• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   * Copyright (C) 2011 STRATO.  All rights reserved.
4   */
5  
6  #include <linux/mm.h>
7  #include <linux/rbtree.h>
8  #include <trace/events/btrfs.h>
9  #include "ctree.h"
10  #include "disk-io.h"
11  #include "backref.h"
12  #include "ulist.h"
13  #include "transaction.h"
14  #include "delayed-ref.h"
15  #include "locking.h"
16  #include "misc.h"
17  
18  /* Just an arbitrary number so we can be sure this happened */
19  #define BACKREF_FOUND_SHARED 6
20  
21  struct extent_inode_elem {
22  	u64 inum;
23  	u64 offset;
24  	struct extent_inode_elem *next;
25  };
26  
check_extent_in_eb(const struct btrfs_key * key,const struct extent_buffer * eb,const struct btrfs_file_extent_item * fi,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)27  static int check_extent_in_eb(const struct btrfs_key *key,
28  			      const struct extent_buffer *eb,
29  			      const struct btrfs_file_extent_item *fi,
30  			      u64 extent_item_pos,
31  			      struct extent_inode_elem **eie,
32  			      bool ignore_offset)
33  {
34  	u64 offset = 0;
35  	struct extent_inode_elem *e;
36  
37  	if (!ignore_offset &&
38  	    !btrfs_file_extent_compression(eb, fi) &&
39  	    !btrfs_file_extent_encryption(eb, fi) &&
40  	    !btrfs_file_extent_other_encoding(eb, fi)) {
41  		u64 data_offset;
42  		u64 data_len;
43  
44  		data_offset = btrfs_file_extent_offset(eb, fi);
45  		data_len = btrfs_file_extent_num_bytes(eb, fi);
46  
47  		if (extent_item_pos < data_offset ||
48  		    extent_item_pos >= data_offset + data_len)
49  			return 1;
50  		offset = extent_item_pos - data_offset;
51  	}
52  
53  	e = kmalloc(sizeof(*e), GFP_NOFS);
54  	if (!e)
55  		return -ENOMEM;
56  
57  	e->next = *eie;
58  	e->inum = key->objectid;
59  	e->offset = key->offset + offset;
60  	*eie = e;
61  
62  	return 0;
63  }
64  
free_inode_elem_list(struct extent_inode_elem * eie)65  static void free_inode_elem_list(struct extent_inode_elem *eie)
66  {
67  	struct extent_inode_elem *eie_next;
68  
69  	for (; eie; eie = eie_next) {
70  		eie_next = eie->next;
71  		kfree(eie);
72  	}
73  }
74  
find_extent_in_eb(const struct extent_buffer * eb,u64 wanted_disk_byte,u64 extent_item_pos,struct extent_inode_elem ** eie,bool ignore_offset)75  static int find_extent_in_eb(const struct extent_buffer *eb,
76  			     u64 wanted_disk_byte, u64 extent_item_pos,
77  			     struct extent_inode_elem **eie,
78  			     bool ignore_offset)
79  {
80  	u64 disk_byte;
81  	struct btrfs_key key;
82  	struct btrfs_file_extent_item *fi;
83  	int slot;
84  	int nritems;
85  	int extent_type;
86  	int ret;
87  
88  	/*
89  	 * from the shared data ref, we only have the leaf but we need
90  	 * the key. thus, we must look into all items and see that we
91  	 * find one (some) with a reference to our extent item.
92  	 */
93  	nritems = btrfs_header_nritems(eb);
94  	for (slot = 0; slot < nritems; ++slot) {
95  		btrfs_item_key_to_cpu(eb, &key, slot);
96  		if (key.type != BTRFS_EXTENT_DATA_KEY)
97  			continue;
98  		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99  		extent_type = btrfs_file_extent_type(eb, fi);
100  		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101  			continue;
102  		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103  		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104  		if (disk_byte != wanted_disk_byte)
105  			continue;
106  
107  		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108  		if (ret < 0)
109  			return ret;
110  	}
111  
112  	return 0;
113  }
114  
115  struct preftree {
116  	struct rb_root_cached root;
117  	unsigned int count;
118  };
119  
120  #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
121  
122  struct preftrees {
123  	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124  	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125  	struct preftree indirect_missing_keys;
126  };
127  
128  /*
129   * Checks for a shared extent during backref search.
130   *
131   * The share_count tracks prelim_refs (direct and indirect) having a
132   * ref->count >0:
133   *  - incremented when a ref->count transitions to >0
134   *  - decremented when a ref->count transitions to <1
135   */
136  struct share_check {
137  	u64 root_objectid;
138  	u64 inum;
139  	int share_count;
140  };
141  
extent_is_shared(struct share_check * sc)142  static inline int extent_is_shared(struct share_check *sc)
143  {
144  	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145  }
146  
147  static struct kmem_cache *btrfs_prelim_ref_cache;
148  
btrfs_prelim_ref_init(void)149  int __init btrfs_prelim_ref_init(void)
150  {
151  	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152  					sizeof(struct prelim_ref),
153  					0,
154  					SLAB_MEM_SPREAD,
155  					NULL);
156  	if (!btrfs_prelim_ref_cache)
157  		return -ENOMEM;
158  	return 0;
159  }
160  
btrfs_prelim_ref_exit(void)161  void __cold btrfs_prelim_ref_exit(void)
162  {
163  	kmem_cache_destroy(btrfs_prelim_ref_cache);
164  }
165  
free_pref(struct prelim_ref * ref)166  static void free_pref(struct prelim_ref *ref)
167  {
168  	kmem_cache_free(btrfs_prelim_ref_cache, ref);
169  }
170  
171  /*
172   * Return 0 when both refs are for the same block (and can be merged).
173   * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174   * indicates a 'higher' block.
175   */
prelim_ref_compare(struct prelim_ref * ref1,struct prelim_ref * ref2)176  static int prelim_ref_compare(struct prelim_ref *ref1,
177  			      struct prelim_ref *ref2)
178  {
179  	if (ref1->level < ref2->level)
180  		return -1;
181  	if (ref1->level > ref2->level)
182  		return 1;
183  	if (ref1->root_id < ref2->root_id)
184  		return -1;
185  	if (ref1->root_id > ref2->root_id)
186  		return 1;
187  	if (ref1->key_for_search.type < ref2->key_for_search.type)
188  		return -1;
189  	if (ref1->key_for_search.type > ref2->key_for_search.type)
190  		return 1;
191  	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192  		return -1;
193  	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194  		return 1;
195  	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196  		return -1;
197  	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198  		return 1;
199  	if (ref1->parent < ref2->parent)
200  		return -1;
201  	if (ref1->parent > ref2->parent)
202  		return 1;
203  
204  	return 0;
205  }
206  
update_share_count(struct share_check * sc,int oldcount,int newcount)207  static void update_share_count(struct share_check *sc, int oldcount,
208  			       int newcount)
209  {
210  	if ((!sc) || (oldcount == 0 && newcount < 1))
211  		return;
212  
213  	if (oldcount > 0 && newcount < 1)
214  		sc->share_count--;
215  	else if (oldcount < 1 && newcount > 0)
216  		sc->share_count++;
217  }
218  
219  /*
220   * Add @newref to the @root rbtree, merging identical refs.
221   *
222   * Callers should assume that newref has been freed after calling.
223   */
prelim_ref_insert(const struct btrfs_fs_info * fs_info,struct preftree * preftree,struct prelim_ref * newref,struct share_check * sc)224  static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225  			      struct preftree *preftree,
226  			      struct prelim_ref *newref,
227  			      struct share_check *sc)
228  {
229  	struct rb_root_cached *root;
230  	struct rb_node **p;
231  	struct rb_node *parent = NULL;
232  	struct prelim_ref *ref;
233  	int result;
234  	bool leftmost = true;
235  
236  	root = &preftree->root;
237  	p = &root->rb_root.rb_node;
238  
239  	while (*p) {
240  		parent = *p;
241  		ref = rb_entry(parent, struct prelim_ref, rbnode);
242  		result = prelim_ref_compare(ref, newref);
243  		if (result < 0) {
244  			p = &(*p)->rb_left;
245  		} else if (result > 0) {
246  			p = &(*p)->rb_right;
247  			leftmost = false;
248  		} else {
249  			/* Identical refs, merge them and free @newref */
250  			struct extent_inode_elem *eie = ref->inode_list;
251  
252  			while (eie && eie->next)
253  				eie = eie->next;
254  
255  			if (!eie)
256  				ref->inode_list = newref->inode_list;
257  			else
258  				eie->next = newref->inode_list;
259  			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260  						     preftree->count);
261  			/*
262  			 * A delayed ref can have newref->count < 0.
263  			 * The ref->count is updated to follow any
264  			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265  			 */
266  			update_share_count(sc, ref->count,
267  					   ref->count + newref->count);
268  			ref->count += newref->count;
269  			free_pref(newref);
270  			return;
271  		}
272  	}
273  
274  	update_share_count(sc, 0, newref->count);
275  	preftree->count++;
276  	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277  	rb_link_node(&newref->rbnode, parent, p);
278  	rb_insert_color_cached(&newref->rbnode, root, leftmost);
279  }
280  
281  /*
282   * Release the entire tree.  We don't care about internal consistency so
283   * just free everything and then reset the tree root.
284   */
prelim_release(struct preftree * preftree)285  static void prelim_release(struct preftree *preftree)
286  {
287  	struct prelim_ref *ref, *next_ref;
288  
289  	rbtree_postorder_for_each_entry_safe(ref, next_ref,
290  					     &preftree->root.rb_root, rbnode)
291  		free_pref(ref);
292  
293  	preftree->root = RB_ROOT_CACHED;
294  	preftree->count = 0;
295  }
296  
297  /*
298   * the rules for all callers of this function are:
299   * - obtaining the parent is the goal
300   * - if you add a key, you must know that it is a correct key
301   * - if you cannot add the parent or a correct key, then we will look into the
302   *   block later to set a correct key
303   *
304   * delayed refs
305   * ============
306   *        backref type | shared | indirect | shared | indirect
307   * information         |   tree |     tree |   data |     data
308   * --------------------+--------+----------+--------+----------
309   *      parent logical |    y   |     -    |    -   |     -
310   *      key to resolve |    -   |     y    |    y   |     y
311   *  tree block logical |    -   |     -    |    -   |     -
312   *  root for resolving |    y   |     y    |    y   |     y
313   *
314   * - column 1:       we've the parent -> done
315   * - column 2, 3, 4: we use the key to find the parent
316   *
317   * on disk refs (inline or keyed)
318   * ==============================
319   *        backref type | shared | indirect | shared | indirect
320   * information         |   tree |     tree |   data |     data
321   * --------------------+--------+----------+--------+----------
322   *      parent logical |    y   |     -    |    y   |     -
323   *      key to resolve |    -   |     -    |    -   |     y
324   *  tree block logical |    y   |     y    |    y   |     y
325   *  root for resolving |    -   |     y    |    y   |     y
326   *
327   * - column 1, 3: we've the parent -> done
328   * - column 2:    we take the first key from the block to find the parent
329   *                (see add_missing_keys)
330   * - column 4:    we use the key to find the parent
331   *
332   * additional information that's available but not required to find the parent
333   * block might help in merging entries to gain some speed.
