Home
last modified time | relevance | path

Searched refs:zeta (Results 1 – 25 of 79) sorted by relevance

1234

/third_party/boost/libs/math/test/
Dtest_zeta.hpp42 pg funcp = boost::math::zeta<value_type>; in do_test_zeta()
44 pg funcp = boost::math::zeta; in do_test_zeta()
97 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(0.125)), static_cast<T>(-0.632775623498695255… in test_spots()
98 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(1023) / static_cast<T>(1024)), static_cast<T>… in test_spots()
99 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(1025) / static_cast<T>(1024)), static_cast<T>… in test_spots()
100 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(0.5)), static_cast<T>(-1.46035450880958681288… in test_spots()
101 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(1.125)), static_cast<T>(8.5862412945105752999… in test_spots()
102 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(2)), static_cast<T>(1.64493406684822643647241… in test_spots()
103 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(3.5)), static_cast<T>(1.126733867317056646427… in test_spots()
104 …BOOST_CHECK_CLOSE(::boost::math::zeta(static_cast<T>(4)), static_cast<T>(1.08232323371113819151600… in test_spots()
[all …]
Dtest_zeta_hooks.hpp17 inline float zeta(float a) in zeta() function
19 inline double zeta(double a) in zeta() function
21 inline long double zeta(long double a) in zeta() function
37 inline float zeta(float a) in zeta() function
39 inline double zeta(double a) in zeta() function
41 inline long double zeta(long double a) in zeta() function
49 boost::math::concepts::real_concept zeta(boost::math::concepts::real_concept){ return 0; } in zeta() function
/third_party/boost/libs/math/doc/sf/
Dzeta.qbk1 [section:zeta Riemann Zeta Function]
6 #include <boost/math/special_functions/zeta.hpp>
12 ``__sf_result`` zeta(T z);
15 ``__sf_result`` zeta(T z, const ``__Policy``&);
27 ``__sf_result`` zeta(T z);
30 ``__sf_result`` zeta(T z, const ``__Policy``&);
32 Returns the [@http://mathworld.wolfram.com/RiemannZetaFunction.html zeta function]
101 [expression [zeta](z) = 1 + e[super R(z - n)]]
120 [endsect] [/section:zeta Riemann Zeta Function]
Dbessel_jy.qbk482 [expression j[sub [nu], m] [sim] [nu]x(-[zeta]) + f[sub 1](-[zeta]/[nu])]
484 where ['-[zeta] = [nu][super -2/3]a[sub m]] and ['a[sub m]] is
487 Here ['x = x(-[zeta])] is the inverse of the function
489 [expression [frac23](-[zeta])[super 3/2] = [radic](x[sup2] - 1) - cos[supminus][sup1](1/x)] (7)
493 [expression f[sub 1](-[zeta]) = [frac12]x(-[zeta]) {h(-[zeta])}[sup2] [sdot] b[sub 0](-[zeta])]
497 [expression h(-[zeta]) = {4(-[zeta]) / (x[sup2] - 1)}[super 4]]
501 [expression b[sub 0](-[zeta]) = -5/(48[zeta][sup2]) + 1/(-[zeta])[super [frac12]] [sdot] { 5/(24(x[…
503 When solving for ['x(-[zeta])] in Eq. 7 above,
507 [expression [frac23](-[zeta])[super 3/2] [approx] x + 1/2x - [pi]/2]
510 is used to find an initial estimate ['x(-[zeta])].
Dtest_html4_symbols.qbk40 [zeta],
Dpolygamma.qbk83 Note that the evaluation of zeta functions at integer values is essentially a table lookup
/third_party/boost/libs/math/test/compile_test/
Dsf_zeta_incl_test.cpp18 check_result<float>(boost::math::zeta(f)); in compile_and_link_test()
19 check_result<double>(boost::math::zeta(d)); in compile_and_link_test()
21 check_result<long double>(boost::math::zeta(l)); in compile_and_link_test()
/third_party/boost/boost/math/special_functions/
Dzeta.hpp1019 …static void do_init(const boost::integral_constant<int, 0>&){ boost::math::zeta(static_cast<T>(5),… in do_init()
1020 …static void do_init(const boost::integral_constant<int, 53>&){ boost::math::zeta(static_cast<T>(5)… in do_init()
1023 boost::math::zeta(static_cast<T>(0.5), Policy()); in do_init()
1024 boost::math::zeta(static_cast<T>(1.5), Policy()); in do_init()
1025 boost::math::zeta(static_cast<T>(3.5), Policy()); in do_init()
1026 boost::math::zeta(static_cast<T>(6.5), Policy()); in do_init()
