1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 18 /* Just an arbitrary number so we can be sure this happened */ 19 #define BACKREF_FOUND_SHARED 6 20 21 struct extent_inode_elem { 22 u64 inum; 23 u64 offset; 24 struct extent_inode_elem *next; 25 }; 26 check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)27 static int check_extent_in_eb(const struct btrfs_key *key, 28 const struct extent_buffer *eb, 29 const struct btrfs_file_extent_item *fi, 30 u64 extent_item_pos, 31 struct extent_inode_elem **eie, 32 bool ignore_offset) 33 { 34 u64 offset = 0; 35 struct extent_inode_elem *e; 36 37 if (!ignore_offset && 38 !btrfs_file_extent_compression(eb, fi) && 39 !btrfs_file_extent_encryption(eb, fi) && 40 !btrfs_file_extent_other_encoding(eb, fi)) { 41 u64 data_offset; 42 u64 data_len; 43 44 data_offset = btrfs_file_extent_offset(eb, fi); 45 data_len = btrfs_file_extent_num_bytes(eb, fi); 46 47 if (extent_item_pos < data_offset || 48 extent_item_pos >= data_offset + data_len) 49 return 1; 50 offset = extent_item_pos - data_offset; 51 } 52 53 e = kmalloc(sizeof(*e), GFP_NOFS); 54 if (!e) 55 return -ENOMEM; 56 57 e->next = *eie; 58 e->inum = key->objectid; 59 e->offset = key->offset + offset; 60 *eie = e; 61 62 return 0; 63 } 64 free_inode_elem_list(struct extent_inode_elem * eie)65 static void free_inode_elem_list(struct extent_inode_elem *eie) 66 { 67 struct extent_inode_elem *eie_next; 68 69 for (; eie; eie = eie_next) { 70 eie_next = eie->next; 71 kfree(eie); 72 } 73 } 74 find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)75 static int find_extent_in_eb(const struct extent_buffer *eb, 76 u64 wanted_disk_byte, u64 extent_item_pos, 77 struct extent_inode_elem **eie, 78 bool ignore_offset) 79 { 80 u64 disk_byte; 81 struct btrfs_key key; 82 struct btrfs_file_extent_item *fi; 83 int slot; 84 int nritems; 85 int extent_type; 86 int ret; 87 88 /* 89 * from the shared data ref, we only have the leaf but we need 90 * the key. thus, we must look into all items and see that we 91 * find one (some) with a reference to our extent item. 92 */ 93 nritems = btrfs_header_nritems(eb); 94 for (slot = 0; slot < nritems; ++slot) { 95 btrfs_item_key_to_cpu(eb, &key, slot); 96 if (key.type != BTRFS_EXTENT_DATA_KEY) 97 continue; 98 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 99 extent_type = btrfs_file_extent_type(eb, fi); 100 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 101 continue; 102 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 103 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 104 if (disk_byte != wanted_disk_byte) 105 continue; 106 107 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 108 if (ret < 0) 109 return ret; 110 } 111 112 return 0; 113 } 114 115 struct preftree { 116 struct rb_root_cached root; 117 unsigned int count; 118 }; 119 120 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 121 122 struct preftrees { 123 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 124 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 125 struct preftree indirect_missing_keys; 126 }; 127 128 /* 129 * Checks for a shared extent during backref search. 130 * 131 * The share_count tracks prelim_refs (direct and indirect) having a 132 * ref->count >0: 133 * - incremented when a ref->count transitions to >0 134 * - decremented when a ref->count transitions to <1 135 */ 136 struct share_check { 137 u64 root_objectid; 138 u64 inum; 139 int share_count; 140 }; 141 extent_is_shared(struct share_check * sc)142 static inline int extent_is_shared(struct share_check *sc) 143 { 144 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 145 } 146 147 static struct kmem_cache *btrfs_prelim_ref_cache; 148 btrfs_prelim_ref_init(void)149 int __init btrfs_prelim_ref_init(void) 150 { 151 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 152 sizeof(struct prelim_ref), 153 0, 154 SLAB_MEM_SPREAD, 155 NULL); 156 if (!btrfs_prelim_ref_cache) 157 return -ENOMEM; 158 return 0; 159 } 160 btrfs_prelim_ref_exit(void)161 void __cold btrfs_prelim_ref_exit(void) 162 { 163 kmem_cache_destroy(btrfs_prelim_ref_cache); 164 } 165 free_pref(struct prelim_ref * ref)166 static void free_pref(struct prelim_ref *ref) 167 { 168 kmem_cache_free(btrfs_prelim_ref_cache, ref); 169 } 170 171 /* 172 * Return 0 when both refs are for the same block (and can be merged). 173 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 174 * indicates a 'higher' block. 175 */ prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)176 static int prelim_ref_compare(struct prelim_ref *ref1, 177 struct prelim_ref *ref2) 178 { 179 if (ref1->level < ref2->level) 180 return -1; 181 if (ref1->level > ref2->level) 182 return 1; 183 if (ref1->root_id < ref2->root_id) 184 return -1; 185 if (ref1->root_id > ref2->root_id) 186 return 1; 187 if (ref1->key_for_search.type < ref2->key_for_search.type) 188 return -1; 189 if (ref1->key_for_search.type > ref2->key_for_search.type) 190 return 1; 191 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 192 return -1; 193 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 194 return 1; 195 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 196 return -1; 197 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 198 return 1; 199 if (ref1->parent < ref2->parent) 200 return -1; 201 if (ref1->parent > ref2->parent) 202 return 1; 203 204 return 0; 205 } 206 update_share_count(struct share_check * sc,int oldcount,int newcount)207 static void update_share_count(struct share_check *sc, int oldcount, 208 int newcount) 209 { 210 if ((!sc) || (oldcount == 0 && newcount < 1)) 211 return; 212 213 if (oldcount > 0 && newcount < 1) 214 sc->share_count--; 215 else if (oldcount < 1 && newcount > 0) 216 sc->share_count++; 217 } 218 219 /* 220 * Add @newref to the @root rbtree, merging identical refs. 221 * 222 * Callers should assume that newref has been freed after calling. 223 */ prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 225 struct preftree *preftree, 226 struct prelim_ref *newref, 227 struct share_check *sc) 228 { 229 struct rb_root_cached *root; 230 struct rb_node **p; 231 struct rb_node *parent = NULL; 232 struct prelim_ref *ref; 233 int result; 234 bool leftmost = true; 235 236 root = &preftree->root; 237 p = &root->rb_root.rb_node; 238 239 while (*p) { 240 parent = *p; 241 ref = rb_entry(parent, struct prelim_ref, rbnode); 242 result = prelim_ref_compare(ref, newref); 243 if (result < 0) { 244 p = &(*p)->rb_left; 245 } else if (result > 0) { 246 p = &(*p)->rb_right; 247 leftmost = false; 248 } else { 249 /* Identical refs, merge them and free @newref */ 250 struct extent_inode_elem *eie = ref->inode_list; 251 252 while (eie && eie->next) 253 eie = eie->next; 254 255 if (!eie) 256 ref->inode_list = newref->inode_list; 257 else 258 eie->next = newref->inode_list; 259 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 260 preftree->count); 261 /* 262 * A delayed ref can have newref->count < 0. 263 * The ref->count is updated to follow any 264 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 265 */ 266 update_share_count(sc, ref->count, 267 ref->count + newref->count); 268 ref->count += newref->count; 269 free_pref(newref); 270 return; 271 } 272 } 273 274 update_share_count(sc, 0, newref->count); 275 preftree->count++; 276 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 277 rb_link_node(&newref->rbnode, parent, p); 278 rb_insert_color_cached(&newref->rbnode, root, leftmost); 279 } 280 281 /* 282 * Release the entire tree. We don't care about internal consistency so 283 * just free everything and then reset the tree root. 284 */ prelim_release(struct preftree * preftree)285 static void prelim_release(struct preftree *preftree) 286 { 287 struct prelim_ref *ref, *next_ref; 288 289 rbtree_postorder_for_each_entry_safe(ref, next_ref, 290 &preftree->root.rb_root, rbnode) 291 free_pref(ref); 292 293 preftree->root = RB_ROOT_CACHED; 294 preftree->count = 0; 295 } 296 297 /* 298 * the rules for all callers of this function are: 299 * - obtaining the parent is the goal 300 * - if you add a key, you must know that it is a correct key 301 * - if you cannot add the parent or a correct key, then we will look into the 302 * block later to set a correct key 303 * 304 * delayed refs 305 * ============ 306 * backref type | shared | indirect | shared | indirect 307 * information | tree | tree | data | data 308 * --------------------+--------+----------+--------+---------- 309 * parent logical | y | - | - | - 310 * key to resolve | - | y | y | y 311 * tree block logical | - | - | - | - 312 * root for resolving | y | y | y | y 313 * 314 * - column 1: we've the parent -> done 315 * - column 2, 3, 4: we use the key to find the parent 316 * 317 * on disk refs (inline or keyed) 318 * ============================== 319 * backref type | shared | indirect | shared | indirect 320 * information | tree | tree | data | data 321 * --------------------+--------+----------+--------+---------- 322 * parent logical | y | - | y | - 323 * key to resolve | - | - | - | y 324 * tree block logical | y | y | y | y 325 * root for resolving | - | y | y | y 326 * 327 * - column 1, 3: we've the parent -> done 328 * - column 2: we take the first key from the block to find the parent 329 * (see add_missing_keys) 330 * - column 4: we use the key to find the parent 331 * 332 * additional information that's available but not required to find the parent 333 * block might help in merging entries to gain some speed. 334 */ add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)335 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 336 struct preftree *preftree, u64 root_id, 337 const struct btrfs_key *key, int level, u64 parent, 338 u64 wanted_disk_byte, int count, 339 struct share_check *sc, gfp_t gfp_mask) 340 { 341 struct prelim_ref *ref; 342 343 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 344 return 0; 345 346 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 347 if (!ref) 348 return -ENOMEM; 349 350 ref->root_id = root_id; 351 if (key) 352 ref->key_for_search = *key; 353 else 354 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 355 356 ref->inode_list = NULL; 357 ref->level = level; 358 ref->count = count; 359 ref->parent = parent; 360 ref->wanted_disk_byte = wanted_disk_byte; 361 prelim_ref_insert(fs_info, preftree, ref, sc); 362 return extent_is_shared(sc); 363 } 364 365 /* direct refs use root == 0, key == NULL */ add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)366 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 367 struct preftrees *preftrees, int level, u64 parent, 368 u64 wanted_disk_byte, int count, 369 struct share_check *sc, gfp_t gfp_mask) 370 { 371 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 372 parent, wanted_disk_byte, count, sc, gfp_mask); 373 } 374 375 /* indirect refs use parent == 0 */ add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)376 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 377 struct preftrees *preftrees, u64 root_id, 378 const struct btrfs_key *key, int level, 379 u64 wanted_disk_byte, int count, 380 struct share_check *sc, gfp_t gfp_mask) 381 { 382 struct preftree *tree = &preftrees->indirect; 383 384 if (!key) 385 tree = &preftrees->indirect_missing_keys; 386 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 387 wanted_disk_byte, count, sc, gfp_mask); 388 } 389 is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)390 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 391 { 392 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 393 struct rb_node *parent = NULL; 394 struct prelim_ref *ref = NULL; 395 struct prelim_ref target = {}; 396 int result; 397 398 target.parent = bytenr; 399 400 while (*p) { 401 parent = *p; 402 ref = rb_entry(parent, struct prelim_ref, rbnode); 403 result = prelim_ref_compare(ref, &target); 404 405 if (result < 0) 406 p = &(*p)->rb_left; 407 else if (result > 0) 408 p = &(*p)->rb_right; 409 else 410 return 1; 411 } 412 return 0; 413 } 414 add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,bool ignore_offset)415 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 416 struct ulist *parents, 417 struct preftrees *preftrees, struct prelim_ref *ref, 418 int level, u64 time_seq, const u64 *extent_item_pos, 419 bool ignore_offset) 420 { 421 int ret = 0; 422 int slot; 423 struct extent_buffer *eb; 424 struct btrfs_key key; 425 struct btrfs_key *key_for_search = &ref->key_for_search; 426 struct btrfs_file_extent_item *fi; 427 struct extent_inode_elem *eie = NULL, *old = NULL; 428 u64 disk_byte; 429 u64 wanted_disk_byte = ref->wanted_disk_byte; 430 u64 count = 0; 431 u64 data_offset; 432 433 if (level != 0) { 434 eb = path->nodes[level]; 435 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 436 if (ret < 0) 437 return ret; 438 return 0; 439 } 440 441 /* 442 * 1. We normally enter this function with the path already pointing to 443 * the first item to check. But sometimes, we may enter it with 444 * slot == nritems. 