334   */
add_prelim_ref(const struct btrfs_fs_info * fs_info,struct preftree * preftree,u64 root_id,const struct btrfs_key * key,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)335  static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
336  			  struct preftree *preftree, u64 root_id,
337  			  const struct btrfs_key *key, int level, u64 parent,
338  			  u64 wanted_disk_byte, int count,
339  			  struct share_check *sc, gfp_t gfp_mask)
340  {
341  	struct prelim_ref *ref;
342  
343  	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
344  		return 0;
345  
346  	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347  	if (!ref)
348  		return -ENOMEM;
349  
350  	ref->root_id = root_id;
351  	if (key)
352  		ref->key_for_search = *key;
353  	else
354  		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
355  
356  	ref->inode_list = NULL;
357  	ref->level = level;
358  	ref->count = count;
359  	ref->parent = parent;
360  	ref->wanted_disk_byte = wanted_disk_byte;
361  	prelim_ref_insert(fs_info, preftree, ref, sc);
362  	return extent_is_shared(sc);
363  }
364  
365  /* direct refs use root == 0, key == NULL */
add_direct_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,int level,u64 parent,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)366  static int add_direct_ref(const struct btrfs_fs_info *fs_info,
367  			  struct preftrees *preftrees, int level, u64 parent,
368  			  u64 wanted_disk_byte, int count,
369  			  struct share_check *sc, gfp_t gfp_mask)
370  {
371  	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
372  			      parent, wanted_disk_byte, count, sc, gfp_mask);
373  }
374  
375  /* indirect refs use parent == 0 */
add_indirect_ref(const struct btrfs_fs_info * fs_info,struct preftrees * preftrees,u64 root_id,const struct btrfs_key * key,int level,u64 wanted_disk_byte,int count,struct share_check * sc,gfp_t gfp_mask)376  static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
377  			    struct preftrees *preftrees, u64 root_id,
378  			    const struct btrfs_key *key, int level,
379  			    u64 wanted_disk_byte, int count,
380  			    struct share_check *sc, gfp_t gfp_mask)
381  {
382  	struct preftree *tree = &preftrees->indirect;
383  
384  	if (!key)
385  		tree = &preftrees->indirect_missing_keys;
386  	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
387  			      wanted_disk_byte, count, sc, gfp_mask);
388  }
389  
is_shared_data_backref(struct preftrees * preftrees,u64 bytenr)390  static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
391  {
392  	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
393  	struct rb_node *parent = NULL;
394  	struct prelim_ref *ref = NULL;
395  	struct prelim_ref target = {};
396  	int result;
397  
398  	target.parent = bytenr;
399  
400  	while (*p) {
401  		parent = *p;
402  		ref = rb_entry(parent, struct prelim_ref, rbnode);
403  		result = prelim_ref_compare(ref, &target);
404  
405  		if (result < 0)
406  			p = &(*p)->rb_left;
407  		else if (result > 0)
408  			p = &(*p)->rb_right;
409  		else
410  			return 1;
411  	}
412  	return 0;
413  }
414  
add_all_parents(struct btrfs_root * root,struct btrfs_path * path,struct ulist * parents,struct preftrees * preftrees,struct prelim_ref * ref,int level,u64 time_seq,const u64 * extent_item_pos,bool ignore_offset)415  static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
416  			   struct ulist *parents,
417  			   struct preftrees *preftrees, struct prelim_ref *ref,
418  			   int level, u64 time_seq, const u64 *extent_item_pos,
419  			   bool ignore_offset)
420  {
421  	int ret = 0;
422  	int slot;
423  	struct extent_buffer *eb;
424  	struct btrfs_key key;
425  	struct btrfs_key *key_for_search = &ref->key_for_search;
426  	struct btrfs_file_extent_item *fi;
427  	struct extent_inode_elem *eie = NULL, *old = NULL;
428  	u64 disk_byte;
429  	u64 wanted_disk_byte = ref->wanted_disk_byte;
430  	u64 count = 0;
431  	u64 data_offset;
432  
433  	if (level != 0) {
434  		eb = path->nodes[level];
435  		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
436  		if (ret < 0)
437  			return ret;
438  		return 0;
439  	}
440  
441  	/*
442  	 * 1. We normally enter this function with the path already pointing to
443  	 *    the first item to check. But sometimes, we may enter it with
444  	 *    slot == nritems.
445  	 * 2. We are searching for normal backref but bytenr of this leaf
446  	 *    matches shared data backref
447  	 * 3. The leaf owner is not equal to the root we are searching
448  	 *
449  	 * For these cases, go to the next leaf before we continue.
450  	 */
451  	eb = path->nodes[0];
452  	if (path->slots[0] >= btrfs_header_nritems(eb) ||
453  	    is_shared_data_backref(preftrees, eb->start) ||
454  	    ref->root_id != btrfs_header_owner(eb)) {
455  		if (time_seq == SEQ_LAST)
456  			ret = btrfs_next_leaf(root, path);
457  		else
458  			ret = btrfs_next_old_leaf(root, path, time_seq);
459  	}
460  
461  	while (!ret && count < ref->count) {
462  		eb = path->nodes[0];
463  		slot = path->slots[0];
464  
465  		btrfs_item_key_to_cpu(eb, &key, slot);
466  
467  		if (key.objectid != key_for_search->objectid ||
468  		    key.type != BTRFS_EXTENT_DATA_KEY)
469  			break;
470  
471  		/*
472  		 * We are searching for normal backref but bytenr of this leaf
473  		 * matches shared data backref, OR
474  		 * the leaf owner is not equal to the root we are searching for
475  		 */
476  		if (slot == 0 &&
477  		    (is_shared_data_backref(preftrees, eb->start) ||
478  		     ref->root_id != btrfs_header_owner(eb))) {
479  			if (time_seq == SEQ_LAST)
480  				ret = btrfs_next_leaf(root, path);
481  			else
482  				ret = btrfs_next_old_leaf(root, path, time_seq);
483  			continue;
484  		}
485  		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
486  		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
487  		data_offset = btrfs_file_extent_offset(eb, fi);
488  
489  		if (disk_byte == wanted_disk_byte) {
490  			eie = NULL;
491  			old = NULL;
492  			if (ref->key_for_search.offset == key.offset - data_offset)
493  				count++;
494  			else
495  				goto next;
496  			if (extent_item_pos) {
497  				ret = check_extent_in_eb(&key, eb, fi,
498  						*extent_item_pos,
499  						&eie, ignore_offset);
500  				if (ret < 0)
501  					break;
502  			}
503  			if (ret > 0)
504  				goto next;
505  			ret = ulist_add_merge_ptr(parents, eb->start,
506  						  eie, (void **)&old, GFP_NOFS);
507  			if (ret < 0)
508  				break;
509  			if (!ret && extent_item_pos) {
510  				while (old->next)
511  					old = old->next;
512  				old->next = eie;
513  			}
514  			eie = NULL;
515  		}
516  next:
517  		if (time_seq == SEQ_LAST)
518  			ret = btrfs_next_item(root, path);
519  		else
520  			ret = btrfs_next_old_item(root, path, time_seq);
521  	}
522  
523  	if (ret > 0)
524  		ret = 0;
525  	else if (ret < 0)
526  		free_inode_elem_list(eie);
527  	return ret;
528  }
529  
530  /*
531   * resolve an indirect backref in the form (root_id, key, level)
532   * to a logical address
533   */
resolve_indirect_ref(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,struct prelim_ref * ref,struct ulist * parents,const u64 * extent_item_pos,bool ignore_offset)534  static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
535  				struct btrfs_path *path, u64 time_seq,
536  				struct preftrees *preftrees,
537  				struct prelim_ref *ref, struct ulist *parents,
538  				const u64 *extent_item_pos, bool ignore_offset)
539  {
540  	struct btrfs_root *root;
541  	struct extent_buffer *eb;
542  	int ret = 0;
543  	int root_level;
544  	int level = ref->level;
545  	struct btrfs_key search_key = ref->key_for_search;
546  
547  	/*
548  	 * If we're search_commit_root we could possibly be holding locks on
549  	 * other tree nodes.  This happens when qgroups does backref walks when
550  	 * adding new delayed refs.  To deal with this we need to look in cache
551  	 * for the root, and if we don't find it then we need to search the
552  	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
553  	 * here.
554  	 */
555  	if (path->search_commit_root)
556  		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
557  	else
558  		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
559  	if (IS_ERR(root)) {
560  		ret = PTR_ERR(root);
561  		goto out_free;
562  	}
563  
564  	if (!path->search_commit_root &&
565  	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
566  		ret = -ENOENT;
567  		goto out;
568  	}
569  
570  	if (btrfs_is_testing(fs_info)) {
571  		ret = -ENOENT;
572  		goto out;
573  	}
574  
575  	if (path->search_commit_root)
576  		root_level = btrfs_header_level(root->commit_root);
577  	else if (time_seq == SEQ_LAST)
578  		root_level = btrfs_header_level(root->node);
579  	else
580  		root_level = btrfs_old_root_level(root, time_seq);
581  
582  	if (root_level + 1 == level)
583  		goto out;
584  
585  	/*
586  	 * We can often find data backrefs with an offset that is too large
587  	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
588  	 * subtracting a file's offset with the data offset of its
589  	 * corresponding extent data item. This can happen for example in the
590  	 * clone ioctl.
591  	 *
592  	 * So if we detect such case we set the search key's offset to zero to
593  	 * make sure we will find the matching file extent item at
594  	 * add_all_parents(), otherwise we will miss it because the offset
595  	 * taken form the backref is much larger then the offset of the file
596  	 * extent item. This can make us scan a very large number of file
597  	 * extent items, but at least it will not make us miss any.
598  	 *
599  	 * This is an ugly workaround for a behaviour that should have never
600  	 * existed, but it does and a fix for the clone ioctl would touch a lot
601  	 * of places, cause backwards incompatibility and would not fix the
602  	 * problem for extents cloned with older kernels.
603  	 */
604  	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
605  	    search_key.offset >= LLONG_MAX)
606  		search_key.offset = 0;
607  	path->lowest_level = level;
608  	if (time_seq == SEQ_LAST)
609  		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
610  	else
611  		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
612  
613  	btrfs_debug(fs_info,
614  		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
615  		 ref->root_id, level, ref->count, ret,
616  		 ref->key_for_search.objectid, ref->key_for_search.type,
617  		 ref->key_for_search.offset);
618  	if (ret < 0)
619  		goto out;
620  
621  	eb = path->nodes[level];
622  	while (!eb) {
623  		if (WARN_ON(!level)) {
624  			ret = 1;
625  			goto out;
626  		}
627  		level--;
628  		eb = path->nodes[level];
629  	}
630  
631  	ret = add_all_parents(root, path, parents, preftrees, ref, level,
632  			      time_seq, extent_item_pos, ignore_offset);
633  out:
634  	btrfs_put_root(root);
635  out_free:
636  	path->lowest_level = 0;
637  	btrfs_release_path(path);
638  	return ret;
639  }
640  
641  static struct extent_inode_elem *
unode_aux_to_inode_list(struct ulist_node * node)642  unode_aux_to_inode_list(struct ulist_node *node)
643  {
644  	if (!node)
645  		return NULL;
646  	return (struct extent_inode_elem *)(uintptr_t)node->aux;
647  }
648  
649  /*
650   * We maintain three separate rbtrees: one for direct refs, one for
651   * indirect refs which have a key, and one for indirect refs which do not
652   * have a key. Each tree does merge on insertion.
653   *
654   * Once all of the references are located, we iterate over the tree of
655   * indirect refs with missing keys. An appropriate key is located and
656   * the ref is moved onto the tree for indirect refs. After all missing
657   * keys are thus located, we iterate over the indirect ref tree, resolve
658   * each reference, and then insert the resolved reference onto the
659   * direct tree (merging there too).
660   *
661   * New backrefs (i.e., for parent nodes) are added to the appropriate
662   * rbtree as they are encountered. The new backrefs are subsequently
663   * resolved as above.
664   */
resolve_indirect_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 time_seq,struct preftrees * preftrees,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)665  static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
666  				 struct btrfs_path *path, u64 time_seq,
667  				 struct preftrees *preftrees,
668  				 const u64 *extent_item_pos,
669  				 struct share_check *sc, bool ignore_offset)
670  {
671  	int err;
672  	int ret = 0;
673  	struct ulist *parents;
674  	struct ulist_node *node;
675  	struct ulist_iterator uiter;
676  	struct rb_node *rnode;
677  
678  	parents = ulist_alloc(GFP_NOFS);
679  	if (!parents)
680  		return -ENOMEM;
681  
682  	/*
683  	 * We could trade memory usage for performance here by iterating
684  	 * the tree, allocating new refs for each insertion, and then
685  	 * freeing the entire indirect tree when we're done.  In some test
686  	 * cases, the tree can grow quite large (~200k objects).