1027 boost::math::zeta(static_cast<T>(14.5), Policy()); in do_init()
1028 boost::math::zeta(static_cast<T>(40.5), Policy()); in do_init()
1030 boost::math::zeta(static_cast<T>(5), Policy()); in do_init()
1034 boost::math::zeta(static_cast<T>(0.5), Policy()); in do_init()
[all …]
/third_party/boost/boost/math/special_functions/detail/
Dbessel_jy_zero.hpp60 equation_as_9_3_39_and_its_derivative(const T& zt) : zeta(zt) { } in equation_as_9_3_39_and_its_derivative()
74 - ( acos(T(1) / z) + ((T(2) / 3U) * (zeta * sqrt(zeta))))); in operator ()()
83 const T zeta; member in boost::math::detail::bessel_zero::equation_as_9_3_39_and_its_derivative
113 const T zeta = v_pow_minus_two_thirds * (-ai_bi_root); in equation_as_9_5_26() local
115 const T zeta_sqrt = sqrt(zeta); in equation_as_9_5_26()
119 const T b = -((((zeta * zeta_sqrt) * 2U) / 3U) + boost::math::constants::half_pi<T>()); in equation_as_9_5_26()
139 boost::math::detail::bessel_zero::equation_as_9_3_39_and_its_derivative<T>(zeta), in equation_as_9_5_26()
155 const T b0_term_5_48 = T(5) / ((zeta * zeta) * 48U); in equation_as_9_5_26()
Dpolygamma.hpp226 T term = factorial_part * boost::math::zeta(T(k + n + 1), pol); in polygamma_nearzero()
535 … return (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol); in polygamma_imp()
539 …T result = (n & 1 ? 1 : -1) * boost::math::factorial<T>(n, pol) * boost::math::zeta(T(n + 1), pol); in polygamma_imp()
/third_party/boost/libs/math/reporting/performance/
Dtest_zeta.cpp34 …screen_data([](const std::vector<double>& v){ return boost::math::zeta(v[0]); }, [](const std::v… in main()
47 …double time = exec_timed_test([](const std::vector<double>& v){ return boost::math::zeta(v[0]); … in main()
59 …double time = exec_timed_test([](const std::vector<double>& v){ return boost::math::zeta(v[0], bo… in main()
/third_party/boost/libs/math/tools/
Dzeta_data.cpp20 mp_t result = boost::math::zeta(z); in operator ()()
31 mp_t result = boost::math::zeta(-z); in operator ()()
/third_party/mesa3d/src/gallium/drivers/nouveau/nv30/
Dnv30_clear.c59 uint32_t colr = 0, zeta = 0, mode = 0; in nv30_clear() local
73 zeta = pack_zeta(fb->zsbuf->format, depth, stencil); in nv30_clear()
88 PUSH_DATA (push, zeta); in nv30_clear()
94 PUSH_DATA (push, zeta); in nv30_clear()
/third_party/boost/libs/math/src/tr1/
Driemann_zeta.cpp16 return c_policies::zeta BOOST_PREVENT_MACRO_SUBSTITUTION(x); in BOOST_PREVENT_MACRO_SUBSTITUTION()
Driemann_zetaf.cpp16 return c_policies::zeta BOOST_PREVENT_MACRO_SUBSTITUTION(x); in BOOST_PREVENT_MACRO_SUBSTITUTION()
Driemann_zetal.cpp16 return c_policies::zeta BOOST_PREVENT_MACRO_SUBSTITUTION(x); in BOOST_PREVENT_MACRO_SUBSTITUTION()
/third_party/boost/libs/math/minimax/
Df.cpp226 return boost::math::zeta(1 - x) * x - x; in f()
231 return boost::math::zeta(x) - 1 / (x - 1); in f()
236 return log(boost::math::zeta(x) - 1); in f()
/third_party/boost/libs/multiprecision/test/concepts/
Dsf_concept_check_basic.cpp119 boost::math::zeta(v1); in test_extra()
120 boost::math::zeta(i); in test_extra()
/third_party/boost/libs/numeric/odeint/doc/
Dodeint.qbk225 # &Zeta; Ζ &#918; U+0396 Greek capital letter zeta
249 # &zeta; ζ &#950; U+03B6 Greek small letter zeta ISOgrk3
/third_party/boost/libs/math/doc/
Dindex.idx28 zeta \<\w*\closed\w*\>
Dhtml4_symbols.qbk26 [template Zeta[]'''&#x396;'''] [/ ? Greek capital letter zeta]
50 [template zeta[]'''&#x3B6;'''] [/ ? Greek small letter zeta]
/third_party/boost/doc/test/
Dtest_HTML4_symbols.qbk41 [zeta],
DHTML4_symbols.qbk24 [template Zeta[]'''&#x396;'''] [/ ? Greek capital letter zeta]
48 [template zeta[]'''&#x3B6;'''] [/ ? Greek small letter zeta]
/third_party/boost/libs/sort/doc/
Dhtml4_symbols.qbk25 [template Zeta[]'''&#x396;'''] [/ ? Greek capital letter zeta]
49 [template zeta[]'''&#x3B6;'''] [/ ? Greek small letter zeta]
/third_party/boost/libs/multiprecision/doc/
Dhtml4_symbols.qbk26 [template Zeta[]'''&#x396;'''] [/ ? Greek capital letter zeta]
50 [template zeta[]'''&#x3B6;'''] [/ ? Greek small letter zeta]

1234