445 * 2. We are searching for normal backref but bytenr of this leaf 446 * matches shared data backref 447 * 3. The leaf owner is not equal to the root we are searching 448 * 449 * For these cases, go to the next leaf before we continue. 450 */ 451 eb = path->nodes[0]; 452 if (path->slots[0] >= btrfs_header_nritems(eb) || 453 is_shared_data_backref(preftrees, eb->start) || 454 ref->root_id != btrfs_header_owner(eb)) { 455 if (time_seq == SEQ_LAST) 456 ret = btrfs_next_leaf(root, path); 457 else 458 ret = btrfs_next_old_leaf(root, path, time_seq); 459 } 460 461 while (!ret && count < ref->count) { 462 eb = path->nodes[0]; 463 slot = path->slots[0]; 464 465 btrfs_item_key_to_cpu(eb, &key, slot); 466 467 if (key.objectid != key_for_search->objectid || 468 key.type != BTRFS_EXTENT_DATA_KEY) 469 break; 470 471 /* 472 * We are searching for normal backref but bytenr of this leaf 473 * matches shared data backref, OR 474 * the leaf owner is not equal to the root we are searching for 475 */ 476 if (slot == 0 && 477 (is_shared_data_backref(preftrees, eb->start) || 478 ref->root_id != btrfs_header_owner(eb))) { 479 if (time_seq == SEQ_LAST) 480 ret = btrfs_next_leaf(root, path); 481 else 482 ret = btrfs_next_old_leaf(root, path, time_seq); 483 continue; 484 } 485 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 486 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 487 data_offset = btrfs_file_extent_offset(eb, fi); 488 489 if (disk_byte == wanted_disk_byte) { 490 eie = NULL; 491 old = NULL; 492 if (ref->key_for_search.offset == key.offset - data_offset) 493 count++; 494 else 495 goto next; 496 if (extent_item_pos) { 497 ret = check_extent_in_eb(&key, eb, fi, 498 *extent_item_pos, 499 &eie, ignore_offset); 500 if (ret < 0) 501 break; 502 } 503 if (ret > 0) 504 goto next; 505 ret = ulist_add_merge_ptr(parents, eb->start, 506 eie, (void **)&old, GFP_NOFS); 507 if (ret < 0) 508 break; 509 if (!ret && extent_item_pos) { 510 while (old->next) 511 old = old->next; 512 old->next = eie; 513 } 514 eie = NULL; 515 } 516 next: 517 if (time_seq == SEQ_LAST) 518 ret = btrfs_next_item(root, path); 519 else 520 ret = btrfs_next_old_item(root, path, time_seq); 521 } 522 523 if (ret > 0) 524 ret = 0; 525 else if (ret < 0) 526 free_inode_elem_list(eie); 527 return ret; 528 } 529 530 /* 531 * resolve an indirect backref in the form (root_id, key, level) 532 * to a logical address 533 */ resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,bool ignore_offset)534 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 535 struct btrfs_path *path, u64 time_seq, 536 struct preftrees *preftrees, 537 struct prelim_ref *ref, struct ulist *parents, 538 const u64 *extent_item_pos, bool ignore_offset) 539 { 540 struct btrfs_root *root; 541 struct extent_buffer *eb; 542 int ret = 0; 543 int root_level; 544 int level = ref->level; 545 struct btrfs_key search_key = ref->key_for_search; 546 547 /* 548 * If we're search_commit_root we could possibly be holding locks on 549 * other tree nodes. This happens when qgroups does backref walks when 550 * adding new delayed refs. To deal with this we need to look in cache 551 * for the root, and if we don't find it then we need to search the 552 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 553 * here. 554 */ 555 if (path->search_commit_root) 556 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id); 557 else 558 root = btrfs_get_fs_root(fs_info, ref->root_id, false); 559 if (IS_ERR(root)) { 560 ret = PTR_ERR(root); 561 goto out_free; 562 } 563 564 if (!path->search_commit_root && 565 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 566 ret = -ENOENT; 567 goto out; 568 } 569 570 if (btrfs_is_testing(fs_info)) { 571 ret = -ENOENT; 572 goto out; 573 } 574 575 if (path->search_commit_root) 576 root_level = btrfs_header_level(root->commit_root); 577 else if (time_seq == SEQ_LAST) 578 root_level = btrfs_header_level(root->node); 579 else 580 root_level = btrfs_old_root_level(root, time_seq); 581 582 if (root_level + 1 == level) 583 goto out; 584 585 /* 586 * We can often find data backrefs with an offset that is too large 587 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 588 * subtracting a file's offset with the data offset of its 589 * corresponding extent data item. This can happen for example in the 590 * clone ioctl. 591 * 592 * So if we detect such case we set the search key's offset to zero to 593 * make sure we will find the matching file extent item at 594 * add_all_parents(), otherwise we will miss it because the offset 595 * taken form the backref is much larger then the offset of the file 596 * extent item. This can make us scan a very large number of file 597 * extent items, but at least it will not make us miss any. 598 * 599 * This is an ugly workaround for a behaviour that should have never 600 * existed, but it does and a fix for the clone ioctl would touch a lot 601 * of places, cause backwards incompatibility and would not fix the 602 * problem for extents cloned with older kernels. 603 */ 604 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 605 search_key.offset >= LLONG_MAX) 606 search_key.offset = 0; 607 path->lowest_level = level; 608 if (time_seq == SEQ_LAST) 609 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 610 else 611 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 612 613 btrfs_debug(fs_info, 614 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 615 ref->root_id, level, ref->count, ret, 616 ref->key_for_search.objectid, ref->key_for_search.type, 617 ref->key_for_search.offset); 618 if (ret < 0) 619 goto out; 620 621 eb = path->nodes[level]; 622 while (!eb) { 623 if (WARN_ON(!level)) { 624 ret = 1; 625 goto out; 626 } 627 level--; 628 eb = path->nodes[level]; 629 } 630 631 ret = add_all_parents(root, path, parents, preftrees, ref, level, 632 time_seq, extent_item_pos, ignore_offset); 633 out: 634 btrfs_put_root(root); 635 out_free: 636 path->lowest_level = 0; 637 btrfs_release_path(path); 638 return ret; 639 } 640 641 static struct extent_inode_elem * unode_aux_to_inode_list(struct ulist_node * node)642 unode_aux_to_inode_list(struct ulist_node *node) 643 { 644 if (!node) 645 return NULL; 646 return (struct extent_inode_elem *)(uintptr_t)node->aux; 647 } 648 649 /* 650 * We maintain three separate rbtrees: one for direct refs, one for 651 * indirect refs which have a key, and one for indirect refs which do not 652 * have a key. Each tree does merge on insertion. 653 * 654 * Once all of the references are located, we iterate over the tree of 655 * indirect refs with missing keys. An appropriate key is located and 656 * the ref is moved onto the tree for indirect refs. After all missing 657 * keys are thus located, we iterate over the indirect ref tree, resolve 658 * each reference, and then insert the resolved reference onto the 659 * direct tree (merging there too). 660 * 661 * New backrefs (i.e., for parent nodes) are added to the appropriate 662 * rbtree as they are encountered. The new backrefs are subsequently 663 * resolved as above. 664 */ resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)665 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 666 struct btrfs_path *path, u64 time_seq, 667 struct preftrees *preftrees, 668 const u64 *extent_item_pos, 669 struct share_check *sc, bool ignore_offset) 670 { 671 int err; 672 int ret = 0; 673 struct ulist *parents; 674 struct ulist_node *node; 675 struct ulist_iterator uiter; 676 struct rb_node *rnode; 677 678 parents = ulist_alloc(GFP_NOFS); 679 if (!parents) 680 return -ENOMEM; 681 682 /* 683 * We could trade memory usage for performance here by iterating 684 * the tree, allocating new refs for each insertion, and then 685 * freeing the entire indirect tree when we're done. In some test 686 * cases, the tree can grow quite large (~200k objects). 687 */ 688 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 689 struct prelim_ref *ref; 690 691 ref = rb_entry(rnode, struct prelim_ref, rbnode); 692 if (WARN(ref->parent, 693 "BUG: direct ref found in indirect tree")) { 694 ret = -EINVAL; 695 goto out; 696 } 697 698 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 699 preftrees->indirect.count--; 700 701 if (ref->count == 0) { 702 free_pref(ref); 703 continue; 704 } 705 706 if (sc && sc->root_objectid && 707 ref->root_id != sc->root_objectid) { 708 free_pref(ref); 709 ret = BACKREF_FOUND_SHARED; 710 goto out; 711 } 712 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 713 ref, parents, extent_item_pos, 714 ignore_offset); 715 /* 716 * we can only tolerate ENOENT,otherwise,we should catch error 717 * and return directly. 718 */ 719 if (err == -ENOENT) { 720 prelim_ref_insert(fs_info, &preftrees->direct, ref, 721 NULL); 722 continue; 723 } else if (err) { 724 free_pref(ref); 725 ret = err; 726 goto out; 727 } 728 729 /* we put the first parent into the ref at hand */ 730 ULIST_ITER_INIT(&uiter); 731 node = ulist_next(parents, &uiter); 732 ref->parent = node ? node->val : 0; 733 ref->inode_list = unode_aux_to_inode_list(node); 734 735 /* Add a prelim_ref(s) for any other parent(s). */ 736 while ((node = ulist_next(parents, &uiter))) { 737 struct prelim_ref *new_ref; 738 739 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 740 GFP_NOFS); 741 if (!new_ref) { 742 free_pref(ref); 743 ret = -ENOMEM; 744 goto out; 745 } 746 memcpy(new_ref, ref, sizeof(*ref)); 747 new_ref->parent = node->val; 748 new_ref->inode_list = unode_aux_to_inode_list(node); 749 prelim_ref_insert(fs_info, &preftrees->direct, 750 new_ref, NULL); 751 } 752 753 /* 754 * Now it's a direct ref, put it in the direct tree. We must 755 * do this last because the ref could be merged/freed here. 756 */ 757 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 758 759 ulist_reinit(parents); 760 cond_resched(); 761 } 762 out: 763 ulist_free(parents); 764 return ret; 765 } 766 767 /* 768 * read tree blocks and add keys where required. 