687  	 */
688  	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
689  		struct prelim_ref *ref;
690  
691  		ref = rb_entry(rnode, struct prelim_ref, rbnode);
692  		if (WARN(ref->parent,
693  			 "BUG: direct ref found in indirect tree")) {
694  			ret = -EINVAL;
695  			goto out;
696  		}
697  
698  		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
699  		preftrees->indirect.count--;
700  
701  		if (ref->count == 0) {
702  			free_pref(ref);
703  			continue;
704  		}
705  
706  		if (sc && sc->root_objectid &&
707  		    ref->root_id != sc->root_objectid) {
708  			free_pref(ref);
709  			ret = BACKREF_FOUND_SHARED;
710  			goto out;
711  		}
712  		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
713  					   ref, parents, extent_item_pos,
714  					   ignore_offset);
715  		/*
716  		 * we can only tolerate ENOENT,otherwise,we should catch error
717  		 * and return directly.
718  		 */
719  		if (err == -ENOENT) {
720  			prelim_ref_insert(fs_info, &preftrees->direct, ref,
721  					  NULL);
722  			continue;
723  		} else if (err) {
724  			free_pref(ref);
725  			ret = err;
726  			goto out;
727  		}
728  
729  		/* we put the first parent into the ref at hand */
730  		ULIST_ITER_INIT(&uiter);
731  		node = ulist_next(parents, &uiter);
732  		ref->parent = node ? node->val : 0;
733  		ref->inode_list = unode_aux_to_inode_list(node);
734  
735  		/* Add a prelim_ref(s) for any other parent(s). */
736  		while ((node = ulist_next(parents, &uiter))) {
737  			struct prelim_ref *new_ref;
738  
739  			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
740  						   GFP_NOFS);
741  			if (!new_ref) {
742  				free_pref(ref);
743  				ret = -ENOMEM;
744  				goto out;
745  			}
746  			memcpy(new_ref, ref, sizeof(*ref));
747  			new_ref->parent = node->val;
748  			new_ref->inode_list = unode_aux_to_inode_list(node);
749  			prelim_ref_insert(fs_info, &preftrees->direct,
750  					  new_ref, NULL);
751  		}
752  
753  		/*
754  		 * Now it's a direct ref, put it in the direct tree. We must
755  		 * do this last because the ref could be merged/freed here.
756  		 */
757  		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
758  
759  		ulist_reinit(parents);
760  		cond_resched();
761  	}
762  out:
763  	ulist_free(parents);
764  	return ret;
765  }
766  
767  /*
768   * read tree blocks and add keys where required.
769   */
add_missing_keys(struct btrfs_fs_info * fs_info,struct preftrees * preftrees,bool lock)770  static int add_missing_keys(struct btrfs_fs_info *fs_info,
771  			    struct preftrees *preftrees, bool lock)
772  {
773  	struct prelim_ref *ref;
774  	struct extent_buffer *eb;
775  	struct preftree *tree = &preftrees->indirect_missing_keys;
776  	struct rb_node *node;
777  
778  	while ((node = rb_first_cached(&tree->root))) {
779  		ref = rb_entry(node, struct prelim_ref, rbnode);
780  		rb_erase_cached(node, &tree->root);
781  
782  		BUG_ON(ref->parent);	/* should not be a direct ref */
783  		BUG_ON(ref->key_for_search.type);
784  		BUG_ON(!ref->wanted_disk_byte);
785  
786  		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
787  				     ref->level - 1, NULL);
788  		if (IS_ERR(eb)) {
789  			free_pref(ref);
790  			return PTR_ERR(eb);
791  		} else if (!extent_buffer_uptodate(eb)) {
792  			free_pref(ref);
793  			free_extent_buffer(eb);
794  			return -EIO;
795  		}
796  		if (lock)
797  			btrfs_tree_read_lock(eb);
798  		if (btrfs_header_level(eb) == 0)
799  			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
800  		else
801  			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
802  		if (lock)
803  			btrfs_tree_read_unlock(eb);
804  		free_extent_buffer(eb);
805  		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
806  		cond_resched();
807  	}
808  	return 0;
809  }
810  
811  /*
812   * add all currently queued delayed refs from this head whose seq nr is
813   * smaller or equal that seq to the list
814   */
add_delayed_refs(const struct btrfs_fs_info * fs_info,struct btrfs_delayed_ref_head * head,u64 seq,struct preftrees * preftrees,struct share_check * sc)815  static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
816  			    struct btrfs_delayed_ref_head *head, u64 seq,
817  			    struct preftrees *preftrees, struct share_check *sc)
818  {
819  	struct btrfs_delayed_ref_node *node;
820  	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
821  	struct btrfs_key key;
822  	struct btrfs_key tmp_op_key;
823  	struct rb_node *n;
824  	int count;
825  	int ret = 0;
826  
827  	if (extent_op && extent_op->update_key)
828  		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
829  
830  	spin_lock(&head->lock);
831  	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
832  		node = rb_entry(n, struct btrfs_delayed_ref_node,
833  				ref_node);
834  		if (node->seq > seq)
835  			continue;
836  
837  		switch (node->action) {
838  		case BTRFS_ADD_DELAYED_EXTENT:
839  		case BTRFS_UPDATE_DELAYED_HEAD:
840  			WARN_ON(1);
841  			continue;
842  		case BTRFS_ADD_DELAYED_REF:
843  			count = node->ref_mod;
844  			break;
845  		case BTRFS_DROP_DELAYED_REF:
846  			count = node->ref_mod * -1;
847  			break;
848  		default:
849  			BUG();
850  		}
851  		switch (node->type) {
852  		case BTRFS_TREE_BLOCK_REF_KEY: {
853  			/* NORMAL INDIRECT METADATA backref */
854  			struct btrfs_delayed_tree_ref *ref;
855  
856  			ref = btrfs_delayed_node_to_tree_ref(node);
857  			ret = add_indirect_ref(fs_info, preftrees, ref->root,
858  					       &tmp_op_key, ref->level + 1,
859  					       node->bytenr, count, sc,
860  					       GFP_ATOMIC);
861  			break;
862  		}
863  		case BTRFS_SHARED_BLOCK_REF_KEY: {
864  			/* SHARED DIRECT METADATA backref */
865  			struct btrfs_delayed_tree_ref *ref;
866  
867  			ref = btrfs_delayed_node_to_tree_ref(node);
868  
869  			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
870  					     ref->parent, node->bytenr, count,
871  					     sc, GFP_ATOMIC);
872  			break;
873  		}
874  		case BTRFS_EXTENT_DATA_REF_KEY: {
875  			/* NORMAL INDIRECT DATA backref */
876  			struct btrfs_delayed_data_ref *ref;
877  			ref = btrfs_delayed_node_to_data_ref(node);
878  
879  			key.objectid = ref->objectid;
880  			key.type = BTRFS_EXTENT_DATA_KEY;
881  			key.offset = ref->offset;
882  
883  			/*
884  			 * Found a inum that doesn't match our known inum, we
885  			 * know it's shared.
886  			 */
887  			if (sc && sc->inum && ref->objectid != sc->inum) {
888  				ret = BACKREF_FOUND_SHARED;
889  				goto out;
890  			}
891  
892  			ret = add_indirect_ref(fs_info, preftrees, ref->root,
893  					       &key, 0, node->bytenr, count, sc,
894  					       GFP_ATOMIC);
895  			break;
896  		}
897  		case BTRFS_SHARED_DATA_REF_KEY: {
898  			/* SHARED DIRECT FULL backref */
899  			struct btrfs_delayed_data_ref *ref;
900  
901  			ref = btrfs_delayed_node_to_data_ref(node);
902  
903  			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
904  					     node->bytenr, count, sc,
905  					     GFP_ATOMIC);
906  			break;
907  		}
908  		default:
909  			WARN_ON(1);
910  		}
911  		/*
912  		 * We must ignore BACKREF_FOUND_SHARED until all delayed
913  		 * refs have been checked.
914  		 */
915  		if (ret && (ret != BACKREF_FOUND_SHARED))
916  			break;
917  	}
918  	if (!ret)
919  		ret = extent_is_shared(sc);
920  out:
921  	spin_unlock(&head->lock);
922  	return ret;
923  }
924  
925  /*
926   * add all inline backrefs for bytenr to the list
927   *
928   * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
929   */
add_inline_refs(const struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int * info_level,struct preftrees * preftrees,struct share_check * sc)930  static int add_inline_refs(const struct btrfs_fs_info *fs_info,
931  			   struct btrfs_path *path, u64 bytenr,
932  			   int *info_level, struct preftrees *preftrees,
933  			   struct share_check *sc)
934  {
935  	int ret = 0;
936  	int slot;
937  	struct extent_buffer *leaf;
938  	struct btrfs_key key;
939  	struct btrfs_key found_key;
940  	unsigned long ptr;
941  	unsigned long end;
942  	struct btrfs_extent_item *ei;
943  	u64 flags;
944  	u64 item_size;
945  
946  	/*
947  	 * enumerate all inline refs
948  	 */
949  	leaf = path->nodes[0];
950  	slot = path->slots[0];
951  
952  	item_size = btrfs_item_size_nr(leaf, slot);
953  	BUG_ON(item_size < sizeof(*ei));
954  
955  	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
956  	flags = btrfs_extent_flags(leaf, ei);
957  	btrfs_item_key_to_cpu(leaf, &found_key, slot);
958  
959  	ptr = (unsigned long)(ei + 1);
960  	end = (unsigned long)ei + item_size;
961  
962  	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
963  	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
964  		struct btrfs_tree_block_info *info;
965  
966  		info = (struct btrfs_tree_block_info *)ptr;
967  		*info_level = btrfs_tree_block_level(leaf, info);
968  		ptr += sizeof(struct btrfs_tree_block_info);
969  		BUG_ON(ptr > end);
970  	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
971  		*info_level = found_key.offset;
972  	} else {
973  		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
974  	}
975  
976  	while (ptr < end) {
977  		struct btrfs_extent_inline_ref *iref;
978  		u64 offset;
979  		int type;
980  
981  		iref = (struct btrfs_extent_inline_ref *)ptr;
982  		type = btrfs_get_extent_inline_ref_type(leaf, iref,
983  							BTRFS_REF_TYPE_ANY);
984  		if (type == BTRFS_REF_TYPE_INVALID)
985  			return -EUCLEAN;
986  
987  		offset = btrfs_extent_inline_ref_offset(leaf, iref);
988  
989  		switch (type) {
990  		case BTRFS_SHARED_BLOCK_REF_KEY:
991  			ret = add_direct_ref(fs_info, preftrees,
992  					     *info_level + 1, offset,
993  					     bytenr, 1, NULL, GFP_NOFS);
994  			break;
995  		case BTRFS_SHARED_DATA_REF_KEY: {
996  			struct btrfs_shared_data_ref *sdref;
997  			int count;
998  
999  			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1000  			count = btrfs_shared_data_ref_count(leaf, sdref);
1001  
1002  			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1003  					     bytenr, count, sc, GFP_NOFS);
1004  			break;
1005  		}
1006  		case BTRFS_TREE_BLOCK_REF_KEY:
1007  			ret = add_indirect_ref(fs_info, preftrees, offset,
1008  					       NULL, *info_level + 1,
1009  					       bytenr, 1, NULL, GFP_NOFS);
1010  			break;
1011  		case BTRFS_EXTENT_DATA_REF_KEY: {
1012  			struct btrfs_extent_data_ref *dref;
1013  			int count;
1014  			u64 root;
1015  
1016  			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1017  			count = btrfs_extent_data_ref_count(leaf, dref);
1018  			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1019  								      dref);
1020  			key.type = BTRFS_EXTENT_DATA_KEY;
1021  			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1022  
1023  			if (sc && sc->inum && key.objectid != sc->inum) {
1024  				ret = BACKREF_FOUND_SHARED;
1025  				break;
1026  			}
1027  
1028  			root = btrfs_extent_data_ref_root(leaf, dref);
1029  
1030  			ret = add_indirect_ref(fs_info, preftrees, root,
1031  					       &key, 0, bytenr, count,
1032  					       sc, GFP_NOFS);
1033  			break;
1034  		}
1035  		default:
1036  			WARN_ON(1);
1037  		}
1038  		if (ret)
1039  			return ret;
1040  		ptr += btrfs_extent_inline_ref_size(type);
1041  	}
1042  
1043  	return 0;
1044  }
1045  
1046  /*
1047   * add all non-inline backrefs for bytenr to the list
1048   *
1049   * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1050   */
add_keyed_refs(struct btrfs_fs_info * fs_info,struct btrfs_path * path,u64 bytenr,int info_level,struct preftrees * preftrees,struct share_check * sc)1051  static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1052  			  struct btrfs_path *path, u64 bytenr,
1053  			  int info_level, struct preftrees *preftrees,
1054  			  struct share_check *sc)
1055  {
1056  	struct btrfs_root *extent_root = fs_info->extent_root;
1057  	int ret;
1058  	int slot;
1059  	struct extent_buffer *leaf;
1060  	struct btrfs_key key;
1061  
1062  	while (1) {
1063  		ret = btrfs_next_item(extent_root, path);
1064  		if (ret < 0)
1065  			break;
1066  		if (ret) {
1067  			ret = 0;
1068  			break;
1069  		}
1070  
1071  		slot = path->slots[0];
1072  		leaf = path->nodes[0];
1073  		btrfs_item_key_to_cpu(leaf, &key, slot);
1074  
1075  		if (key.objectid != bytenr)
1076  			break;
1077  		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1078  			continue;
1079  		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1080  			break;
1081  
1082  		switch (key.type) {
1083  		case BTRFS_SHARED_BLOCK_REF_KEY:
1084  			/* SHARED DIRECT METADATA backref */
1085  			ret = add_direct_ref(fs_info, preftrees,
1086  					     info_level + 1, key.offset,
1087  					     bytenr, 1, NULL, GFP_NOFS);
1088  			break;
1089  		case BTRFS_SHARED_DATA_REF_KEY: {
1090  			/* SHARED DIRECT FULL backref */
1091  			struct btrfs_shared_data_ref *sdref;
1092  			int count;
1093  
1094  			sdref = btrfs_item_ptr(leaf, slot,
1095  					      struct btrfs_shared_data_ref);
1096  			count = btrfs_shared_data_ref_count(leaf, sdref);
1097  			ret = add_direct_ref(fs_info, preftrees, 0,
1098  					     key.offset, bytenr, count,
1099  					     sc, GFP_NOFS);
1100  			break;
1101  		}
1102  		case BTRFS_TREE_BLOCK_REF_KEY:
1103  			/* NORMAL INDIRECT METADATA backref */
1104  			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1105  					       NULL, info_level + 1, bytenr,
1106  					       1, NULL, GFP_NOFS);
1107  			break;
1108  		case BTRFS_EXTENT_DATA_REF_KEY: {
1109  			/* NORMAL INDIRECT DATA backref */
1110  			struct btrfs_extent_data_ref *dref;
1111  			int count;
1112  			u64 root;
1113  
1114  			dref = btrfs_item_ptr(leaf, slot,
1115  					      struct btrfs_extent_data_ref);
1116  			count = btrfs_extent_data_ref_count(leaf, dref);
1117  			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1118  								      dref);
1119  			key.type = BTRFS_EXTENT_DATA_KEY;
1120  			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1121  
1122  			if (sc && sc->inum && key.objectid != sc->inum) {
1123  				ret = BACKREF_FOUND_SHARED;
1124  				break;
1125  			}
1126  
1127  			root = btrfs_extent_data_ref_root(leaf, dref);
1128  			ret = add_indirect_ref(fs_info, preftrees, root,
1129  					       &key, 0, bytenr, count,
1130  					       sc, GFP_NOFS);
1131  			break;
1132  		}
1133  		default:
1134  			WARN_ON(1);
1135  		}
1136  		if (ret)
1137  			return ret;
1138  
1139  	}
1140  
1141  	return ret;
1142  }
1143  
1144  /*
1145   * this adds all existing backrefs (inline backrefs, backrefs and delayed
1146   * refs) for the given bytenr to the refs list, merges duplicates and resolves
1147   * indirect refs to their parent bytenr.
