_imp() 539 …T result = (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol); in polygamma_imp()
|
/third_party/boost/libs/math/reporting/performance/ |
D | test_zeta.cpp | 34 …screen_data([](const std::vector<double>& v){ return boost::math::zeta(v[0]); }, [](const std::v… in main() 47 …double time = exec_timed_test([](const std::vector<double>& v){ return boost::math::zeta(v[0]); … in main() 59 …double time = exec_timed_test([](const std::vector<double>& v){ return boost::math::zeta(v[0], bo… in main()
|
/third_party/boost/libs/math/tools/ |
D | zeta_data.cpp | 20 mp_t result = boost::math::zeta(z); in operator ()() 31 mp_t result = boost::math::zeta(-z); in operator ()()
|
/third_party/mesa3d/src/gallium/drivers/nouveau/nv30/ |
D | nv30_clear.c | 59 uint32_t colr = 0, zeta = 0, mode = 0; in nv30_clear() local 73 zeta = pack_zeta(fb->zsbuf->format, depth, stencil); in nv30_clear() 88 PUSH_DATA (push, zeta); in nv30_clear() 94 PUSH_DATA (push, zeta); in nv30_clear()
|
/third_party/boost/libs/math/src/tr1/ |
D | riemann_zeta.cpp | 16 return c_policies::zeta BOOST_PREVENT_MACRO_SUBSTITUTION(x); in BOOST_PREVENT_MACRO_SUBSTITUTION()
|
D | riemann_zetaf.cpp | 16 return c_policies::zeta BOOST_PREVENT_MACRO_SUBSTITUTION(x); in BOOST_PREVENT_MACRO_SUBSTITUTION()
|
D | riemann_zetal.cpp | 16 return c_policies::zeta BOOST_PREVENT_MACRO_SUBSTITUTION(x); in BOOST_PREVENT_MACRO_SUBSTITUTION()
|
/third_party/boost/libs/math/minimax/ |
D | f.cpp | 226 return boost::math::zeta(1 - x) * x - x; in f() 231 return boost::math::zeta(x) - 1 / (x - 1); in f() 236 return log(boost::math::zeta(x) - 1); in f()
|
/third_party/boost/libs/multiprecision/test/concepts/ |
D | sf_concept_check_basic.cpp | 119 boost::math::zeta(v1); in test_extra() 120 boost::math::zeta(i); in test_extra()
|
/third_party/boost/libs/numeric/odeint/doc/ |
D | odeint.qbk | 225 # Ζ Ζ Ζ U+0396 Greek capital letter zeta 249 # ζ ζ ζ U+03B6 Greek small letter zeta ISOgrk3
|
/third_party/boost/libs/math/doc/ |
D | index.idx | 28 zeta \<\w*\closed\w*\>
|
D | html4_symbols.qbk | 26 [template Zeta[]'''Ζ'''] [/ ? Greek capital letter zeta] 50 [template zeta[]'''ζ'''] [/ ? Greek small letter zeta]
|
/third_party/boost/doc/test/ |
D | test_HTML4_symbols.qbk | 41 [zeta],
|
D | HTML4_symbols.qbk | 24 [template Zeta[]'''Ζ'''] [/ ? Greek capital letter zeta] 48 [template zeta[]'''ζ'''] [/ ? Greek small letter zeta]
|
/third_party/boost/libs/sort/doc/ |
D | html4_symbols.qbk | 25 [template Zeta[]'''Ζ'''] [/ ? Greek capital letter zeta] 49 [template zeta[]'''ζ'''] [/ ? Greek small letter zeta]
|
/third_party/boost/libs/multiprecision/doc/ |
D | html4_symbols.qbk | 26 [template Zeta[]'''Ζ'''] [/ ? Greek capital letter zeta] 50 [template zeta[]'''ζ'''] [/ ? Greek small letter zeta]
|