769 */ add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)770 static int add_missing_keys(struct btrfs_fs_info *fs_info, 771 struct preftrees *preftrees, bool lock) 772 { 773 struct prelim_ref *ref; 774 struct extent_buffer *eb; 775 struct preftree *tree = &preftrees->indirect_missing_keys; 776 struct rb_node *node; 777 778 while ((node = rb_first_cached(&tree->root))) { 779 ref = rb_entry(node, struct prelim_ref, rbnode); 780 rb_erase_cached(node, &tree->root); 781 782 BUG_ON(ref->parent); /* should not be a direct ref */ 783 BUG_ON(ref->key_for_search.type); 784 BUG_ON(!ref->wanted_disk_byte); 785 786 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, 787 ref->level - 1, NULL); 788 if (IS_ERR(eb)) { 789 free_pref(ref); 790 return PTR_ERR(eb); 791 } else if (!extent_buffer_uptodate(eb)) { 792 free_pref(ref); 793 free_extent_buffer(eb); 794 return -EIO; 795 } 796 if (lock) 797 btrfs_tree_read_lock(eb); 798 if (btrfs_header_level(eb) == 0) 799 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 800 else 801 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 802 if (lock) 803 btrfs_tree_read_unlock(eb); 804 free_extent_buffer(eb); 805 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 806 cond_resched(); 807 } 808 return 0; 809 } 810 811 /* 812 * add all currently queued delayed refs from this head whose seq nr is 813 * smaller or equal that seq to the list 814 */ add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)815 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 816 struct btrfs_delayed_ref_head *head, u64 seq, 817 struct preftrees *preftrees, struct share_check *sc) 818 { 819 struct btrfs_delayed_ref_node *node; 820 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 821 struct btrfs_key key; 822 struct btrfs_key tmp_op_key; 823 struct rb_node *n; 824 int count; 825 int ret = 0; 826 827 if (extent_op && extent_op->update_key) 828 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 829 830 spin_lock(&head->lock); 831 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 832 node = rb_entry(n, struct btrfs_delayed_ref_node, 833 ref_node); 834 if (node->seq > seq) 835 continue; 836 837 switch (node->action) { 838 case BTRFS_ADD_DELAYED_EXTENT: 839 case BTRFS_UPDATE_DELAYED_HEAD: 840 WARN_ON(1); 841 continue; 842 case BTRFS_ADD_DELAYED_REF: 843 count = node->ref_mod; 844 break; 845 case BTRFS_DROP_DELAYED_REF: 846 count = node->ref_mod * -1; 847 break; 848 default: 849 BUG(); 850 } 851 switch (node->type) { 852 case BTRFS_TREE_BLOCK_REF_KEY: { 853 /* NORMAL INDIRECT METADATA backref */ 854 struct btrfs_delayed_tree_ref *ref; 855 856 ref = btrfs_delayed_node_to_tree_ref(node); 857 ret = add_indirect_ref(fs_info, preftrees, ref->root, 858 &tmp_op_key, ref->level + 1, 859 node->bytenr, count, sc, 860 GFP_ATOMIC); 861 break; 862 } 863 case BTRFS_SHARED_BLOCK_REF_KEY: { 864 /* SHARED DIRECT METADATA backref */ 865 struct btrfs_delayed_tree_ref *ref; 866 867 ref = btrfs_delayed_node_to_tree_ref(node); 868 869 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 870 ref->parent, node->bytenr, count, 871 sc, GFP_ATOMIC); 872 break; 873 } 874 case BTRFS_EXTENT_DATA_REF_KEY: { 875 /* NORMAL INDIRECT DATA backref */ 876 struct btrfs_delayed_data_ref *ref; 877 ref = btrfs_delayed_node_to_data_ref(node); 878 879 key.objectid = ref->objectid; 880 key.type = BTRFS_EXTENT_DATA_KEY; 881 key.offset = ref->offset; 882 883 /* 884 * Found a inum that doesn't match our known inum, we 885 * know it's shared. 886 */ 887 if (sc && sc->inum && ref->objectid != sc->inum) { 888 ret = BACKREF_FOUND_SHARED; 889 goto out; 890 } 891 892 ret = add_indirect_ref(fs_info, preftrees, ref->root, 893 &key, 0, node->bytenr, count, sc, 894 GFP_ATOMIC); 895 break; 896 } 897 case BTRFS_SHARED_DATA_REF_KEY: { 898 /* SHARED DIRECT FULL backref */ 899 struct btrfs_delayed_data_ref *ref; 900 901 ref = btrfs_delayed_node_to_data_ref(node); 902 903 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 904 node->bytenr, count, sc, 905 GFP_ATOMIC); 906 break; 907 } 908 default: 909 WARN_ON(1); 910 } 911 /* 912 * We must ignore BACKREF_FOUND_SHARED until all delayed 913 * refs have been checked. 914 */ 915 if (ret && (ret != BACKREF_FOUND_SHARED)) 916 break; 917 } 918 if (!ret) 919 ret = extent_is_shared(sc); 920 out: 921 spin_unlock(&head->lock); 922 return ret; 923 } 924 925 /* 926 * add all inline backrefs for bytenr to the list 927 * 928 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 929 */ add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,struct share_check * sc)930 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 931 struct btrfs_path *path, u64 bytenr, 932 int *info_level, struct preftrees *preftrees, 933 struct share_check *sc) 934 { 935 int ret = 0; 936 int slot; 937 struct extent_buffer *leaf; 938 struct btrfs_key key; 939 struct btrfs_key found_key; 940 unsigned long ptr; 941 unsigned long end; 942 struct btrfs_extent_item *ei; 943 u64 flags; 944 u64 item_size; 945 946 /* 947 * enumerate all inline refs 948 */ 949 leaf = path->nodes[0]; 950 slot = path->slots[0]; 951 952 item_size = btrfs_item_size_nr(leaf, slot); 953 BUG_ON(item_size < sizeof(*ei)); 954 955 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 956 flags = btrfs_extent_flags(leaf, ei); 957 btrfs_item_key_to_cpu(leaf, &found_key, slot); 958 959 ptr = (unsigned long)(ei + 1); 960 end = (unsigned long)ei + item_size; 961 962 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 963 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 964 struct btrfs_tree_block_info *info; 965 966 info = (struct btrfs_tree_block_info *)ptr; 967 *info_level = btrfs_tree_block_level(leaf, info); 968 ptr += sizeof(struct btrfs_tree_block_info); 969 BUG_ON(ptr > end); 970 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 971 *info_level = found_key.offset; 972 } else { 973 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 974 } 975 976 while (ptr < end) { 977 struct btrfs_extent_inline_ref *iref; 978 u64 offset; 979 int type; 980 981 iref = (struct btrfs_extent_inline_ref *)ptr; 982 type = btrfs_get_extent_inline_ref_type(leaf, iref, 983 BTRFS_REF_TYPE_ANY); 984 if (type == BTRFS_REF_TYPE_INVALID) 985 return -EUCLEAN; 986 987 offset = btrfs_extent_inline_ref_offset(leaf, iref); 988 989 switch (type) { 990 case BTRFS_SHARED_BLOCK_REF_KEY: 991 ret = add_direct_ref(fs_info, preftrees, 992 *info_level + 1, offset, 993 bytenr, 1, NULL, GFP_NOFS); 994 break; 995 case BTRFS_SHARED_DATA_REF_KEY: { 996 struct btrfs_shared_data_ref *sdref; 997 int count; 998 999 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1000 count = btrfs_shared_data_ref_count(leaf, sdref); 1001 1002 ret = add_direct_ref(fs_info, preftrees, 0, offset, 1003 bytenr, count, sc, GFP_NOFS); 1004 break; 1005 } 1006 case BTRFS_TREE_BLOCK_REF_KEY: 1007 ret = add_indirect_ref(fs_info, preftrees, offset, 1008 NULL, *info_level + 1, 1009 bytenr, 1, NULL, GFP_NOFS); 1010 break; 1011 case BTRFS_EXTENT_DATA_REF_KEY: { 1012 struct btrfs_extent_data_ref *dref; 1013 int count; 1014 u64 root; 1015 1016 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1017 count = btrfs_extent_data_ref_count(leaf, dref); 1018 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1019 dref); 1020 key.type = BTRFS_EXTENT_DATA_KEY; 1021 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1022 1023 if (sc && sc->inum && key.objectid != sc->inum) { 1024 ret = BACKREF_FOUND_SHARED; 1025 break; 1026 } 1027 1028 root = btrfs_extent_data_ref_root(leaf, dref); 1029 1030 ret = add_indirect_ref(fs_info, preftrees, root, 1031 &key, 0, bytenr, count, 1032 sc, GFP_NOFS); 1033 break; 1034 } 1035 default: 1036 WARN_ON(1); 1037 } 1038 if (ret) 1039 return ret; 1040 ptr += btrfs_extent_inline_ref_size(type); 1041 } 1042 1043 return 0; 1044 } 1045 1046 /* 1047 * add all non-inline backrefs for bytenr to the list 1048 * 1049 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1050 */ add_keyed_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1051 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1052 struct btrfs_path *path, u64 bytenr, 1053 int info_level, struct preftrees *preftrees, 1054 struct share_check *sc) 1055 { 1056 struct btrfs_root *extent_root = fs_info->extent_root; 1057 int ret; 1058 int slot; 1059 struct extent_buffer *leaf; 1060 struct btrfs_key key; 1061 1062 while (1) { 1063 ret = btrfs_next_item(extent_root, path); 1064 if (ret < 0) 1065 break; 1066 if (ret) { 1067 ret = 0; 1068 break; 1069 } 1070 1071 slot = path->slots[0]; 1072 leaf = path->nodes[0]; 1073 btrfs_item_key_to_cpu(leaf, &key, slot); 1074 1075 if (key.objectid != bytenr) 1076 break; 1077 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1078 continue; 1079 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1080 break; 1081 1082 switch (key.type) { 1083 case BTRFS_SHARED_BLOCK_REF_KEY: 1084 /* SHARED DIRECT METADATA backref */ 1085 ret = add_direct_ref(fs_info, preftrees, 1086 info_level + 1, key.offset, 1087 bytenr, 1, NULL, GFP_NOFS); 1088 break; 1089 case BTRFS_SHARED_DATA_REF_KEY: { 1090 /* SHARED DIRECT FULL backref */ 1091 struct btrfs_shared_data_ref *sdref; 1092 int count; 1093 1094 sdref = btrfs_item_ptr(leaf, slot, 1095 struct btrfs_shared_data_ref); 1096 count = btrfs_shared_data_ref_count(leaf, sdref); 1097 ret = add_direct_ref(fs_info, preftrees, 0, 1098 key.offset, bytenr, count, 1099 sc, GFP_NOFS); 1100 break; 1101 } 1102 case BTRFS_TREE_BLOCK_REF_KEY: 1103 /* NORMAL INDIRECT METADATA backref */ 1104 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1105 NULL, info_level + 1, bytenr, 1106 1, NULL, GFP_NOFS); 1107 break; 1108 case BTRFS_EXTENT_DATA_REF_KEY: { 1109 /* NORMAL INDIRECT DATA backref */ 1110 struct btrfs_extent_data_ref *dref; 1111 int count; 1112 u64 root; 1113 1114 dref = btrfs_item_ptr(leaf, slot, 1115 struct btrfs_extent_data_ref); 1116 count = btrfs_extent_data_ref_count(leaf, dref); 1117 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1118 dref); 1119 key.type = BTRFS_EXTENT_DATA_KEY; 1120 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1121 1122 if (sc && sc->inum && key.objectid != sc->inum) { 1123 ret = BACKREF_FOUND_SHARED; 1124 break; 1125 } 1126 1127 root = btrfs_extent_data_ref_root(leaf, dref); 1128 ret = add_indirect_ref(fs_info, preftrees, root, 1129 &key, 0, bytenr, count, 1130 sc, GFP_NOFS); 1131 break; 1132 } 1133 default: 1134 WARN_ON(1); 1135 } 1136 if (ret) 1137 return ret; 1138 1139 } 1140 1141 return ret; 1142 } 1143 1144 /* 1145 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1146 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1147 * indirect refs to their parent bytenr. 1148 * When roots are found, they're added to the roots list 1149 * 1150 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1151 * much like trans == NULL case, the difference only lies in it will not 1152 * commit root. 1153 * The special case is for qgroup to search roots in commit_transaction(). 1154 * 1155 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1156 * shared extent is detected. 1157 * 1158 * Otherwise this returns 0 for success and <0 for an error. 1159 * 1160 * If ignore_offset is set to false, only extent refs whose offsets match 1161 * extent_item_pos are returned. If true, every extent ref is returned 1162 * and extent_item_pos is ignored. 