1148   * When roots are found, they're added to the roots list
1149   *
1150   * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1151   * much like trans == NULL case, the difference only lies in it will not
1152   * commit root.
1153   * The special case is for qgroup to search roots in commit_transaction().
1154   *
1155   * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1156   * shared extent is detected.
1157   *
1158   * Otherwise this returns 0 for success and <0 for an error.
1159   *
1160   * If ignore_offset is set to false, only extent refs whose offsets match
1161   * extent_item_pos are returned.  If true, every extent ref is returned
1162   * and extent_item_pos is ignored.
1163   *
1164   * FIXME some caching might speed things up
1165   */
find_parent_nodes(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 bytenr,u64 time_seq,struct ulist * refs,struct ulist * roots,const u64 * extent_item_pos,struct share_check * sc,bool ignore_offset)1166  static int find_parent_nodes(struct btrfs_trans_handle *trans,
1167  			     struct btrfs_fs_info *fs_info, u64 bytenr,
1168  			     u64 time_seq, struct ulist *refs,
1169  			     struct ulist *roots, const u64 *extent_item_pos,
1170  			     struct share_check *sc, bool ignore_offset)
1171  {
1172  	struct btrfs_key key;
1173  	struct btrfs_path *path;
1174  	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1175  	struct btrfs_delayed_ref_head *head;
1176  	int info_level = 0;
1177  	int ret;
1178  	struct prelim_ref *ref;
1179  	struct rb_node *node;
1180  	struct extent_inode_elem *eie = NULL;
1181  	struct preftrees preftrees = {
1182  		.direct = PREFTREE_INIT,
1183  		.indirect = PREFTREE_INIT,
1184  		.indirect_missing_keys = PREFTREE_INIT
1185  	};
1186  
1187  	key.objectid = bytenr;
1188  	key.offset = (u64)-1;
1189  	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1190  		key.type = BTRFS_METADATA_ITEM_KEY;
1191  	else
1192  		key.type = BTRFS_EXTENT_ITEM_KEY;
1193  
1194  	path = btrfs_alloc_path();
1195  	if (!path)
1196  		return -ENOMEM;
1197  	if (!trans) {
1198  		path->search_commit_root = 1;
1199  		path->skip_locking = 1;
1200  	}
1201  
1202  	if (time_seq == SEQ_LAST)
1203  		path->skip_locking = 1;
1204  
1205  	/*
1206  	 * grab both a lock on the path and a lock on the delayed ref head.
1207  	 * We need both to get a consistent picture of how the refs look
1208  	 * at a specified point in time
1209  	 */
1210  again:
1211  	head = NULL;
1212  
1213  	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1214  	if (ret < 0)
1215  		goto out;
1216  	if (ret == 0) {
1217  		/* This shouldn't happen, indicates a bug or fs corruption. */
1218  		ASSERT(ret != 0);
1219  		ret = -EUCLEAN;
1220  		goto out;
1221  	}
1222  
1223  #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1224  	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1225  	    time_seq != SEQ_LAST) {
1226  #else
1227  	if (trans && time_seq != SEQ_LAST) {
1228  #endif
1229  		/*
1230  		 * look if there are updates for this ref queued and lock the
1231  		 * head
1232  		 */
1233  		delayed_refs = &trans->transaction->delayed_refs;
1234  		spin_lock(&delayed_refs->lock);
1235  		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1236  		if (head) {
1237  			if (!mutex_trylock(&head->mutex)) {
1238  				refcount_inc(&head->refs);
1239  				spin_unlock(&delayed_refs->lock);
1240  
1241  				btrfs_release_path(path);
1242  
1243  				/*
1244  				 * Mutex was contended, block until it's
1245  				 * released and try again
1246  				 */
1247  				mutex_lock(&head->mutex);
1248  				mutex_unlock(&head->mutex);
1249  				btrfs_put_delayed_ref_head(head);
1250  				goto again;
1251  			}
1252  			spin_unlock(&delayed_refs->lock);
1253  			ret = add_delayed_refs(fs_info, head, time_seq,
1254  					       &preftrees, sc);
1255  			mutex_unlock(&head->mutex);
1256  			if (ret)
1257  				goto out;
1258  		} else {
1259  			spin_unlock(&delayed_refs->lock);
1260  		}
1261  	}
1262  
1263  	if (path->slots[0]) {
1264  		struct extent_buffer *leaf;
1265  		int slot;
1266  
1267  		path->slots[0]--;
1268  		leaf = path->nodes[0];
1269  		slot = path->slots[0];
1270  		btrfs_item_key_to_cpu(leaf, &key, slot);
1271  		if (key.objectid == bytenr &&
1272  		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1273  		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1274  			ret = add_inline_refs(fs_info, path, bytenr,
1275  					      &info_level, &preftrees, sc);
1276  			if (ret)
1277  				goto out;
1278  			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1279  					     &preftrees, sc);
1280  			if (ret)
1281  				goto out;
1282  		}
1283  	}
1284  
1285  	btrfs_release_path(path);
1286  
1287  	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1288  	if (ret)
1289  		goto out;
1290  
1291  	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1292  
1293  	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1294  				    extent_item_pos, sc, ignore_offset);
1295  	if (ret)
1296  		goto out;
1297  
1298  	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1299  
1300  	/*
1301  	 * This walks the tree of merged and resolved refs. Tree blocks are
1302  	 * read in as needed. Unique entries are added to the ulist, and
1303  	 * the list of found roots is updated.
1304  	 *
1305  	 * We release the entire tree in one go before returning.
1306  	 */
1307  	node = rb_first_cached(&preftrees.direct.root);
1308  	while (node) {
1309  		ref = rb_entry(node, struct prelim_ref, rbnode);
1310  		node = rb_next(&ref->rbnode);
1311  		/*
1312  		 * ref->count < 0 can happen here if there are delayed
1313  		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1314  		 * prelim_ref_insert() relies on this when merging
1315  		 * identical refs to keep the overall count correct.
1316  		 * prelim_ref_insert() will merge only those refs
1317  		 * which compare identically.  Any refs having
1318  		 * e.g. different offsets would not be merged,
1319  		 * and would retain their original ref->count < 0.
1320  		 */
1321  		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1322  			if (sc && sc->root_objectid &&
1323  			    ref->root_id != sc->root_objectid) {
1324  				ret = BACKREF_FOUND_SHARED;
1325  				goto out;
1326  			}
1327  
1328  			/* no parent == root of tree */
1329  			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1330  			if (ret < 0)
1331  				goto out;
1332  		}
1333  		if (ref->count && ref->parent) {
1334  			if (extent_item_pos && !ref->inode_list &&
1335  			    ref->level == 0) {
1336  				struct extent_buffer *eb;
1337  
1338  				eb = read_tree_block(fs_info, ref->parent, 0,
1339  						     ref->level, NULL);
1340  				if (IS_ERR(eb)) {
1341  					ret = PTR_ERR(eb);
1342  					goto out;
1343  				} else if (!extent_buffer_uptodate(eb)) {
1344  					free_extent_buffer(eb);
1345  					ret = -EIO;
1346  					goto out;
1347  				}
1348  
1349  				if (!path->skip_locking) {
1350  					btrfs_tree_read_lock(eb);
1351  					btrfs_set_lock_blocking_read(eb);
1352  				}
1353  				ret = find_extent_in_eb(eb, bytenr,
1354  							*extent_item_pos, &eie, ignore_offset);
1355  				if (!path->skip_locking)
1356  					btrfs_tree_read_unlock_blocking(eb);
1357  				free_extent_buffer(eb);
1358  				if (ret < 0)
1359  					goto out;
1360  				ref->inode_list = eie;
1361  			}
1362  			ret = ulist_add_merge_ptr(refs, ref->parent,
1363  						  ref->inode_list,
1364  						  (void **)&eie, GFP_NOFS);
1365  			if (ret < 0)
1366  				goto out;
1367  			if (!ret && extent_item_pos) {
1368  				/*
1369  				 * We've recorded that parent, so we must extend
1370  				 * its inode list here.
1371  				 *
1372  				 * However if there was corruption we may not
1373  				 * have found an eie, return an error in this
1374  				 * case.
1375  				 */
1376  				ASSERT(eie);
1377  				if (!eie) {
1378  					ret = -EUCLEAN;
1379  					goto out;
1380  				}
1381  				while (eie->next)
1382  					eie = eie->next;
1383  				eie->next = ref->inode_list;
1384  			}
1385  			eie = NULL;
1386  		}
1387  		cond_resched();
1388  	}
1389  
1390  out:
1391  	btrfs_free_path(path);
1392  
1393  	prelim_release(&preftrees.direct);
1394  	prelim_release(&preftrees.indirect);
1395  	prelim_release(&preftrees.indirect_missing_keys);
1396  
1397  	if (ret < 0)
1398  		free_inode_elem_list(eie);
1399  	return ret;
1400  }
1401  
1402  static void free_leaf_list(struct ulist *blocks)
1403  {
1404  	struct ulist_node *node = NULL;
1405  	struct extent_inode_elem *eie;
1406  	struct ulist_iterator uiter;
1407  
1408  	ULIST_ITER_INIT(&uiter);
1409  	while ((node = ulist_next(blocks, &uiter))) {
1410  		if (!node->aux)
1411  			continue;
1412  		eie = unode_aux_to_inode_list(node);
1413  		free_inode_elem_list(eie);
1414  		node->aux = 0;
1415  	}
1416  
1417  	ulist_free(blocks);
1418  }
1419  
1420  /*
1421   * Finds all leafs with a reference to the specified combination of bytenr and
1422   * offset. key_list_head will point to a list of corresponding keys (caller must
1423   * free each list element). The leafs will be stored in the leafs ulist, which
1424   * must be freed with ulist_free.
1425   *
1426   * returns 0 on success, <0 on error
1427   */
1428  int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1429  			 struct btrfs_fs_info *fs_info, u64 bytenr,
1430  			 u64 time_seq, struct ulist **leafs,
1431  			 const u64 *extent_item_pos, bool ignore_offset)
1432  {
1433  	int ret;
1434  
1435  	*leafs = ulist_alloc(GFP_NOFS);
1436  	if (!*leafs)
1437  		return -ENOMEM;
1438  
1439  	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1440  				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1441  	if (ret < 0 && ret != -ENOENT) {
1442  		free_leaf_list(*leafs);
1443  		return ret;
1444  	}
1445  
1446  	return 0;
1447  }
1448  
1449  /*
1450   * walk all backrefs for a given extent to find all roots that reference this
1451   * extent. Walking a backref means finding all extents that reference this
1452   * extent and in turn walk the backrefs of those, too. Naturally this is a
1453   * recursive process, but here it is implemented in an iterative fashion: We
1454   * find all referencing extents for the extent in question and put them on a
1455   * list. In turn, we find all referencing extents for those, further appending
1456   * to the list. The way we iterate the list allows adding more elements after
1457   * the current while iterating. The process stops when we reach the end of the
1458   * list. Found roots are added to the roots list.
1459   *
1460   * returns 0 on success, < 0 on error.
1461   */
1462  static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1463  				     struct btrfs_fs_info *fs_info, u64 bytenr,
1464  				     u64 time_seq, struct ulist **roots,
1465  				     bool ignore_offset)
1466  {
1467  	struct ulist *tmp;
1468  	struct ulist_node *node = NULL;
1469  	struct ulist_iterator uiter;
1470  	int ret;
1471  
1472  	tmp = ulist_alloc(GFP_NOFS);
1473  	if (!tmp)
1474  		return -ENOMEM;
1475  	*roots = ulist_alloc(GFP_NOFS);
1476  	if (!*roots) {
1477  		ulist_free(tmp);
1478  		return -ENOMEM;
1479  	}
1480  
1481  	ULIST_ITER_INIT(&uiter);
1482  	while (1) {
1483  		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1484  					tmp, *roots, NULL, NULL, ignore_offset);
1485  		if (ret < 0 && ret != -ENOENT) {
1486  			ulist_free(tmp);
1487  			ulist_free(*roots);
1488  			*roots = NULL;
1489  			return ret;
1490  		}
1491  		node = ulist_next(tmp, &uiter);
1492  		if (!node)
1493  			break;
1494  		bytenr = node->val;
1495  		cond_resched();
1496  	}
1497  
1498  	ulist_free(tmp);
1499  	return 0;
1500  }
1501  
1502  int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1503  			 struct btrfs_fs_info *fs_info, u64 bytenr,
1504  			 u64 time_seq, struct ulist **roots,
1505  			 bool ignore_offset)
1506  {
1507  	int ret;
1508  
1509  	if (!trans)
1510  		down_read(&fs_info->commit_root_sem);
1511  	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1512  					time_seq, roots, ignore_offset);
1513  	if (!trans)
1514  		up_read(&fs_info->commit_root_sem);
1515  	return ret;
1516  }
1517  
1518  /**
1519   * btrfs_check_shared - tell us whether an extent is shared
1520   *
1521   * btrfs_check_shared uses the backref walking code but will short
1522   * circuit as soon as it finds a root or inode that doesn't match the
1523   * one passed in. This provides a significant performance benefit for
1524   * callers (such as fiemap) which want to know whether the extent is
1525   * shared but do not need a ref count.
1526   *
1527   * This attempts to attach to the running transaction in order to account for
1528   * delayed refs, but continues on even when no running transaction exists.
1529   *
1530   * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1531   */
1532  int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1533  		struct ulist *roots, struct ulist *tmp)
1534  {
1535  	struct btrfs_fs_info *fs_info = root->fs_info;
1536  	struct btrfs_trans_handle *trans;
1537  	struct ulist_iterator uiter;
1538  	struct ulist_node *node;
1539  	struct seq_list elem = SEQ_LIST_INIT(elem);
1540  	int ret = 0;
1541  	struct share_check shared = {
1542  		.root_objectid = root->root_key.objectid,
1543  		.inum = inum,
1544  		.share_count = 0,
1545  	};
1546  
1547  	ulist_init(roots);
1548  	ulist_init(tmp);
1549  
1550  	trans = btrfs_join_transaction_nostart(root);
1551  	if (IS_ERR(trans)) {
1552  		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1553  			ret = PTR_ERR(trans);
1554  			goto out;
1555  		}
1556  		trans = NULL;
1557  		down_read(&fs_info->commit_root_sem);
1558  	} else {
1559  		btrfs_get_tree_mod_seq(fs_info, &elem);
1560  	}
1561  
1562  	ULIST_ITER_INIT(&uiter);
1563  	while (1) {
1564  		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1565  					roots, NULL, &shared, false);
1566  		if (ret == BACKREF_FOUND_SHARED) {
1567  			/* this is the only condition under which we return 1 */
1568  			ret = 1;
1569  			break;
1570  		}
1571  		if (ret < 0 && ret != -ENOENT)
1572  			break;
1573  		ret = 0;
1574  		node = ulist_next(tmp, &uiter);
1575  		if (!node)
1576  			break;
1577  		bytenr = node->val;
1578  		shared.share_count = 0;
1579  		cond_resched();
1580  	}
1581  
1582  	if (trans) {
1583  		btrfs_put_tree_mod_seq(fs_info, &elem);
1584  		btrfs_end_transaction(trans);
1585  	} else {
1586  		up_read(&fs_info->commit_root_sem);
1587  	}
1588  out:
1589  	ulist_release(roots);
1590  	ulist_release(tmp);
1591  	return ret;
1592  }
1593  
1594  int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1595  			  u64 start_off, struct btrfs_path *path,
1596  			  struct btrfs_inode_extref **ret_extref,
1597  			  u64 *found_off)
1598  {
1599  	int ret, slot;
1600  	struct btrfs_key key;
1601  	struct btrfs_key found_key;
1602  	struct btrfs_inode_extref *extref;
1603  	const struct extent_buffer *leaf;
1604  	unsigned long ptr;
1605  
1606  	key.objectid = inode_objectid;
1607  	key.type = BTRFS_INODE_EXTREF_KEY;
1608  	key.offset = start_off;
1609  
1610  	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1611  	if (ret < 0)
1612  		return ret;
1613  
1614  	while (1) {
1615  		leaf = path->nodes[0];
1616  		slot = path->slots[0];
1617  		if (slot >= btrfs_header_nritems(leaf)) {
1618  			/*
1619  			 * If the item at offset is not found,
1620  			 * btrfs_search_slot will point us to the slot
1621  			 * where it should be inserted. In our case
1622  			 * that will be the slot directly before the
1623  			 * next INODE_REF_KEY_V2 item. In the case
1624  			 * that we're pointing to the last slot in a
1625  			 * leaf, we must move one leaf over.
1626  			 */
1627  			ret = btrfs_next_leaf(root, path);
1628  			if (ret) {
1629  				if (ret >= 1)
1630  					ret = -ENOENT;
1631  				break;
1632  			}
1633  			continue;
1634  		}
1635  
1636  		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1637  
1638  		/*
1639  		 * Check that we're still looking at an extended ref key for
1640  		 * this particular objectid. If we have different
1641  		 * objectid or type then there are no more to be found
1642  		 * in the tree and we can exit.
1643  		 */
1644  		ret = -ENOENT;
1645  		if (found_key.objectid != inode_objectid)
1646  			break;
1647  		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1648  			break;
1649  
1650  		ret = 0;
1651  		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1652  		extref = (struct btrfs_inode_extref *)ptr;
1653  		*ret_extref = extref;
1654  		if (found_off)
1655  			*found_off = found_key.offset;
1656  		break;
1657  	}
1658  
1659  	return ret;
1660  }
1661  
1662  /*
1663   * this iterates to turn a name (from iref/extref) into a full filesystem path.
1664   * Elements of the path are separated by '/' and the path is guaranteed to be
1665   * 0-terminated. the path is only given within the current file system.
1666   * Therefore, it never starts with a '/'. the caller is responsible to provide
1667   * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1668   * the start point of the resulting string is returned. this pointer is within
1669   * dest, normally.
1670   * in case the path buffer would overflow, the pointer is decremented further
1671   * as if output was written to the buffer, though no more output is actually
1672   * generated. that way, the caller can determine how much space would be
1673   * required for the path to fit into the buffer. in that case, the returned
1674   * value will be smaller than dest. callers must check this!
1675   */
1676  char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1677  			u32 name_len, unsigned long name_off,
1678  			struct extent_buffer *eb_in, u64 parent,
1679  			char *dest, u32 size)
1680  {
1681  	int slot;
1682  	u64 next_inum;
1683  	int ret;
1684  	s64 bytes_left = ((s64)size) - 1;
1685  	struct extent_buffer *eb = eb_in;
1686  	struct btrfs_key found_key;
1687  	int leave_spinning = path->leave_spinning;
1688  	struct btrfs_inode_ref *iref;
1689  
1690  	if (bytes_left >= 0)
1691  		dest[bytes_left] = '\0';
1692  
1693  	path->leave_spinning = 1;
1694  	while (1) {
1695  		bytes_left -= name_len;
1696  		if (bytes_left >= 0)
1697  			read_extent_buffer(eb, dest + bytes_left,
1698  					   name_off, name_len);
1699  		if (eb != eb_in) {
1700  			if (!path->skip_locking)
1701  				btrfs_tree_read_unlock_blocking(eb);
1702  			free_extent_buffer(eb);
1703  		}
1704  		ret = btrfs_find_item(fs_root, path, parent, 0,
1705  				BTRFS_INODE_REF_KEY, &found_key);
1706  		if (ret > 0)
1707  			ret = -ENOENT;
1708  		if (ret)
1709  			break;
1710  
1711  		next_inum = found_key.offset;
1712  
1713  		/* regular exit ahead */
1714  		if (parent == next_inum)
1715  			break;
1716  
1717  		slot = path->slots[0];
1718  		eb = path->nodes[0];
1719  		/* make sure we can use eb after releasing the path */
1720  		if (eb != eb_in) {
1721  			if (!path->skip_locking)
1722  				btrfs_set_lock_blocking_read(eb);
1723  			path->nodes[0] = NULL;
1724  			path->locks[0] = 0;
1725  		}
1726  		btrfs_release_path(path);
1727  		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1728  
1729  		name_len = btrfs_inode_ref_name_len(eb, iref);
1730  		name_off = (unsigned long)(iref + 1);
1731  
1732  		parent = next_inum;
1733  		--bytes_left;
1734  		if (bytes_left >= 0)
1735  			dest[bytes_left] = '/';
1736  	}
1737  
1738  	btrfs_release_path(path);
1739  	path->leave_spinning = leave_spinning;
1740  
1741  	if (ret)
1742  		return ERR_PTR(ret);
1743  
1744  	return dest + bytes_left;
1745  }
1746  
1747  /*
1748   * this makes the path point to (logical EXTENT_ITEM *)
1749   * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1750   * tree blocks and <0 on error.