1163 * 1164 * FIXME some caching might speed things up 1165 */ find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1166 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1167 struct btrfs_fs_info *fs_info, u64 bytenr, 1168 u64 time_seq, struct ulist *refs, 1169 struct ulist *roots, const u64 *extent_item_pos, 1170 struct share_check *sc, bool ignore_offset) 1171 { 1172 struct btrfs_key key; 1173 struct btrfs_path *path; 1174 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1175 struct btrfs_delayed_ref_head *head; 1176 int info_level = 0; 1177 int ret; 1178 struct prelim_ref *ref; 1179 struct rb_node *node; 1180 struct extent_inode_elem *eie = NULL; 1181 struct preftrees preftrees = { 1182 .direct = PREFTREE_INIT, 1183 .indirect = PREFTREE_INIT, 1184 .indirect_missing_keys = PREFTREE_INIT 1185 }; 1186 1187 key.objectid = bytenr; 1188 key.offset = (u64)-1; 1189 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1190 key.type = BTRFS_METADATA_ITEM_KEY; 1191 else 1192 key.type = BTRFS_EXTENT_ITEM_KEY; 1193 1194 path = btrfs_alloc_path(); 1195 if (!path) 1196 return -ENOMEM; 1197 if (!trans) { 1198 path->search_commit_root = 1; 1199 path->skip_locking = 1; 1200 } 1201 1202 if (time_seq == SEQ_LAST) 1203 path->skip_locking = 1; 1204 1205 /* 1206 * grab both a lock on the path and a lock on the delayed ref head. 1207 * We need both to get a consistent picture of how the refs look 1208 * at a specified point in time 1209 */ 1210 again: 1211 head = NULL; 1212 1213 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1214 if (ret < 0) 1215 goto out; 1216 if (ret == 0) { 1217 /* This shouldn't happen, indicates a bug or fs corruption. */ 1218 ASSERT(ret != 0); 1219 ret = -EUCLEAN; 1220 goto out; 1221 } 1222 1223 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1224 if (trans && likely(trans->type != __TRANS_DUMMY) && 1225 time_seq != SEQ_LAST) { 1226 #else 1227 if (trans && time_seq != SEQ_LAST) { 1228 #endif 1229 /* 1230 * look if there are updates for this ref queued and lock the 1231 * head 1232 */ 1233 delayed_refs = &trans->transaction->delayed_refs; 1234 spin_lock(&delayed_refs->lock); 1235 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1236 if (head) { 1237 if (!mutex_trylock(&head->mutex)) { 1238 refcount_inc(&head->refs); 1239 spin_unlock(&delayed_refs->lock); 1240 1241 btrfs_release_path(path); 1242 1243 /* 1244 * Mutex was contended, block until it's 1245 * released and try again 1246 */ 1247 mutex_lock(&head->mutex); 1248 mutex_unlock(&head->mutex); 1249 btrfs_put_delayed_ref_head(head); 1250 goto again; 1251 } 1252 spin_unlock(&delayed_refs->lock); 1253 ret = add_delayed_refs(fs_info, head, time_seq, 1254 &preftrees, sc); 1255 mutex_unlock(&head->mutex); 1256 if (ret) 1257 goto out; 1258 } else { 1259 spin_unlock(&delayed_refs->lock); 1260 } 1261 } 1262 1263 if (path->slots[0]) { 1264 struct extent_buffer *leaf; 1265 int slot; 1266 1267 path->slots[0]--; 1268 leaf = path->nodes[0]; 1269 slot = path->slots[0]; 1270 btrfs_item_key_to_cpu(leaf, &key, slot); 1271 if (key.objectid == bytenr && 1272 (key.type == BTRFS_EXTENT_ITEM_KEY || 1273 key.type == BTRFS_METADATA_ITEM_KEY)) { 1274 ret = add_inline_refs(fs_info, path, bytenr, 1275 &info_level, &preftrees, sc); 1276 if (ret) 1277 goto out; 1278 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1279 &preftrees, sc); 1280 if (ret) 1281 goto out; 1282 } 1283 } 1284 1285 btrfs_release_path(path); 1286 1287 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1288 if (ret) 1289 goto out; 1290 1291 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1292 1293 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1294 extent_item_pos, sc, ignore_offset); 1295 if (ret) 1296 goto out; 1297 1298 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1299 1300 /* 1301 * This walks the tree of merged and resolved refs. Tree blocks are 1302 * read in as needed. Unique entries are added to the ulist, and 1303 * the list of found roots is updated. 1304 * 1305 * We release the entire tree in one go before returning. 1306 */ 1307 node = rb_first_cached(&preftrees.direct.root); 1308 while (node) { 1309 ref = rb_entry(node, struct prelim_ref, rbnode); 1310 node = rb_next(&ref->rbnode); 1311 /* 1312 * ref->count < 0 can happen here if there are delayed 1313 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1314 * prelim_ref_insert() relies on this when merging 1315 * identical refs to keep the overall count correct. 1316 * prelim_ref_insert() will merge only those refs 1317 * which compare identically. Any refs having 1318 * e.g. different offsets would not be merged, 1319 * and would retain their original ref->count < 0. 1320 */ 1321 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1322 if (sc && sc->root_objectid && 1323 ref->root_id != sc->root_objectid) { 1324 ret = BACKREF_FOUND_SHARED; 1325 goto out; 1326 } 1327 1328 /* no parent == root of tree */ 1329 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1330 if (ret < 0) 1331 goto out; 1332 } 1333 if (ref->count && ref->parent) { 1334 if (extent_item_pos && !ref->inode_list && 1335 ref->level == 0) { 1336 struct extent_buffer *eb; 1337 1338 eb = read_tree_block(fs_info, ref->parent, 0, 1339 ref->level, NULL); 1340 if (IS_ERR(eb)) { 1341 ret = PTR_ERR(eb); 1342 goto out; 1343 } else if (!extent_buffer_uptodate(eb)) { 1344 free_extent_buffer(eb); 1345 ret = -EIO; 1346 goto out; 1347 } 1348 1349 if (!path->skip_locking) { 1350 btrfs_tree_read_lock(eb); 1351 btrfs_set_lock_blocking_read(eb); 1352 } 1353 ret = find_extent_in_eb(eb, bytenr, 1354 *extent_item_pos, &eie, ignore_offset); 1355 if (!path->skip_locking) 1356 btrfs_tree_read_unlock_blocking(eb); 1357 free_extent_buffer(eb); 1358 if (ret < 0) 1359 goto out; 1360 ref->inode_list = eie; 1361 } 1362 ret = ulist_add_merge_ptr(refs, ref->parent, 1363 ref->inode_list, 1364 (void **)&eie, GFP_NOFS); 1365 if (ret < 0) 1366 goto out; 1367 if (!ret && extent_item_pos) { 1368 /* 1369 * We've recorded that parent, so we must extend 1370 * its inode list here. 1371 * 1372 * However if there was corruption we may not 1373 * have found an eie, return an error in this 1374 * case. 1375 */ 1376 ASSERT(eie); 1377 if (!eie) { 1378 ret = -EUCLEAN; 1379 goto out; 1380 } 1381 while (eie->next) 1382 eie = eie->next; 1383 eie->next = ref->inode_list; 1384 } 1385 eie = NULL; 1386 } 1387 cond_resched(); 1388 } 1389 1390 out: 1391 btrfs_free_path(path); 1392 1393 prelim_release(&preftrees.direct); 1394 prelim_release(&preftrees.indirect); 1395 prelim_release(&preftrees.indirect_missing_keys); 1396 1397 if (ret < 0) 1398 free_inode_elem_list(eie); 1399 return ret; 1400 } 1401 1402 static void free_leaf_list(struct ulist *blocks) 1403 { 1404 struct ulist_node *node = NULL; 1405 struct extent_inode_elem *eie; 1406 struct ulist_iterator uiter; 1407 1408 ULIST_ITER_INIT(&uiter); 1409 while ((node = ulist_next(blocks, &uiter))) { 1410 if (!node->aux) 1411 continue; 1412 eie = unode_aux_to_inode_list(node); 1413 free_inode_elem_list(eie); 1414 node->aux = 0; 1415 } 1416 1417 ulist_free(blocks); 1418 } 1419 1420 /* 1421 * Finds all leafs with a reference to the specified combination of bytenr and 1422 * offset. key_list_head will point to a list of corresponding keys (caller must 1423 * free each list element). The leafs will be stored in the leafs ulist, which 1424 * must be freed with ulist_free. 1425 * 1426 * returns 0 on success, <0 on error 1427 */ 1428 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1429 struct btrfs_fs_info *fs_info, u64 bytenr, 1430 u64 time_seq, struct ulist **leafs, 1431 const u64 *extent_item_pos, bool ignore_offset) 1432 { 1433 int ret; 1434 1435 *leafs = ulist_alloc(GFP_NOFS); 1436 if (!*leafs) 1437 return -ENOMEM; 1438 1439 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1440 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1441 if (ret < 0 && ret != -ENOENT) { 1442 free_leaf_list(*leafs); 1443 return ret; 1444 } 1445 1446 return 0; 1447 } 1448 1449 /* 1450 * walk all backrefs for a given extent to find all roots that reference this 1451 * extent. Walking a backref means finding all extents that reference this 1452 * extent and in turn walk the backrefs of those, too. Naturally this is a 1453 * recursive process, but here it is implemented in an iterative fashion: We 1454 * find all referencing extents for the extent in question and put them on a 1455 * list. In turn, we find all referencing extents for those, further appending 1456 * to the list. The way we iterate the list allows adding more elements after 1457 * the current while iterating. The process stops when we reach the end of the 1458 * list. Found roots are added to the roots list. 1459 * 1460 * returns 0 on success, < 0 on error. 1461 */ 1462 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1463 struct btrfs_fs_info *fs_info, u64 bytenr, 1464 u64 time_seq, struct ulist **roots, 1465 bool ignore_offset) 1466 { 1467 struct ulist *tmp; 1468 struct ulist_node *node = NULL; 1469 struct ulist_iterator uiter; 1470 int ret; 1471 1472 tmp = ulist_alloc(GFP_NOFS); 1473 if (!tmp) 1474 return -ENOMEM; 1475 *roots = ulist_alloc(GFP_NOFS); 1476 if (!*roots) { 1477 ulist_free(tmp); 1478 return -ENOMEM; 1479 } 1480 1481 ULIST_ITER_INIT(&uiter); 1482 while (1) { 1483 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1484 tmp, *roots, NULL, NULL, ignore_offset); 1485 if (ret < 0 && ret != -ENOENT) { 1486 ulist_free(tmp); 1487 ulist_free(*roots); 1488 *roots = NULL; 1489 return ret; 1490 } 1491 node = ulist_next(tmp, &uiter); 1492 if (!node) 1493 break; 1494 bytenr = node->val; 1495 cond_resched(); 1496 } 1497 1498 ulist_free(tmp); 1499 return 0; 1500 } 1501 1502 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1503 struct btrfs_fs_info *fs_info, u64 bytenr, 1504 u64 time_seq, struct ulist **roots, 1505 bool ignore_offset) 1506 { 1507 int ret; 1508 1509 if (!trans) 1510 down_read(&fs_info->commit_root_sem); 1511 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1512 time_seq, roots, ignore_offset); 1513 if (!trans) 1514 up_read(&fs_info->commit_root_sem); 1515 return ret; 1516 } 1517 1518 /** 1519 * btrfs_check_shared - tell us whether an extent is shared 1520 * 1521 * btrfs_check_shared uses the backref walking code but will short 1522 * circuit as soon as it finds a root or inode that doesn't match the 1523 * one passed in. This provides a significant performance benefit for 1524 * callers (such as fiemap) which want to know whether the extent is 1525 * shared but do not need a ref count. 1526 * 1527 * This attempts to attach to the running transaction in order to account for 1528 * delayed refs, but continues on even when no running transaction exists. 