1751   */
1752  int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1753  			struct btrfs_path *path, struct btrfs_key *found_key,
1754  			u64 *flags_ret)
1755  {
1756  	int ret;
1757  	u64 flags;
1758  	u64 size = 0;
1759  	u32 item_size;
1760  	const struct extent_buffer *eb;
1761  	struct btrfs_extent_item *ei;
1762  	struct btrfs_key key;
1763  
1764  	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1765  		key.type = BTRFS_METADATA_ITEM_KEY;
1766  	else
1767  		key.type = BTRFS_EXTENT_ITEM_KEY;
1768  	key.objectid = logical;
1769  	key.offset = (u64)-1;
1770  
1771  	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1772  	if (ret < 0)
1773  		return ret;
1774  
1775  	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1776  	if (ret) {
1777  		if (ret > 0)
1778  			ret = -ENOENT;
1779  		return ret;
1780  	}
1781  	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1782  	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1783  		size = fs_info->nodesize;
1784  	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1785  		size = found_key->offset;
1786  
1787  	if (found_key->objectid > logical ||
1788  	    found_key->objectid + size <= logical) {
1789  		btrfs_debug(fs_info,
1790  			"logical %llu is not within any extent", logical);
1791  		return -ENOENT;
1792  	}
1793  
1794  	eb = path->nodes[0];
1795  	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1796  	BUG_ON(item_size < sizeof(*ei));
1797  
1798  	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1799  	flags = btrfs_extent_flags(eb, ei);
1800  
1801  	btrfs_debug(fs_info,
1802  		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1803  		 logical, logical - found_key->objectid, found_key->objectid,
1804  		 found_key->offset, flags, item_size);
1805  
1806  	WARN_ON(!flags_ret);
1807  	if (flags_ret) {
1808  		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1809  			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1810  		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1811  			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1812  		else
1813  			BUG();
1814  		return 0;
1815  	}
1816  
1817  	return -EIO;
1818  }
1819  
1820  /*
1821   * helper function to iterate extent inline refs. ptr must point to a 0 value
1822   * for the first call and may be modified. it is used to track state.
1823   * if more refs exist, 0 is returned and the next call to
1824   * get_extent_inline_ref must pass the modified ptr parameter to get the
1825   * next ref. after the last ref was processed, 1 is returned.
1826   * returns <0 on error
1827   */
1828  static int get_extent_inline_ref(unsigned long *ptr,
1829  				 const struct extent_buffer *eb,
1830  				 const struct btrfs_key *key,
1831  				 const struct btrfs_extent_item *ei,
1832  				 u32 item_size,
1833  				 struct btrfs_extent_inline_ref **out_eiref,
1834  				 int *out_type)
1835  {
1836  	unsigned long end;
1837  	u64 flags;
1838  	struct btrfs_tree_block_info *info;
1839  
1840  	if (!*ptr) {
1841  		/* first call */
1842  		flags = btrfs_extent_flags(eb, ei);
1843  		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1844  			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1845  				/* a skinny metadata extent */
1846  				*out_eiref =
1847  				     (struct btrfs_extent_inline_ref *)(ei + 1);
1848  			} else {
1849  				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1850  				info = (struct btrfs_tree_block_info *)(ei + 1);
1851  				*out_eiref =
1852  				   (struct btrfs_extent_inline_ref *)(info + 1);
1853  			}
1854  		} else {
1855  			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1856  		}
1857  		*ptr = (unsigned long)*out_eiref;
1858  		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1859  			return -ENOENT;
1860  	}
1861  
1862  	end = (unsigned long)ei + item_size;
1863  	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1864  	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1865  						     BTRFS_REF_TYPE_ANY);
1866  	if (*out_type == BTRFS_REF_TYPE_INVALID)
1867  		return -EUCLEAN;
1868  
1869  	*ptr += btrfs_extent_inline_ref_size(*out_type);
1870  	WARN_ON(*ptr > end);
1871  	if (*ptr == end)
1872  		return 1; /* last */
1873  
1874  	return 0;
1875  }
1876  
1877  /*
1878   * reads the tree block backref for an extent. tree level and root are returned
1879   * through out_level and out_root. ptr must point to a 0 value for the first
1880   * call and may be modified (see get_extent_inline_ref comment).
1881   * returns 0 if data was provided, 1 if there was no more data to provide or
1882   * <0 on error.
1883   */
1884  int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1885  			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1886  			    u32 item_size, u64 *out_root, u8 *out_level)
1887  {
1888  	int ret;
1889  	int type;
1890  	struct btrfs_extent_inline_ref *eiref;
1891  
1892  	if (*ptr == (unsigned long)-1)
1893  		return 1;
1894  
1895  	while (1) {
1896  		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1897  					      &eiref, &type);
1898  		if (ret < 0)
1899  			return ret;
1900  
1901  		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1902  		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1903  			break;
1904  
1905  		if (ret == 1)
1906  			return 1;
1907  	}
1908  
1909  	/* we can treat both ref types equally here */
1910  	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1911  
1912  	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1913  		struct btrfs_tree_block_info *info;
1914  
1915  		info = (struct btrfs_tree_block_info *)(ei + 1);
1916  		*out_level = btrfs_tree_block_level(eb, info);
1917  	} else {
1918  		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1919  		*out_level = (u8)key->offset;
1920  	}
1921  
1922  	if (ret == 1)
1923  		*ptr = (unsigned long)-1;
1924  
1925  	return 0;
1926  }
1927  
1928  static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1929  			     struct extent_inode_elem *inode_list,
1930  			     u64 root, u64 extent_item_objectid,
1931  			     iterate_extent_inodes_t *iterate, void *ctx)
1932  {
1933  	struct extent_inode_elem *eie;
1934  	int ret = 0;
1935  
1936  	for (eie = inode_list; eie; eie = eie->next) {
1937  		btrfs_debug(fs_info,
1938  			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1939  			    extent_item_objectid, eie->inum,
1940  			    eie->offset, root);
1941  		ret = iterate(eie->inum, eie->offset, root, ctx);
1942  		if (ret) {
1943  			btrfs_debug(fs_info,
1944  				    "stopping iteration for %llu due to ret=%d",
1945  				    extent_item_objectid, ret);
1946  			break;
1947  		}
1948  	}
1949  
1950  	return ret;
1951  }
1952  
1953  /*
1954   * calls iterate() for every inode that references the extent identified by
1955   * the given parameters.
1956   * when the iterator function returns a non-zero value, iteration stops.
1957   */
1958  int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1959  				u64 extent_item_objectid, u64 extent_item_pos,
1960  				int search_commit_root,
1961  				iterate_extent_inodes_t *iterate, void *ctx,
1962  				bool ignore_offset)
1963  {
1964  	int ret;
1965  	struct btrfs_trans_handle *trans = NULL;
1966  	struct ulist *refs = NULL;
1967  	struct ulist *roots = NULL;
1968  	struct ulist_node *ref_node = NULL;
1969  	struct ulist_node *root_node = NULL;
1970  	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1971  	struct ulist_iterator ref_uiter;
1972  	struct ulist_iterator root_uiter;
1973  
1974  	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1975  			extent_item_objectid);
1976  
1977  	if (!search_commit_root) {
1978  		trans = btrfs_attach_transaction(fs_info->extent_root);
1979  		if (IS_ERR(trans)) {
1980  			if (PTR_ERR(trans) != -ENOENT &&
1981  			    PTR_ERR(trans) != -EROFS)
1982  				return PTR_ERR(trans);
1983  			trans = NULL;
1984  		}
1985  	}
1986  
1987  	if (trans)
1988  		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1989  	else
1990  		down_read(&fs_info->commit_root_sem);
1991  
1992  	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1993  				   tree_mod_seq_elem.seq, &refs,
1994  				   &extent_item_pos, ignore_offset);
1995  	if (ret)
1996  		goto out;
1997  
1998  	ULIST_ITER_INIT(&ref_uiter);
1999  	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2000  		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
2001  						tree_mod_seq_elem.seq, &roots,
2002  						ignore_offset);
2003  		if (ret)
2004  			break;
2005  		ULIST_ITER_INIT(&root_uiter);
2006  		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2007  			btrfs_debug(fs_info,
2008  				    "root %llu references leaf %llu, data list %#llx",
2009  				    root_node->val, ref_node->val,
2010  				    ref_node->aux);
2011  			ret = iterate_leaf_refs(fs_info,
2012  						(struct extent_inode_elem *)
2013  						(uintptr_t)ref_node->aux,
2014  						root_node->val,
2015  						extent_item_objectid,
2016  						iterate, ctx);
2017  		}
2018  		ulist_free(roots);
2019  	}
2020  
2021  	free_leaf_list(refs);
2022  out:
2023  	if (trans) {
2024  		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2025  		btrfs_end_transaction(trans);
2026  	} else {
2027  		up_read(&fs_info->commit_root_sem);
2028  	}
2029  
2030  	return ret;
2031  }
2032  
2033  int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2034  				struct btrfs_path *path,
2035  				iterate_extent_inodes_t *iterate, void *ctx,
2036  				bool ignore_offset)
2037  {
2038  	int ret;
2039  	u64 extent_item_pos;
2040  	u64 flags = 0;
2041  	struct btrfs_key found_key;
2042  	int search_commit_root = path->search_commit_root;
2043  
2044  	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2045  	btrfs_release_path(path);
2046  	if (ret < 0)
2047  		return ret;
2048  	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2049  		return -EINVAL;
2050  
2051  	extent_item_pos = logical - found_key.objectid;
2052  	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2053  					extent_item_pos, search_commit_root,
2054  					iterate, ctx, ignore_offset);
2055  
2056  	return ret;
2057  }
2058  
2059  typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2060  			      struct extent_buffer *eb, void *ctx);
2061  
2062  static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2063  			      struct btrfs_path *path,
2064  			      iterate_irefs_t *iterate, void *ctx)
2065  {
2066  	int ret = 0;
2067  	int slot;
2068  	u32 cur;
2069  	u32 len;
2070  	u32 name_len;
2071  	u64 parent = 0;
2072  	int found = 0;
2073  	struct extent_buffer *eb;
2074  	struct btrfs_item *item;
2075  	struct btrfs_inode_ref *iref;
2076  	struct btrfs_key found_key;
2077  
2078  	while (!ret) {
2079  		ret = btrfs_find_item(fs_root, path, inum,
2080  				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2081  				&found_key);
2082  
2083  		if (ret < 0)
2084  			break;
2085  		if (ret) {
2086  			ret = found ? 0 : -ENOENT;
2087  			break;
2088  		}
2089  		++found;
2090  
2091  		parent = found_key.offset;
2092  		slot = path->slots[0];
2093  		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2094  		if (!eb) {
2095  			ret = -ENOMEM;
2096  			break;
2097  		}
2098  		btrfs_release_path(path);
2099  
2100  		item = btrfs_item_nr(slot);
2101  		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2102  
2103  		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2104  			name_len = btrfs_inode_ref_name_len(eb, iref);
2105  			/* path must be released before calling iterate()! */
2106  			btrfs_debug(fs_root->fs_info,
2107  				"following ref at offset %u for inode %llu in tree %llu",
2108  				cur, found_key.objectid,
2109  				fs_root->root_key.objectid);
2110  			ret = iterate(parent, name_len,
2111  				      (unsigned long)(iref + 1), eb, ctx);
2112  			if (ret)
2113  				break;
2114  			len = sizeof(*iref) + name_len;
2115  			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2116  		}
2117  		free_extent_buffer(eb);
2118  	}
2119  
2120  	btrfs_release_path(path);
2121  
2122  	return ret;
2123  }
2124  
2125  static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2126  				 struct btrfs_path *path,
2127  				 iterate_irefs_t *iterate, void *ctx)
2128  {
2129  	int ret;
2130  	int slot;
2131  	u64 offset = 0;
2132  	u64 parent;
2133  	int found = 0;
2134  	struct extent_buffer *eb;
2135  	struct btrfs_inode_extref *extref;
2136  	u32 item_size;
2137  	u32 cur_offset;
2138  	unsigned long ptr;
2139  
2140  	while (1) {
2141  		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2142  					    &offset);
2143  		if (ret < 0)
2144  			break;
2145  		if (ret) {
2146  			ret = found ? 0 : -ENOENT;
2147  			break;
2148  		}
2149  		++found;
2150  
2151  		slot = path->slots[0];
2152  		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2153  		if (!eb) {
2154  			ret = -ENOMEM;
2155  			break;
2156  		}
2157  		btrfs_release_path(path);
2158  
2159  		item_size = btrfs_item_size_nr(eb, slot);
2160  		ptr = btrfs_item_ptr_offset(eb, slot);
2161  		cur_offset = 0;
2162  
2163  		while (cur_offset < item_size) {
2164  			u32 name_len;
2165  
2166  			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2167  			parent = btrfs_inode_extref_parent(eb, extref);
2168  			name_len = btrfs_inode_extref_name_len(eb, extref);
2169  			ret = iterate(parent, name_len,
2170  				      (unsigned long)&extref->name, eb, ctx);
2171  			if (ret)
2172  				break;
2173  
2174  			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2175  			cur_offset += sizeof(*extref);
2176  		}
2177  		free_extent_buffer(eb);
2178  
2179  		offset++;
2180  	}
2181  
2182  	btrfs_release_path(path);
2183  
2184  	return ret;
2185  }
2186  
2187  static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2188  			 struct btrfs_path *path, iterate_irefs_t *iterate,
2189  			 void *ctx)
2190  {
2191  	int ret;
2192  	int found_refs = 0;
2193  
2194  	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2195  	if (!ret)
2196  		++found_refs;
2197  	else if (ret != -ENOENT)
2198  		return ret;
2199  
2200  	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2201  	if (ret == -ENOENT && found_refs)
2202  		return 0;
2203  
2204  	return ret;
2205  }
2206  
2207  /*
2208   * returns 0 if the path could be dumped (probably truncated)
2209   * returns <0 in case of an error
2210   */
2211  static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2212  			 struct extent_buffer *eb, void *ctx)
2213  {
2214  	struct inode_fs_paths *ipath = ctx;
2215  	char *fspath;
2216  	char *fspath_min;
2217  	int i = ipath->fspath->elem_cnt;
2218  	const int s_ptr = sizeof(char *);
2219  	u32 bytes_left;
2220  
2221  	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2222  					ipath->fspath->bytes_left - s_ptr : 0;
2223  
2224  	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2225  	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2226  				   name_off, eb, inum, fspath_min, bytes_left);
2227  	if (IS_ERR(fspath))
2228  		return PTR_ERR(fspath);
2229  
2230  	if (fspath > fspath_min) {
2231  		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2232  		++ipath->fspath->elem_cnt;
2233  		ipath->fspath->bytes_left = fspath - fspath_min;
2234  	} else {
2235  		++ipath->fspath->elem_missed;
2236  		ipath->fspath->bytes_missing += fspath_min - fspath;
2237  		ipath->fspath->bytes_left = 0;
2238  	}
2239  
2240  	return 0;
2241  }
2242  
2243  /*
2244   * this dumps all file system paths to the inode into the ipath struct, provided
2245   * is has been created large enough. each path is zero-terminated and accessed
2246   * from ipath->fspath->val[i].