1529 * 1530 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1531 */ 1532 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1533 struct ulist *roots, struct ulist *tmp) 1534 { 1535 struct btrfs_fs_info *fs_info = root->fs_info; 1536 struct btrfs_trans_handle *trans; 1537 struct ulist_iterator uiter; 1538 struct ulist_node *node; 1539 struct seq_list elem = SEQ_LIST_INIT(elem); 1540 int ret = 0; 1541 struct share_check shared = { 1542 .root_objectid = root->root_key.objectid, 1543 .inum = inum, 1544 .share_count = 0, 1545 }; 1546 1547 ulist_init(roots); 1548 ulist_init(tmp); 1549 1550 trans = btrfs_join_transaction_nostart(root); 1551 if (IS_ERR(trans)) { 1552 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1553 ret = PTR_ERR(trans); 1554 goto out; 1555 } 1556 trans = NULL; 1557 down_read(&fs_info->commit_root_sem); 1558 } else { 1559 btrfs_get_tree_mod_seq(fs_info, &elem); 1560 } 1561 1562 ULIST_ITER_INIT(&uiter); 1563 while (1) { 1564 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1565 roots, NULL, &shared, false); 1566 if (ret == BACKREF_FOUND_SHARED) { 1567 /* this is the only condition under which we return 1 */ 1568 ret = 1; 1569 break; 1570 } 1571 if (ret < 0 && ret != -ENOENT) 1572 break; 1573 ret = 0; 1574 node = ulist_next(tmp, &uiter); 1575 if (!node) 1576 break; 1577 bytenr = node->val; 1578 shared.share_count = 0; 1579 cond_resched(); 1580 } 1581 1582 if (trans) { 1583 btrfs_put_tree_mod_seq(fs_info, &elem); 1584 btrfs_end_transaction(trans); 1585 } else { 1586 up_read(&fs_info->commit_root_sem); 1587 } 1588 out: 1589 ulist_release(roots); 1590 ulist_release(tmp); 1591 return ret; 1592 } 1593 1594 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1595 u64 start_off, struct btrfs_path *path, 1596 struct btrfs_inode_extref **ret_extref, 1597 u64 *found_off) 1598 { 1599 int ret, slot; 1600 struct btrfs_key key; 1601 struct btrfs_key found_key; 1602 struct btrfs_inode_extref *extref; 1603 const struct extent_buffer *leaf; 1604 unsigned long ptr; 1605 1606 key.objectid = inode_objectid; 1607 key.type = BTRFS_INODE_EXTREF_KEY; 1608 key.offset = start_off; 1609 1610 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1611 if (ret < 0) 1612 return ret; 1613 1614 while (1) { 1615 leaf = path->nodes[0]; 1616 slot = path->slots[0]; 1617 if (slot >= btrfs_header_nritems(leaf)) { 1618 /* 1619 * If the item at offset is not found, 1620 * btrfs_search_slot will point us to the slot 1621 * where it should be inserted. In our case 1622 * that will be the slot directly before the 1623 * next INODE_REF_KEY_V2 item. In the case 1624 * that we're pointing to the last slot in a 1625 * leaf, we must move one leaf over. 1626 */ 1627 ret = btrfs_next_leaf(root, path); 1628 if (ret) { 1629 if (ret >= 1) 1630 ret = -ENOENT; 1631 break; 1632 } 1633 continue; 1634 } 1635 1636 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1637 1638 /* 1639 * Check that we're still looking at an extended ref key for 1640 * this particular objectid. If we have different 1641 * objectid or type then there are no more to be found 1642 * in the tree and we can exit. 1643 */ 1644 ret = -ENOENT; 1645 if (found_key.objectid != inode_objectid) 1646 break; 1647 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1648 break; 1649 1650 ret = 0; 1651 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1652 extref = (struct btrfs_inode_extref *)ptr; 1653 *ret_extref = extref; 1654 if (found_off) 1655 *found_off = found_key.offset; 1656 break; 1657 } 1658 1659 return ret; 1660 } 1661 1662 /* 1663 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1664 * Elements of the path are separated by '/' and the path is guaranteed to be 1665 * 0-terminated. the path is only given within the current file system. 1666 * Therefore, it never starts with a '/'. the caller is responsible to provide 1667 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1668 * the start point of the resulting string is returned. this pointer is within 1669 * dest, normally. 1670 * in case the path buffer would overflow, the pointer is decremented further 1671 * as if output was written to the buffer, though no more output is actually 1672 * generated. that way, the caller can determine how much space would be 1673 * required for the path to fit into the buffer. in that case, the returned 1674 * value will be smaller than dest. callers must check this! 1675 */ 1676 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1677 u32 name_len, unsigned long name_off, 1678 struct extent_buffer *eb_in, u64 parent, 1679 char *dest, u32 size) 1680 { 1681 int slot; 1682 u64 next_inum; 1683 int ret; 1684 s64 bytes_left = ((s64)size) - 1; 1685 struct extent_buffer *eb = eb_in; 1686 struct btrfs_key found_key; 1687 int leave_spinning = path->leave_spinning; 1688 struct btrfs_inode_ref *iref; 1689 1690 if (bytes_left >= 0) 1691 dest[bytes_left] = '\0'; 1692 1693 path->leave_spinning = 1; 1694 while (1) { 1695 bytes_left -= name_len; 1696 if (bytes_left >= 0) 1697 read_extent_buffer(eb, dest + bytes_left, 1698 name_off, name_len); 1699 if (eb != eb_in) { 1700 if (!path->skip_locking) 1701 btrfs_tree_read_unlock_blocking(eb); 1702 free_extent_buffer(eb); 1703 } 1704 ret = btrfs_find_item(fs_root, path, parent, 0, 1705 BTRFS_INODE_REF_KEY, &found_key); 1706 if (ret > 0) 1707 ret = -ENOENT; 1708 if (ret) 1709 break; 1710 1711 next_inum = found_key.offset; 1712 1713 /* regular exit ahead */ 1714 if (parent == next_inum) 1715 break; 1716 1717 slot = path->slots[0]; 1718 eb = path->nodes[0]; 1719 /* make sure we can use eb after releasing the path */ 1720 if (eb != eb_in) { 1721 if (!path->skip_locking) 1722 btrfs_set_lock_blocking_read(eb); 1723 path->nodes[0] = NULL; 1724 path->locks[0] = 0; 1725 } 1726 btrfs_release_path(path); 1727 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1728 1729 name_len = btrfs_inode_ref_name_len(eb, iref); 1730 name_off = (unsigned long)(iref + 1); 1731 1732 parent = next_inum; 1733 --bytes_left; 1734 if (bytes_left >= 0) 1735 dest[bytes_left] = '/'; 1736 } 1737 1738 btrfs_release_path(path); 1739 path->leave_spinning = leave_spinning; 1740 1741 if (ret) 1742 return ERR_PTR(ret); 1743 1744 return dest + bytes_left; 1745 } 1746 1747 /* 1748 * this makes the path point to (logical EXTENT_ITEM *) 1749 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1750 * tree blocks and <0 on error. 1751 */ 1752 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1753 struct btrfs_path *path, struct btrfs_key *found_key, 1754 u64 *flags_ret) 1755 { 1756 int ret; 1757 u64 flags; 1758 u64 size = 0; 1759 u32 item_size; 1760 const struct extent_buffer *eb; 1761 struct btrfs_extent_item *ei; 1762 struct btrfs_key key; 1763 1764 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1765 key.type = BTRFS_METADATA_ITEM_KEY; 1766 else 1767 key.type = BTRFS_EXTENT_ITEM_KEY; 1768 key.objectid = logical; 1769 key.offset = (u64)-1; 1770 1771 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1772 if (ret < 0) 1773 return ret; 1774 1775 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1776 if (ret) { 1777 if (ret > 0) 1778 ret = -ENOENT; 1779 return ret; 1780 } 1781 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1782 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1783 size = fs_info->nodesize; 1784 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1785 size = found_key->offset; 1786 1787 if (found_key->objectid > logical || 1788 found_key->objectid + size <= logical) { 1789 btrfs_debug(fs_info, 1790 "logical %llu is not within any extent", logical); 1791 return -ENOENT; 1792 } 1793 1794 eb = path->nodes[0]; 1795 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1796 BUG_ON(item_size < sizeof(*ei)); 1797 1798 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1799 flags = btrfs_extent_flags(eb, ei); 1800 1801 btrfs_debug(fs_info, 1802 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1803 logical, logical - found_key->objectid, found_key->objectid, 1804 found_key->offset, flags, item_size); 1805 1806 WARN_ON(!flags_ret); 1807 if (flags_ret) { 1808 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1809 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1810 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1811 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1812 else 1813 BUG(); 1814 return 0; 1815 } 1816 1817 return -EIO; 1818 } 1819 1820 /* 1821 * helper function to iterate extent inline refs. ptr must point to a 0 value 1822 * for the first call and may be modified. it is used to track state. 1823 * if more refs exist, 0 is returned and the next call to 1824 * get_extent_inline_ref must pass the modified ptr parameter to get the 1825 * next ref. after the last ref was processed, 1 is returned. 1826 * returns <0 on error 1827 */ 1828 static int get_extent_inline_ref(unsigned long *ptr, 1829 const struct extent_buffer *eb, 1830 const struct btrfs_key *key, 1831 const struct btrfs_extent_item *ei, 1832 u32 item_size, 1833 struct btrfs_extent_inline_ref **out_eiref, 1834 int *out_type) 1835 { 1836 unsigned long end; 1837 u64 flags; 1838 struct btrfs_tree_block_info *info; 1839 1840 if (!*ptr) { 1841 /* first call */ 1842 flags = btrfs_extent_flags(eb, ei); 1843 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1844 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1845 /* a skinny metadata extent */ 1846 *out_eiref = 1847 (struct btrfs_extent_inline_ref *)(ei + 1); 1848 } else { 1849 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1850 info = (struct btrfs_tree_block_info *)(ei + 1); 1851 *out_eiref = 1852 (struct btrfs_extent_inline_ref *)(info + 1); 1853 } 1854 } else { 1855 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1856 } 1857 *ptr = (unsigned long)*out_eiref; 1858 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1859 return -ENOENT; 1860 } 1861 1862 end = (unsigned long)ei + item_size; 1863 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1864 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1865 BTRFS_REF_TYPE_ANY); 1866 if (*out_type == BTRFS_REF_TYPE_INVALID) 1867 return -EUCLEAN; 1868 1869 *ptr += btrfs_extent_inline_ref_size(*out_type); 1870 WARN_ON(*ptr > end); 1871 if (*ptr == end) 1872 return 1; /* last */ 1873 1874 return 0; 1875 } 1876 1877 /* 1878 * reads the tree block backref for an extent. tree level and root are returned 1879 * through out_level and out_root. ptr must point to a 0 value for the first 1880 * call and may be modified (see get_extent_inline_ref comment). 1881 * returns 0 if data was provided, 1 if there was no more data to provide or 1882 * <0 on error. 1883 */ 1884 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1885 struct btrfs_key *key, struct btrfs_extent_item *ei, 1886 u32 item_size, u64 *out_root, u8 *out_level) 1887 { 1888 int ret; 1889 int type; 1890 struct btrfs_extent_inline_ref *eiref; 1891 1892 if (*ptr == (unsigned long)-1) 1893 return 1; 1894 1895 while (1) { 1896 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1897 &eiref, &type); 1898 if (ret < 0) 1899 return ret; 1900 1901 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1902 type == BTRFS_SHARED_BLOCK_REF_KEY) 1903 break; 1904 1905 if (ret == 1) 1906 return 1; 1907 } 1908 1909 /* we can treat both ref types equally here */ 1910 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1911 1912 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1913 struct btrfs_tree_block_info *info; 1914 1915 info = (struct btrfs_tree_block_info *)(ei + 1); 1916 *out_level = btrfs_tree_block_level(eb, info); 1917 } else { 1918 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1919 *out_level = (u8)key->offset; 1920 } 1921 1922 if (ret == 1) 1923 *ptr = (unsigned long)-1; 1924 1925 return 0; 1926 } 1927 1928 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1929 struct extent_inode_elem *inode_list, 1930 u64 root, u64 extent_item_objectid, 1931 iterate_extent_inodes_t *iterate, void *ctx) 1932 { 1933 struct extent_inode_elem *eie; 1934 int ret = 0; 1935 1936 for (eie = inode_list; eie; eie = eie->next) { 1937 btrfs_debug(fs_info, 1938 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1939 extent_item_objectid, eie->inum, 1940 eie->offset, root); 1941 ret = iterate(eie->inum, eie->offset, root, ctx); 1942 if (ret) { 1943 btrfs_debug(fs_info, 1944 "stopping iteration for %llu due to ret=%d", 1945 extent_item_objectid, ret); 1946 break; 1947 } 1948 } 1949 1950 return ret; 1951 } 1952 1953 /* 1954 * calls iterate() for every inode that references the extent identified by 1955 * the given parameters. 1956 * when the iterator function returns a non-zero value, iteration stops. 