2247   * when it returns, there are ipath->fspath->elem_cnt number of paths available
2248   * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2249   * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2250   * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2251   * have been needed to return all paths.
2252   */
2253  int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2254  {
2255  	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2256  			     inode_to_path, ipath);
2257  }
2258  
2259  struct btrfs_data_container *init_data_container(u32 total_bytes)
2260  {
2261  	struct btrfs_data_container *data;
2262  	size_t alloc_bytes;
2263  
2264  	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2265  	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2266  	if (!data)
2267  		return ERR_PTR(-ENOMEM);
2268  
2269  	if (total_bytes >= sizeof(*data)) {
2270  		data->bytes_left = total_bytes - sizeof(*data);
2271  		data->bytes_missing = 0;
2272  	} else {
2273  		data->bytes_missing = sizeof(*data) - total_bytes;
2274  		data->bytes_left = 0;
2275  	}
2276  
2277  	data->elem_cnt = 0;
2278  	data->elem_missed = 0;
2279  
2280  	return data;
2281  }
2282  
2283  /*
2284   * allocates space to return multiple file system paths for an inode.
2285   * total_bytes to allocate are passed, note that space usable for actual path
2286   * information will be total_bytes - sizeof(struct inode_fs_paths).
2287   * the returned pointer must be freed with free_ipath() in the end.
2288   */
2289  struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2290  					struct btrfs_path *path)
2291  {
2292  	struct inode_fs_paths *ifp;
2293  	struct btrfs_data_container *fspath;
2294  
2295  	fspath = init_data_container(total_bytes);
2296  	if (IS_ERR(fspath))
2297  		return ERR_CAST(fspath);
2298  
2299  	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2300  	if (!ifp) {
2301  		kvfree(fspath);
2302  		return ERR_PTR(-ENOMEM);
2303  	}
2304  
2305  	ifp->btrfs_path = path;
2306  	ifp->fspath = fspath;
2307  	ifp->fs_root = fs_root;
2308  
2309  	return ifp;
2310  }
2311  
2312  void free_ipath(struct inode_fs_paths *ipath)
2313  {
2314  	if (!ipath)
2315  		return;
2316  	kvfree(ipath->fspath);
2317  	kfree(ipath);
2318  }
2319  
2320  struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2321  		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2322  {
2323  	struct btrfs_backref_iter *ret;
2324  
2325  	ret = kzalloc(sizeof(*ret), gfp_flag);
2326  	if (!ret)
2327  		return NULL;
2328  
2329  	ret->path = btrfs_alloc_path();
2330  	if (!ret->path) {
2331  		kfree(ret);
2332  		return NULL;
2333  	}
2334  
2335  	/* Current backref iterator only supports iteration in commit root */
2336  	ret->path->search_commit_root = 1;
2337  	ret->path->skip_locking = 1;
2338  	ret->fs_info = fs_info;
2339  
2340  	return ret;
2341  }
2342  
2343  int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2344  {
2345  	struct btrfs_fs_info *fs_info = iter->fs_info;
2346  	struct btrfs_path *path = iter->path;
2347  	struct btrfs_extent_item *ei;
2348  	struct btrfs_key key;
2349  	int ret;
2350  
2351  	key.objectid = bytenr;
2352  	key.type = BTRFS_METADATA_ITEM_KEY;
2353  	key.offset = (u64)-1;
2354  	iter->bytenr = bytenr;
2355  
2356  	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2357  	if (ret < 0)
2358  		return ret;
2359  	if (ret == 0) {
2360  		ret = -EUCLEAN;
2361  		goto release;
2362  	}
2363  	if (path->slots[0] == 0) {
2364  		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2365  		ret = -EUCLEAN;
2366  		goto release;
2367  	}
2368  	path->slots[0]--;
2369  
2370  	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2371  	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2372  	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2373  		ret = -ENOENT;
2374  		goto release;
2375  	}
2376  	memcpy(&iter->cur_key, &key, sizeof(key));
2377  	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2378  						    path->slots[0]);
2379  	iter->end_ptr = (u32)(iter->item_ptr +
2380  			btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2381  	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2382  			    struct btrfs_extent_item);
2383  
2384  	/*
2385  	 * Only support iteration on tree backref yet.
2386  	 *
2387  	 * This is an extra precaution for non skinny-metadata, where
2388  	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2389  	 * extent flags to determine if it's a tree block.
2390  	 */
2391  	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2392  		ret = -ENOTSUPP;
2393  		goto release;
2394  	}
2395  	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2396  
2397  	/* If there is no inline backref, go search for keyed backref */
2398  	if (iter->cur_ptr >= iter->end_ptr) {
2399  		ret = btrfs_next_item(fs_info->extent_root, path);
2400  
2401  		/* No inline nor keyed ref */
2402  		if (ret > 0) {
2403  			ret = -ENOENT;
2404  			goto release;
2405  		}
2406  		if (ret < 0)
2407  			goto release;
2408  
2409  		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2410  				path->slots[0]);
2411  		if (iter->cur_key.objectid != bytenr ||
2412  		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2413  		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2414  			ret = -ENOENT;
2415  			goto release;
2416  		}
2417  		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2418  							   path->slots[0]);
2419  		iter->item_ptr = iter->cur_ptr;
2420  		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2421  				      path->nodes[0], path->slots[0]));
2422  	}
2423  
2424  	return 0;
2425  release:
2426  	btrfs_backref_iter_release(iter);
2427  	return ret;
2428  }
2429  
2430  /*
2431   * Go to the next backref item of current bytenr, can be either inlined or
2432   * keyed.
2433   *
2434   * Caller needs to check whether it's inline ref or not by iter->cur_key.
2435   *
2436   * Return 0 if we get next backref without problem.
2437   * Return >0 if there is no extra backref for this bytenr.
2438   * Return <0 if there is something wrong happened.
2439   */
2440  int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2441  {
2442  	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2443  	struct btrfs_path *path = iter->path;
2444  	struct btrfs_extent_inline_ref *iref;
2445  	int ret;
2446  	u32 size;
2447  
2448  	if (btrfs_backref_iter_is_inline_ref(iter)) {
2449  		/* We're still inside the inline refs */
2450  		ASSERT(iter->cur_ptr < iter->end_ptr);
2451  
2452  		if (btrfs_backref_has_tree_block_info(iter)) {
2453  			/* First tree block info */
2454  			size = sizeof(struct btrfs_tree_block_info);
2455  		} else {
2456  			/* Use inline ref type to determine the size */
2457  			int type;
2458  
2459  			iref = (struct btrfs_extent_inline_ref *)
2460  				((unsigned long)iter->cur_ptr);
2461  			type = btrfs_extent_inline_ref_type(eb, iref);
2462  
2463  			size = btrfs_extent_inline_ref_size(type);
2464  		}
2465  		iter->cur_ptr += size;
2466  		if (iter->cur_ptr < iter->end_ptr)
2467  			return 0;
2468  
2469  		/* All inline items iterated, fall through */
2470  	}
2471  
2472  	/* We're at keyed items, there is no inline item, go to the next one */
2473  	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2474  	if (ret)
2475  		return ret;
2476  
2477  	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2478  	if (iter->cur_key.objectid != iter->bytenr ||
2479  	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2480  	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2481  		return 1;
2482  	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2483  					path->slots[0]);
2484  	iter->cur_ptr = iter->item_ptr;
2485  	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2486  						path->slots[0]);
2487  	return 0;
2488  }
2489  
2490  void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2491  			      struct btrfs_backref_cache *cache, int is_reloc)
2492  {
2493  	int i;
2494  
2495  	cache->rb_root = RB_ROOT;
2496  	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2497  		INIT_LIST_HEAD(&cache->pending[i]);
2498  	INIT_LIST_HEAD(&cache->changed);
2499  	INIT_LIST_HEAD(&cache->detached);
2500  	INIT_LIST_HEAD(&cache->leaves);
2501  	INIT_LIST_HEAD(&cache->pending_edge);
2502  	INIT_LIST_HEAD(&cache->useless_node);
2503  	cache->fs_info = fs_info;
2504  	cache->is_reloc = is_reloc;
2505  }
2506  
2507  struct btrfs_backref_node *btrfs_backref_alloc_node(
2508  		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2509  {
2510  	struct btrfs_backref_node *node;
2511  
2512  	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2513  	node = kzalloc(sizeof(*node), GFP_NOFS);
2514  	if (!node)
2515  		return node;
2516  
2517  	INIT_LIST_HEAD(&node->list);
2518  	INIT_LIST_HEAD(&node->upper);
2519  	INIT_LIST_HEAD(&node->lower);
2520  	RB_CLEAR_NODE(&node->rb_node);
2521  	cache->nr_nodes++;
2522  	node->level = level;
2523  	node->bytenr = bytenr;
2524  
2525  	return node;
2526  }
2527  
2528  struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2529  		struct btrfs_backref_cache *cache)
2530  {
2531  	struct btrfs_backref_edge *edge;
2532  
2533  	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2534  	if (edge)
2535  		cache->nr_edges++;
2536  	return edge;
2537  }
2538  
2539  /*
2540   * Drop the backref node from cache, also cleaning up all its
2541   * upper edges and any uncached nodes in the path.