1957 */ 1958 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1959 u64 extent_item_objectid, u64 extent_item_pos, 1960 int search_commit_root, 1961 iterate_extent_inodes_t *iterate, void *ctx, 1962 bool ignore_offset) 1963 { 1964 int ret; 1965 struct btrfs_trans_handle *trans = NULL; 1966 struct ulist *refs = NULL; 1967 struct ulist *roots = NULL; 1968 struct ulist_node *ref_node = NULL; 1969 struct ulist_node *root_node = NULL; 1970 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1971 struct ulist_iterator ref_uiter; 1972 struct ulist_iterator root_uiter; 1973 1974 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1975 extent_item_objectid); 1976 1977 if (!search_commit_root) { 1978 trans = btrfs_attach_transaction(fs_info->extent_root); 1979 if (IS_ERR(trans)) { 1980 if (PTR_ERR(trans) != -ENOENT && 1981 PTR_ERR(trans) != -EROFS) 1982 return PTR_ERR(trans); 1983 trans = NULL; 1984 } 1985 } 1986 1987 if (trans) 1988 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1989 else 1990 down_read(&fs_info->commit_root_sem); 1991 1992 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1993 tree_mod_seq_elem.seq, &refs, 1994 &extent_item_pos, ignore_offset); 1995 if (ret) 1996 goto out; 1997 1998 ULIST_ITER_INIT(&ref_uiter); 1999 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2000 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 2001 tree_mod_seq_elem.seq, &roots, 2002 ignore_offset); 2003 if (ret) 2004 break; 2005 ULIST_ITER_INIT(&root_uiter); 2006 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 2007 btrfs_debug(fs_info, 2008 "root %llu references leaf %llu, data list %#llx", 2009 root_node->val, ref_node->val, 2010 ref_node->aux); 2011 ret = iterate_leaf_refs(fs_info, 2012 (struct extent_inode_elem *) 2013 (uintptr_t)ref_node->aux, 2014 root_node->val, 2015 extent_item_objectid, 2016 iterate, ctx); 2017 } 2018 ulist_free(roots); 2019 } 2020 2021 free_leaf_list(refs); 2022 out: 2023 if (trans) { 2024 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2025 btrfs_end_transaction(trans); 2026 } else { 2027 up_read(&fs_info->commit_root_sem); 2028 } 2029 2030 return ret; 2031 } 2032 2033 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2034 struct btrfs_path *path, 2035 iterate_extent_inodes_t *iterate, void *ctx, 2036 bool ignore_offset) 2037 { 2038 int ret; 2039 u64 extent_item_pos; 2040 u64 flags = 0; 2041 struct btrfs_key found_key; 2042 int search_commit_root = path->search_commit_root; 2043 2044 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2045 btrfs_release_path(path); 2046 if (ret < 0) 2047 return ret; 2048 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2049 return -EINVAL; 2050 2051 extent_item_pos = logical - found_key.objectid; 2052 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2053 extent_item_pos, search_commit_root, 2054 iterate, ctx, ignore_offset); 2055 2056 return ret; 2057 } 2058 2059 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2060 struct extent_buffer *eb, void *ctx); 2061 2062 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2063 struct btrfs_path *path, 2064 iterate_irefs_t *iterate, void *ctx) 2065 { 2066 int ret = 0; 2067 int slot; 2068 u32 cur; 2069 u32 len; 2070 u32 name_len; 2071 u64 parent = 0; 2072 int found = 0; 2073 struct extent_buffer *eb; 2074 struct btrfs_item *item; 2075 struct btrfs_inode_ref *iref; 2076 struct btrfs_key found_key; 2077 2078 while (!ret) { 2079 ret = btrfs_find_item(fs_root, path, inum, 2080 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2081 &found_key); 2082 2083 if (ret < 0) 2084 break; 2085 if (ret) { 2086 ret = found ? 0 : -ENOENT; 2087 break; 2088 } 2089 ++found; 2090 2091 parent = found_key.offset; 2092 slot = path->slots[0]; 2093 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2094 if (!eb) { 2095 ret = -ENOMEM; 2096 break; 2097 } 2098 btrfs_release_path(path); 2099 2100 item = btrfs_item_nr(slot); 2101 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2102 2103 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2104 name_len = btrfs_inode_ref_name_len(eb, iref); 2105 /* path must be released before calling iterate()! */ 2106 btrfs_debug(fs_root->fs_info, 2107 "following ref at offset %u for inode %llu in tree %llu", 2108 cur, found_key.objectid, 2109 fs_root->root_key.objectid); 2110 ret = iterate(parent, name_len, 2111 (unsigned long)(iref + 1), eb, ctx); 2112 if (ret) 2113 break; 2114 len = sizeof(*iref) + name_len; 2115 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2116 } 2117 free_extent_buffer(eb); 2118 } 2119 2120 btrfs_release_path(path); 2121 2122 return ret; 2123 } 2124 2125 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2126 struct btrfs_path *path, 2127 iterate_irefs_t *iterate, void *ctx) 2128 { 2129 int ret; 2130 int slot; 2131 u64 offset = 0; 2132 u64 parent; 2133 int found = 0; 2134 struct extent_buffer *eb; 2135 struct btrfs_inode_extref *extref; 2136 u32 item_size; 2137 u32 cur_offset; 2138 unsigned long ptr; 2139 2140 while (1) { 2141 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2142 &offset); 2143 if (ret < 0) 2144 break; 2145 if (ret) { 2146 ret = found ? 0 : -ENOENT; 2147 break; 2148 } 2149 ++found; 2150 2151 slot = path->slots[0]; 2152 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2153 if (!eb) { 2154 ret = -ENOMEM; 2155 break; 2156 } 2157 btrfs_release_path(path); 2158 2159 item_size = btrfs_item_size_nr(eb, slot); 2160 ptr = btrfs_item_ptr_offset(eb, slot); 2161 cur_offset = 0; 2162 2163 while (cur_offset < item_size) { 2164 u32 name_len; 2165 2166 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2167 parent = btrfs_inode_extref_parent(eb, extref); 2168 name_len = btrfs_inode_extref_name_len(eb, extref); 2169 ret = iterate(parent, name_len, 2170 (unsigned long)&extref->name, eb, ctx); 2171 if (ret) 2172 break; 2173 2174 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2175 cur_offset += sizeof(*extref); 2176 } 2177 free_extent_buffer(eb); 2178 2179 offset++; 2180 } 2181 2182 btrfs_release_path(path); 2183 2184 return ret; 2185 } 2186 2187 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2188 struct btrfs_path *path, iterate_irefs_t *iterate, 2189 void *ctx) 2190 { 2191 int ret; 2192 int found_refs = 0; 2193 2194 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2195 if (!ret) 2196 ++found_refs; 2197 else if (ret != -ENOENT) 2198 return ret; 2199 2200 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2201 if (ret == -ENOENT && found_refs) 2202 return 0; 2203 2204 return ret; 2205 } 2206 2207 /* 2208 * returns 0 if the path could be dumped (probably truncated) 2209 * returns <0 in case of an error 2210 */ 2211 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2212 struct extent_buffer *eb, void *ctx) 2213 { 2214 struct inode_fs_paths *ipath = ctx; 2215 char *fspath; 2216 char *fspath_min; 2217 int i = ipath->fspath->elem_cnt; 2218 const int s_ptr = sizeof(char *); 2219 u32 bytes_left; 2220 2221 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2222 ipath->fspath->bytes_left - s_ptr : 0; 2223 2224 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2225 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2226 name_off, eb, inum, fspath_min, bytes_left); 2227 if (IS_ERR(fspath)) 2228 return PTR_ERR(fspath); 2229 2230 if (fspath > fspath_min) { 2231 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2232 ++ipath->fspath->elem_cnt; 2233 ipath->fspath->bytes_left = fspath - fspath_min; 2234 } else { 2235 ++ipath->fspath->elem_missed; 2236 ipath->fspath->bytes_missing += fspath_min - fspath; 2237 ipath->fspath->bytes_left = 0; 2238 } 2239 2240 return 0; 2241 } 2242 2243 /* 2244 * this dumps all file system paths to the inode into the ipath struct, provided 2245 * is has been created large enough. each path is zero-terminated and accessed 2246 * from ipath->fspath->val[i]. 2247 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2248 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2249 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2250 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2251 * have been needed to return all paths. 2252 */ 2253 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2254 { 2255 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2256 inode_to_path, ipath); 2257 } 2258 2259 struct btrfs_data_container *init_data_container(u32 total_bytes) 2260 { 2261 struct btrfs_data_container *data; 2262 size_t alloc_bytes; 2263 2264 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2265 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2266 if (!data) 2267 return ERR_PTR(-ENOMEM); 2268 2269 if (total_bytes >= sizeof(*data)) { 2270 data->bytes_left = total_bytes - sizeof(*data); 2271 data->bytes_missing = 0; 2272 } else { 2273 data->bytes_missing = sizeof(*data) - total_bytes; 2274 data->bytes_left = 0; 2275 } 2276 2277 data->elem_cnt = 0; 2278 data->elem_missed = 0; 2279 2280 return data; 2281 } 2282 2283 /* 2284 * allocates space to return multiple file system paths for an inode. 2285 * total_bytes to allocate are passed, note that space usable for actual path 2286 * information will be total_bytes - sizeof(struct inode_fs_paths). 2287 * the returned pointer must be freed with free_ipath() in the end. 2288 */ 2289 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2290 struct btrfs_path *path) 2291 { 2292 struct inode_fs_paths *ifp; 2293 struct btrfs_data_container *fspath; 2294 2295 fspath = init_data_container(total_bytes); 2296 if (IS_ERR(fspath)) 2297 return ERR_CAST(fspath); 2298 2299 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2300 if (!ifp) { 2301 kvfree(fspath); 2302 return ERR_PTR(-ENOMEM); 2303 } 2304 2305 ifp->btrfs_path = path; 2306 ifp->fspath = fspath; 2307 ifp->fs_root = fs_root; 2308 2309 return ifp; 2310 } 2311 2312 void free_ipath(struct inode_fs_paths *ipath) 2313 { 2314 if (!ipath) 2315 return; 2316 kvfree(ipath->fspath); 2317 kfree(ipath); 2318 } 2319 2320 struct btrfs_backref_iter *btrfs_backref_iter_alloc( 2321 struct btrfs_fs_info *fs_info, gfp_t gfp_flag) 2322 { 2323 struct btrfs_backref_iter *ret; 2324 2325 ret = kzalloc(sizeof(*ret), gfp_flag); 2326 if (!ret) 2327 return NULL; 2328 2329 ret->path = btrfs_alloc_path(); 2330 if (!ret->path) { 2331 kfree(ret); 2332 return NULL; 2333 } 2334 2335 /* Current backref iterator only supports iteration in commit root */ 2336 ret->path->search_commit_root = 1; 2337 ret->path->skip_locking = 1; 2338 ret->fs_info = fs_info; 2339 2340 return ret; 2341 } 2342 2343 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2344 { 2345 struct btrfs_fs_info *fs_info = iter->fs_info; 2346 struct btrfs_path *path = iter->path; 2347 struct btrfs_extent_item *ei; 2348 struct btrfs_key key; 2349 int ret; 2350 2351 key.objectid = bytenr; 2352 key.type = BTRFS_METADATA_ITEM_KEY; 2353 key.offset = (u64)-1; 2354 iter->bytenr = bytenr; 2355 2356 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 2357 if (ret < 0) 2358 return ret; 2359 if (ret == 0) { 2360 ret = -EUCLEAN; 2361 goto release; 2362 } 2363 if (path->slots[0] == 0) { 2364 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2365 ret = -EUCLEAN; 2366 goto release; 2367 } 2368 path->slots[0]--; 2369 2370 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2371 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2372 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2373 ret = -ENOENT; 2374 goto release; 2375 } 2376 memcpy(&iter->cur_key, &key, sizeof(key)); 2377 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2378 path->slots[0]); 2379 iter->end_ptr = (u32)(iter->item_ptr + 2380 btrfs_item_size_nr(path->nodes[0], path->slots[0])); 2381 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2382 struct btrfs_extent_item); 2383 2384 /* 2385 * Only support iteration on tree backref yet. 2386 * 2387 * This is an extra precaution for non skinny-metadata, where 2388 * EXTENT_ITEM is also used for tree blocks, that we can only use 2389 * extent flags to determine if it's a tree block. 2390 */ 2391 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2392 ret = -ENOTSUPP; 2393 goto release; 2394 } 2395 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2396 2397 /* If there is no inline backref, go search for keyed backref */ 2398 if (iter->cur_ptr >= iter->end_ptr) { 2399 ret = btrfs_next_item(fs_info->extent_root, path); 2400 2401 /* No inline nor keyed ref */ 2402 if (ret > 0) { 2403 ret = -ENOENT; 2404 goto release; 2405 } 2406 if (ret < 0) 2407 goto release; 2408 2409 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2410 path->slots[0]); 2411 if (iter->cur_key.objectid != bytenr || 2412 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2413 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2414 ret = -ENOENT; 2415 goto release; 2416 } 2417 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2418 path->slots[0]); 2419 iter->item_ptr = iter->cur_ptr; 2420 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr( 2421 path->nodes[0], path->slots[0])); 2422 } 2423 2424 return 0; 2425 release: 2426 btrfs_backref_iter_release(iter); 2427 return ret; 2428 } 2429 2430 /* 2431 * Go to the next backref item of current bytenr, can be either inlined or 2432 * keyed. 2433 * 2434 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2435 * 2436 * Return 0 if we get next backref without problem. 2437 * Return >0 if there is no extra backref for this bytenr. 2438 * Return <0 if there is something wrong happened. 2439 */ 2440 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2441 { 2442 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2443 struct btrfs_path *path = iter->path; 2444 struct btrfs_extent_inline_ref *iref; 2445 int ret; 2446 u32 size; 2447 2448 if (btrfs_backref_iter_is_inline_ref(iter)) { 2449 /* We're still inside the inline refs */ 2450 ASSERT(iter->cur_ptr < iter->end_ptr); 2451 2452 if (btrfs_backref_has_tree_block_info(iter)) { 2453 /* First tree block info */ 2454 size = sizeof(struct btrfs_tree_block_info); 2455 } else { 2456 /* Use inline ref type to determine the size */ 2457 int type; 2458 2459 iref = (struct btrfs_extent_inline_ref *) 2460 ((unsigned long)iter->cur_ptr); 2461 type = btrfs_extent_inline_ref_type(eb, iref); 2462 2463 size = btrfs_extent_inline_ref_size(type); 2464 } 2465 iter->cur_ptr += size; 2466 if (iter->cur_ptr < iter->end_ptr) 2467 return 0; 2468 2469 /* All inline items iterated, fall through */ 2470 } 2471 2472 /* We're at keyed items, there is no inline item, go to the next one */ 2473 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path); 2474 if (ret) 2475 return ret; 2476 2477 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2478 if (iter->cur_key.objectid != iter->bytenr || 2479 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2480 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2481 return 1; 2482 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2483 path->slots[0]); 2484 iter->cur_ptr = iter->item_ptr; 2485 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0], 2486 path->slots[0]); 2487 return 0; 2488 } 2489 2490 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2491 struct btrfs_backref_cache *cache, int is_reloc) 2492 { 2493 int i; 2494 2495 cache->rb_root = RB_ROOT; 2496 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2497 INIT_LIST_HEAD(&cache->pending[i]); 2498 INIT_LIST_HEAD(&cache->changed); 2499 INIT_LIST_HEAD(&cache->detached); 2500 INIT_LIST_HEAD(&cache->leaves); 2501 INIT_LIST_HEAD(&cache->pending_edge); 2502 INIT_LIST_HEAD(&cache->useless_node); 2503 cache->fs_info = fs_info; 2504 cache->is_reloc = is_reloc; 2505 } 2506 2507 struct btrfs_backref_node *btrfs_backref_alloc_node( 2508 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2509 { 2510 struct btrfs_backref_node *node; 2511 2512 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2513 node = kzalloc(sizeof(*node), GFP_NOFS); 2514 if (!node) 2515 return node; 2516 2517 INIT_LIST_HEAD(&node->list); 2518 INIT_LIST_HEAD(&node->upper); 2519 INIT_LIST_HEAD(&node->lower); 2520 RB_CLEAR_NODE(&node->rb_node); 2521 cache->nr_nodes++; 2522 node->level = level; 2523 node->bytenr = bytenr; 2524 2525 return node; 2526 } 2527 2528 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2529 struct btrfs_backref_cache *cache) 2530 { 2531 struct btrfs_backref_edge *edge; 2532 2533 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2534 if (edge) 2535 cache->nr_edges++; 2536 return edge; 2537 } 2538 2539 /* 2540 * Drop the backref node from cache, also cleaning up all its 2541 * upper edges and any uncached nodes in the path. 2542 * 2543 * This cleanup happens bottom up, thus the node should either 2544 * be the lowest node in the cache or a detached node. 2545 */ 2546 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2547 struct btrfs_backref_node *node) 2548 { 2549 struct btrfs_backref_node *upper; 2550 struct btrfs_backref_edge *edge; 2551 2552 if (!node) 2553 return; 2554 2555 BUG_ON(!node->lowest && !node->detached); 2556 while (!list_empty(&node->upper)) { 2557 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2558 list[LOWER]); 2559 upper = edge->node[UPPER]; 2560 list_del(&edge->list[LOWER]); 2561 list_del(&edge->list[UPPER]); 2562 btrfs_backref_free_edge(cache, edge); 2563 2564 /* 2565 * Add the node to leaf node list if no other child block 2566 * cached. 2567 */ 2568 if (list_empty(&upper->lower)) { 2569 list_add_tail(&upper->lower, &cache->leaves); 2570 upper->lowest = 1; 2571 } 2572 } 2573 2574 btrfs_backref_drop_node(cache, node); 2575 } 2576 2577 /* 2578 * Release all nodes/edges from current cache 2579 */ 2580 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2581 { 2582 struct btrfs_backref_node *node; 2583 int i; 2584 2585 while (!list_empty(&cache->detached)) { 2586 node = list_entry(cache->detached.next, 2587 struct btrfs_backref_node, list); 2588 btrfs_backref_cleanup_node(cache, node); 2589 } 2590 2591 while (!list_empty(&cache->leaves)) { 2592 node = list_entry(cache->leaves.next, 2593 struct btrfs_backref_node, lower); 2594 btrfs_backref_cleanup_node(cache, node); 2595 } 2596 2597 cache->last_trans = 0; 2598 2599 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2600 ASSERT(list_empty(&cache->pending[i])); 2601 ASSERT(list_empty(&cache->pending_edge)); 2602 ASSERT(list_empty(&cache->useless_node)); 2603 ASSERT(list_empty(&cache->changed)); 2604 ASSERT(list_empty(&cache->detached)); 2605 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 2606 ASSERT(!cache->nr_nodes); 2607 ASSERT(!cache->nr_edges); 2608 } 2609 2610 /* 2611 * Handle direct tree backref 2612 * 2613 * Direct tree backref means, the backref item shows its parent bytenr 2614 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 2615 * 2616 * @ref_key: The converted backref key. 2617 * For keyed backref, it's the item key. 2618 * For inlined backref, objectid is the bytenr, 2619 * type is btrfs_inline_ref_type, offset is 2620 * btrfs_inline_ref_offset. 2621 */ 2622 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 2623 struct btrfs_key *ref_key, 2624 struct btrfs_backref_node *cur) 2625 { 2626 struct btrfs_backref_edge *edge; 2627 struct btrfs_backref_node *upper; 2628 struct rb_node *rb_node; 2629 2630 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 2631 2632 /* Only reloc root uses backref pointing to itself */ 2633 if (ref_key->objectid == ref_key->offset) { 2634 struct btrfs_root *root; 2635 2636 cur->is_reloc_root = 1; 2637 /* Only reloc backref cache cares about a specific root */ 2638 if (cache->is_reloc) { 2639 root = find_reloc_root(cache->fs_info, cur->bytenr); 2640 if (!root) 2641 return -ENOENT; 2642 cur->root = root; 2643 } else { 2644 /* 2645 * For generic purpose backref cache, reloc root node 2646 * is useless. 2647 */ 2648 list_add(&cur->list, &cache->useless_node); 2649 } 2650 return 0; 2651 } 2652 2653 edge = btrfs_backref_alloc_edge(cache); 2654 if (!edge) 2655 return -ENOMEM; 2656 2657 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 2658 if (!rb_node) { 2659 /* Parent node not yet cached */ 2660 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 2661 cur->level + 1); 2662 if (!upper) { 2663 btrfs_backref_free_edge(cache, edge); 2664 return -ENOMEM; 2665 } 2666 2667 /* 2668 * Backrefs for the upper level block isn't cached, add the 2669 * block to pending list 2670 */ 2671 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2672 } else { 2673 /* Parent node already cached */ 2674 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 2675 ASSERT(upper->checked); 2676 INIT_LIST_HEAD(&edge->list[UPPER]); 2677 } 2678 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 2679 return 0; 2680 } 2681 2682 /* 2683 * Handle indirect tree backref 2684 * 2685 * Indirect tree backref means, we only know which tree the node belongs to. 2686 * We still need to do a tree search to find out the parents. This is for 2687 * TREE_BLOCK_REF backref (keyed or inlined). 2688 * 2689 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 2690 * @tree_key: The first key of this tree block. 2691 * @path: A clean (released) path, to avoid allocating path everytime 2692 * the function get called. 2693 */ 2694 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 2695 struct btrfs_path *path, 2696 struct btrfs_key *ref_key, 2697 struct btrfs_key *tree_key, 2698 struct btrfs_backref_node *cur) 2699 { 2700 struct btrfs_fs_info *fs_info = cache->fs_info; 2701 struct btrfs_backref_node *upper; 2702 struct btrfs_backref_node *lower; 2703 struct btrfs_backref_edge *edge; 2704 struct extent_buffer *eb; 2705 struct btrfs_root *root; 2706 struct rb_node *rb_node; 2707 int level; 2708 bool need_check = true; 2709 int ret; 2710 2711 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 2712 if (IS_ERR(root)) 2713 return PTR_ERR(root); 2714 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2715 cur->cowonly = 1; 2716 2717 if (btrfs_root_level(&root->root_item) == cur->level) { 2718 /* Tree root */ 2719 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 2720 /* 2721 * For reloc backref cache, we may ignore reloc root. But for 2722 * general purpose backref cache, we can't rely on 2723 * btrfs_should_ignore_reloc_root() as it may conflict with 2724 * current running relocation and lead to missing root. 2725 * 2726 * For general purpose backref cache, reloc root detection is 2727 * completely relying on direct backref (key->offset is parent 2728 * bytenr), thus only do such check for reloc cache. 2729 */ 2730 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 2731 btrfs_put_root(root); 2732 list_add(&cur->list, &cache->useless_node); 2733 } else { 2734 cur->root = root; 2735 } 2736 return 0; 2737 } 2738 2739 level = cur->level + 1; 2740 2741 /* Search the tree to find parent blocks referring to the block */ 2742 path->search_commit_root = 1; 2743 path->skip_locking = 1; 2744 path->lowest_level = level; 2745 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 2746 path->lowest_level = 0; 2747 if (ret < 0) { 2748 btrfs_put_root(root); 2749 return ret; 2750 } 2751 if (ret > 0 && path->slots[level] > 0) 2752 path->slots[level]--; 2753 2754 eb = path->nodes[level]; 2755 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 2756 btrfs_err(fs_info, 2757 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 2758 cur->bytenr, level - 1, root->root_key.objectid, 2759 tree_key->objectid, tree_key->type, tree_key->offset); 2760 btrfs_put_root(root); 2761 ret = -ENOENT; 2762 goto out; 2763 } 2764 lower = cur; 2765 2766 /* Add all nodes and edges in the path */ 2767 for (; level < BTRFS_MAX_LEVEL; level++) { 2768 if (!path->nodes[level]) { 2769 ASSERT(btrfs_root_bytenr(&root->root_item) == 2770 lower->bytenr); 2771 /* Same as previous should_ignore_reloc_root() call */ 2772 if (btrfs_should_ignore_reloc_root(root) && 2773 cache->is_reloc) { 2774 btrfs_put_root(root); 2775 list_add(&lower->list, &cache->useless_node); 2776 } else { 2777 lower->root = root; 2778 } 2779 break; 2780 } 2781 2782 edge = btrfs_backref_alloc_edge(cache); 2783 if (!edge) { 2784 btrfs_put_root(root); 2785 ret = -ENOMEM; 2786 goto out; 2787 } 2788 2789 eb = path->nodes[level]; 2790 rb_node = rb_simple_search(&cache->rb_root, eb->start); 2791 if (!rb_node) { 2792 upper = btrfs_backref_alloc_node(cache, eb->start, 2793 lower->level + 1); 2794 if (!upper) { 2795 btrfs_put_root(root); 2796 btrfs_backref_free_edge(cache, edge); 2797 ret = -ENOMEM; 2798 goto out; 2799 } 2800 upper->owner = btrfs_header_owner(eb); 2801 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2802 upper->cowonly = 1; 2803 2804 /* 2805 * If we know the block isn't shared we can avoid 2806 * checking its backrefs. 2807 */ 2808 if (btrfs_block_can_be_shared(root, eb)) 2809 upper->checked = 0; 2810 else 2811 upper->checked = 1; 2812 2813 /* 2814 * Add the block to pending list if we need to check its 2815 * backrefs, we only do this once while walking up a 2816 * tree as we will catch anything else later on. 2817 */ 2818 if (!upper->checked && need_check) { 2819 need_check = false; 2820 list_add_tail(&edge->list[UPPER], 2821 &cache->pending_edge); 2822 } else { 2823 if (upper->checked) 2824 need_check = true; 2825 INIT_LIST_HEAD(&edge->list[UPPER]); 2826 } 2827 } else { 2828 upper = rb_entry(rb_node, struct btrfs_backref_node, 2829 rb_node); 2830 ASSERT(upper->checked); 2831 INIT_LIST_HEAD(&edge->list[UPPER]); 2832 if (!upper->owner) 2833 upper->owner = btrfs_header_owner(eb); 2834 } 2835 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 2836 2837 if (rb_node) { 2838 btrfs_put_root(root); 2839 break; 2840 } 2841 lower = upper; 2842 upper = NULL; 2843 } 2844 out: 2845 btrfs_release_path(path); 2846 return ret; 2847 } 2848 2849 /* 2850 * Add backref node @cur into @cache. 2851 * 2852 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 2853 * links aren't yet bi-directional. Needs to finish such links. 2854 * Use btrfs_backref_finish_upper_links() to finish such linkage. 2855 * 2856 * @path: Released path for indirect tree backref lookup 2857 * @iter: Released backref iter for extent tree search 2858 * @node_key: The first key of the tree block 2859 */ 2860 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 2861 struct btrfs_path *path, 2862 struct btrfs_backref_iter *iter, 2863 struct btrfs_key *node_key, 2864 struct btrfs_backref_node *cur) 2865 { 2866 struct btrfs_fs_info *fs_info = cache->fs_info; 2867 struct btrfs_backref_edge *edge; 2868 struct btrfs_backref_node *exist; 2869 int ret; 2870 2871 ret = btrfs_backref_iter_start(iter, cur->bytenr); 2872 if (ret < 0) 2873 return ret; 2874 /* 2875 * We skip the first btrfs_tree_block_info, as we don't use the key 2876 * stored in it, but fetch it from the tree block 2877 */ 2878 if (btrfs_backref_has_tree_block_info(iter)) { 2879 ret = btrfs_backref_iter_next(iter); 2880 if (ret < 0) 2881 goto out; 2882 /* No extra backref? This means the tree block is corrupted */ 2883 if (ret > 0) { 2884 ret = -EUCLEAN; 2885 goto out; 2886 } 2887 } 2888 WARN_ON(cur->checked); 2889 if (!list_empty(&cur->upper)) { 2890 /* 2891 * The backref was added previously when processing backref of 2892 * type BTRFS_TREE_BLOCK_REF_KEY 2893 */ 2894 ASSERT(list_is_singular(&cur->upper)); 2895 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 2896 list[LOWER]); 2897 ASSERT(list_empty(&edge->list[UPPER])); 2898 exist = edge->node[UPPER]; 2899 /* 2900 * Add the upper level block to pending list if we need check 2901 * its backrefs 2902 */ 2903 if (!exist->checked) 2904 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2905 } else { 2906 exist = NULL; 2907 } 2908 2909 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 2910 struct extent_buffer *eb; 2911 struct btrfs_key key; 2912 int type; 2913 2914 cond_resched(); 2915 eb = btrfs_backref_get_eb(iter); 2916 2917 key.objectid = iter->bytenr; 2918 if (btrfs_backref_iter_is_inline_ref(iter)) { 2919 struct btrfs_extent_inline_ref *iref; 2920 2921 /* Update key for inline backref */ 2922 iref = (struct btrfs_extent_inline_ref *) 2923 ((unsigned long)iter->cur_ptr); 2924 type = btrfs_get_extent_inline_ref_type(eb, iref, 2925 BTRFS_REF_TYPE_BLOCK); 2926 if (type == BTRFS_REF_TYPE_INVALID) { 2927 ret = -EUCLEAN; 2928 goto out; 2929 } 2930 key.type = type; 2931 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 2932 } else { 2933 key.type = iter->cur_key.type; 2934 key.offset = iter->cur_key.offset; 2935 } 2936 2937 /* 2938 * Parent node found and matches current inline ref, no need to 2939 * rebuild this node for this inline ref 2940 */ 2941 if (exist && 2942 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 2943 exist->owner == key.offset) || 2944 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 2945 exist->bytenr == key.offset))) { 2946 exist = NULL; 2947 continue; 2948 } 2949 2950 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 2951 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 2952 ret = handle_direct_tree_backref(cache, &key, cur); 2953 if (ret < 0) 2954 goto out; 2955 continue; 2956 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 2957 ret = -EINVAL; 2958 btrfs_print_v0_err(fs_info); 2959 btrfs_handle_fs_error(fs_info, ret, NULL); 2960 goto out; 2961 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 2962 continue; 2963 } 2964 2965 /* 2966 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 2967 * means the root objectid. We need to search the tree to get 2968 * its parent bytenr. 2969 */ 2970 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 2971 cur); 2972 if (ret < 0) 2973 goto out; 2974 } 2975 ret = 0; 2976 cur->checked = 1; 2977 WARN_ON(exist); 2978 out: 2979 btrfs_backref_iter_release(iter); 2980 return ret; 2981 } 2982 2983 /* 2984 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 2985 */ 2986 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 2987 struct btrfs_backref_node *start) 2988 { 2989 struct list_head *useless_node = &cache->useless_node; 2990 struct btrfs_backref_edge *edge; 2991 struct rb_node *rb_node; 2992 LIST_HEAD(pending_edge); 2993 2994 ASSERT(start->checked); 2995 2996 /* Insert this node to cache if it's not COW-only */ 2997 if (!start->cowonly) { 2998 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 2999 &start->rb_node); 3000 if (rb_node) 3001 btrfs_backref_panic(cache->fs_info, start->bytenr, 3002 -EEXIST); 3003 list_add_tail(&start->lower, &cache->leaves); 3004 } 3005 3006 /* 3007 * Use breadth first search to iterate all related edges. 3008 * 3009 * The starting points are all the edges of this node 3010 */ 3011 list_for_each_entry(edge, &start->upper, list[LOWER]) 3012 list_add_tail(&edge->list[UPPER], &pending_edge); 3013 3014 while (!list_empty(&pending_edge)) { 3015 struct btrfs_backref_node *upper; 3016 struct btrfs_backref_node *lower; 3017 3018 edge = list_first_entry(&pending_edge, 3019 struct btrfs_backref_edge, list[UPPER]); 3020 list_del_init(&edge->list[UPPER]); 3021 upper = edge->node[UPPER]; 3022 lower = edge->node[LOWER]; 3023 3024 /* Parent is detached, no need to keep any edges */ 3025 if (upper->detached) { 3026 list_del(&edge->list[LOWER]); 3027 btrfs_backref_free_edge(cache, edge); 3028 3029 /* Lower node is orphan, queue for cleanup */ 3030 if (list_empty(&lower->upper)) 3031 list_add(&lower->list, useless_node); 3032 continue; 3033 } 3034 3035 /* 3036 * All new nodes added in current build_backref_tree() haven't 3037 * been linked to the cache rb tree. 3038 * So if we have upper->rb_node populated, this means a cache 3039 * hit. We only need to link the edge, as @upper and all its 3040 * parents have already been linked. 3041 */ 3042 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3043 if (upper->lowest) { 3044 list_del_init(&upper->lower); 3045 upper->lowest = 0; 3046 } 3047 3048 list_add_tail(&edge->list[UPPER], &upper->lower); 3049 continue; 3050 } 3051 3052 /* Sanity check, we shouldn't have any unchecked nodes */ 3053 if (!upper->checked) { 3054 ASSERT(0); 3055 return -EUCLEAN; 3056 } 3057 3058 /* Sanity check, COW-only node has non-COW-only parent */ 3059 if (start->cowonly != upper->cowonly) { 3060 ASSERT(0); 3061 return -EUCLEAN; 3062 } 3063 3064 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3065 if (!upper->cowonly) { 3066 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3067 &upper->rb_node); 3068 if (rb_node) { 3069 btrfs_backref_panic(cache->fs_info, 3070 upper->bytenr, -EEXIST); 3071 return -EUCLEAN; 3072 } 3073 } 3074 3075 list_add_tail(&edge->list[UPPER], &upper->lower); 3076 3077 /* 3078 * Also queue all the parent edges of this uncached node 3079 * to finish the upper linkage 3080 */ 3081 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3082 list_add_tail(&edge->list[UPPER], &pending_edge); 3083 } 3084 return 0; 3085 } 3086 3087 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3088 struct btrfs_backref_node *node) 3089 { 3090 struct btrfs_backref_node *lower; 3091 struct btrfs_backref_node *upper; 3092 struct btrfs_backref_edge *edge; 3093 3094 while (!list_empty(&cache->useless_node)) { 3095 lower = list_first_entry(&cache->useless_node, 3096 struct btrfs_backref_node, list); 3097 list_del_init(&lower->list); 3098 } 3099 while (!list_empty(&cache->pending_edge)) { 3100 edge = list_first_entry(&cache->pending_edge, 3101 struct btrfs_backref_edge, list[UPPER]); 3102 list_del(&edge->list[UPPER]); 3103 list_del(&edge->list[LOWER]); 3104 lower = edge->node[LOWER]; 3105 upper = edge->node[UPPER]; 3106 btrfs_backref_free_edge(cache, edge); 3107 3108 /* 3109 * Lower is no longer linked to any upper backref nodes and 3110 * isn't in the cache, we can free it ourselves. 3111 */ 3112 if (list_empty(&lower->upper) && 3113 RB_EMPTY_NODE(&lower->rb_node)) 3114 list_add(&lower->list, &cache->useless_node); 3115 3116 if (!RB_EMPTY_NODE(&upper->rb_node)) 3117 continue; 3118 3119 /* Add this guy's upper edges to the list to process */ 3120 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3121 list_add_tail(&edge->list[UPPER], 3122 &cache->pending_edge); 3123 if (list_empty(&upper->upper)) 3124 list_add(&upper->list, &cache->useless_node); 3125 } 3126 3127 while (!list_empty(&cache->useless_node)) { 3128 lower = list_first_entry(&cache->useless_node, 3129 struct btrfs_backref_node, list); 3130 list_del_init(&lower->list); 3131 if (lower == node) 3132 node = NULL; 3133 btrfs_backref_drop_node(cache, lower); 3134 } 3135 3136 btrfs_backref_cleanup_node(cache, node); 3137 ASSERT(list_empty(&cache->useless_node) && 3138 list_empty(&cache->pending_edge)); 3139 } 3140