2542   *
2543   * This cleanup happens bottom up, thus the node should either
2544   * be the lowest node in the cache or a detached node.
2545   */
2546  void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2547  				struct btrfs_backref_node *node)
2548  {
2549  	struct btrfs_backref_node *upper;
2550  	struct btrfs_backref_edge *edge;
2551  
2552  	if (!node)
2553  		return;
2554  
2555  	BUG_ON(!node->lowest && !node->detached);
2556  	while (!list_empty(&node->upper)) {
2557  		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2558  				  list[LOWER]);
2559  		upper = edge->node[UPPER];
2560  		list_del(&edge->list[LOWER]);
2561  		list_del(&edge->list[UPPER]);
2562  		btrfs_backref_free_edge(cache, edge);
2563  
2564  		/*
2565  		 * Add the node to leaf node list if no other child block
2566  		 * cached.
2567  		 */
2568  		if (list_empty(&upper->lower)) {
2569  			list_add_tail(&upper->lower, &cache->leaves);
2570  			upper->lowest = 1;
2571  		}
2572  	}
2573  
2574  	btrfs_backref_drop_node(cache, node);
2575  }
2576  
2577  /*
2578   * Release all nodes/edges from current cache
2579   */
2580  void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2581  {
2582  	struct btrfs_backref_node *node;
2583  	int i;
2584  
2585  	while (!list_empty(&cache->detached)) {
2586  		node = list_entry(cache->detached.next,
2587  				  struct btrfs_backref_node, list);
2588  		btrfs_backref_cleanup_node(cache, node);
2589  	}
2590  
2591  	while (!list_empty(&cache->leaves)) {
2592  		node = list_entry(cache->leaves.next,
2593  				  struct btrfs_backref_node, lower);
2594  		btrfs_backref_cleanup_node(cache, node);
2595  	}
2596  
2597  	cache->last_trans = 0;
2598  
2599  	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2600  		ASSERT(list_empty(&cache->pending[i]));
2601  	ASSERT(list_empty(&cache->pending_edge));
2602  	ASSERT(list_empty(&cache->useless_node));
2603  	ASSERT(list_empty(&cache->changed));
2604  	ASSERT(list_empty(&cache->detached));
2605  	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2606  	ASSERT(!cache->nr_nodes);
2607  	ASSERT(!cache->nr_edges);
2608  }
2609  
2610  /*
2611   * Handle direct tree backref
2612   *
2613   * Direct tree backref means, the backref item shows its parent bytenr
2614   * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2615   *
2616   * @ref_key:	The converted backref key.
2617   *		For keyed backref, it's the item key.
2618   *		For inlined backref, objectid is the bytenr,
2619   *		type is btrfs_inline_ref_type, offset is
2620   *		btrfs_inline_ref_offset.
2621   */
2622  static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2623  				      struct btrfs_key *ref_key,
2624  				      struct btrfs_backref_node *cur)
2625  {
2626  	struct btrfs_backref_edge *edge;
2627  	struct btrfs_backref_node *upper;
2628  	struct rb_node *rb_node;
2629  
2630  	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2631  
2632  	/* Only reloc root uses backref pointing to itself */
2633  	if (ref_key->objectid == ref_key->offset) {
2634  		struct btrfs_root *root;
2635  
2636  		cur->is_reloc_root = 1;
2637  		/* Only reloc backref cache cares about a specific root */
2638  		if (cache->is_reloc) {
2639  			root = find_reloc_root(cache->fs_info, cur->bytenr);
2640  			if (!root)
2641  				return -ENOENT;
2642  			cur->root = root;
2643  		} else {
2644  			/*
2645  			 * For generic purpose backref cache, reloc root node
2646  			 * is useless.
2647  			 */
2648  			list_add(&cur->list, &cache->useless_node);
2649  		}
2650  		return 0;
2651  	}
2652  
2653  	edge = btrfs_backref_alloc_edge(cache);
2654  	if (!edge)
2655  		return -ENOMEM;
2656  
2657  	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2658  	if (!rb_node) {
2659  		/* Parent node not yet cached */
2660  		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2661  					   cur->level + 1);
2662  		if (!upper) {
2663  			btrfs_backref_free_edge(cache, edge);
2664  			return -ENOMEM;
2665  		}
2666  
2667  		/*
2668  		 *  Backrefs for the upper level block isn't cached, add the
2669  		 *  block to pending list
2670  		 */
2671  		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2672  	} else {
2673  		/* Parent node already cached */
2674  		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2675  		ASSERT(upper->checked);
2676  		INIT_LIST_HEAD(&edge->list[UPPER]);
2677  	}
2678  	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2679  	return 0;
2680  }
2681  
2682  /*
2683   * Handle indirect tree backref
2684   *
2685   * Indirect tree backref means, we only know which tree the node belongs to.
2686   * We still need to do a tree search to find out the parents. This is for
2687   * TREE_BLOCK_REF backref (keyed or inlined).
2688   *
2689   * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2690   * @tree_key:	The first key of this tree block.
2691   * @path:	A clean (released) path, to avoid allocating path everytime
2692   *		the function get called.
2693   */
2694  static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2695  					struct btrfs_path *path,
2696  					struct btrfs_key *ref_key,
2697  					struct btrfs_key *tree_key,
2698  					struct btrfs_backref_node *cur)
2699  {
2700  	struct btrfs_fs_info *fs_info = cache->fs_info;
2701  	struct btrfs_backref_node *upper;
2702  	struct btrfs_backref_node *lower;
2703  	struct btrfs_backref_edge *edge;
2704  	struct extent_buffer *eb;
2705  	struct btrfs_root *root;
2706  	struct rb_node *rb_node;
2707  	int level;
2708  	bool need_check = true;
2709  	int ret;
2710  
2711  	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2712  	if (IS_ERR(root))
2713  		return PTR_ERR(root);
2714  	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2715  		cur->cowonly = 1;
2716  
2717  	if (btrfs_root_level(&root->root_item) == cur->level) {
2718  		/* Tree root */
2719  		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2720  		/*
2721  		 * For reloc backref cache, we may ignore reloc root.  But for
2722  		 * general purpose backref cache, we can't rely on
2723  		 * btrfs_should_ignore_reloc_root() as it may conflict with
2724  		 * current running relocation and lead to missing root.
2725  		 *
2726  		 * For general purpose backref cache, reloc root detection is
2727  		 * completely relying on direct backref (key->offset is parent
2728  		 * bytenr), thus only do such check for reloc cache.
2729  		 */
2730  		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2731  			btrfs_put_root(root);
2732  			list_add(&cur->list, &cache->useless_node);
2733  		} else {
2734  			cur->root = root;
2735  		}
2736  		return 0;
2737  	}
2738  
2739  	level = cur->level + 1;
2740  
2741  	/* Search the tree to find parent blocks referring to the block */
2742  	path->search_commit_root = 1;
2743  	path->skip_locking = 1;
2744  	path->lowest_level = level;
2745  	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2746  	path->lowest_level = 0;
2747  	if (ret < 0) {
2748  		btrfs_put_root(root);
2749  		return ret;
2750  	}
2751  	if (ret > 0 && path->slots[level] > 0)
2752  		path->slots[level]--;
2753  
2754  	eb = path->nodes[level];
2755  	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2756  		btrfs_err(fs_info,
2757  "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2758  			  cur->bytenr, level - 1, root->root_key.objectid,
2759  			  tree_key->objectid, tree_key->type, tree_key->offset);
2760  		btrfs_put_root(root);
2761  		ret = -ENOENT;
2762  		goto out;
2763  	}
2764  	lower = cur;
2765  
2766  	/* Add all nodes and edges in the path */
2767  	for (; level < BTRFS_MAX_LEVEL; level++) {
2768  		if (!path->nodes[level]) {
2769  			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2770  			       lower->bytenr);
2771  			/* Same as previous should_ignore_reloc_root() call */
2772  			if (btrfs_should_ignore_reloc_root(root) &&
2773  			    cache->is_reloc) {
2774  				btrfs_put_root(root);
2775  				list_add(&lower->list, &cache->useless_node);
2776  			} else {
2777  				lower->root = root;
2778  			}
2779  			break;
2780  		}
2781  
2782  		edge = btrfs_backref_alloc_edge(cache);
2783  		if (!edge) {
2784  			btrfs_put_root(root);
2785  			ret = -ENOMEM;
2786  			goto out;
2787  		}
2788  
2789  		eb = path->nodes[level];
2790  		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2791  		if (!rb_node) {
2792  			upper = btrfs_backref_alloc_node(cache, eb->start,
2793  							 lower->level + 1);
2794  			if (!upper) {
2795  				btrfs_put_root(root);
2796  				btrfs_backref_free_edge(cache, edge);
2797  				ret = -ENOMEM;
2798  				goto out;
2799  			}
2800  			upper->owner = btrfs_header_owner(eb);
2801  			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2802  				upper->cowonly = 1;
2803  
2804  			/*
2805  			 * If we know the block isn't shared we can avoid
2806  			 * checking its backrefs.
2807  			 */
2808  			if (btrfs_block_can_be_shared(root, eb))
2809  				upper->checked = 0;
2810  			else
2811  				upper->checked = 1;
2812  
2813  			/*
2814  			 * Add the block to pending list if we need to check its
2815  			 * backrefs, we only do this once while walking up a
2816  			 * tree as we will catch anything else later on.
2817  			 */
2818  			if (!upper->checked && need_check) {
2819  				need_check = false;
2820  				list_add_tail(&edge->list[UPPER],
2821  					      &cache->pending_edge);
2822  			} else {
2823  				if (upper->checked)
2824  					need_check = true;
2825  				INIT_LIST_HEAD(&edge->list[UPPER]);
2826  			}
2827  		} else {
2828  			upper = rb_entry(rb_node, struct btrfs_backref_node,
2829  					 rb_node);
2830  			ASSERT(upper->checked);
2831  			INIT_LIST_HEAD(&edge->list[UPPER]);
2832  			if (!upper->owner)
2833  				upper->owner = btrfs_header_owner(eb);
2834  		}
2835  		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2836  
2837  		if (rb_node) {
2838  			btrfs_put_root(root);
2839  			break;
2840  		}
2841  		lower = upper;
2842  		upper = NULL;
2843  	}
2844  out:
2845  	btrfs_release_path(path);
2846  	return ret;
2847  }
2848  
2849  /*
2850   * Add backref node @cur into @cache.
2851   *
2852   * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2853   *	 links aren't yet bi-directional. Needs to finish such links.
2854   *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2855   *
2856   * @path:	Released path for indirect tree backref lookup
2857   * @iter:	Released backref iter for extent tree search
2858   * @node_key:	The first key of the tree block
2859   */
2860  int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2861  				struct btrfs_path *path,
2862  				struct btrfs_backref_iter *iter,
2863  				struct btrfs_key *node_key,
2864  				struct btrfs_backref_node *cur)
2865  {
2866  	struct btrfs_fs_info *fs_info = cache->fs_info;
2867  	struct btrfs_backref_edge *edge;
2868  	struct btrfs_backref_node *exist;
2869  	int ret;
2870  
2871  	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2872  	if (ret < 0)
2873  		return ret;
2874  	/*
2875  	 * We skip the first btrfs_tree_block_info, as we don't use the key
2876  	 * stored in it, but fetch it from the tree block
2877  	 */
2878  	if (btrfs_backref_has_tree_block_info(iter)) {
2879  		ret = btrfs_backref_iter_next(iter);
2880  		if (ret < 0)
2881  			goto out;
2882  		/* No extra backref? This means the tree block is corrupted */
2883  		if (ret > 0) {
2884  			ret = -EUCLEAN;
2885  			goto out;
2886  		}
2887  	}
2888  	WARN_ON(cur->checked);
2889  	if (!list_empty(&cur->upper)) {
2890  		/*
2891  		 * The backref was added previously when processing backref of
2892  		 * type BTRFS_TREE_BLOCK_REF_KEY
2893  		 */
2894  		ASSERT(list_is_singular(&cur->upper));
2895  		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2896  				  list[LOWER]);
2897  		ASSERT(list_empty(&edge->list[UPPER]));
2898  		exist = edge->node[UPPER];
2899  		/*
2900  		 * Add the upper level block to pending list if we need check
2901  		 * its backrefs
2902  		 */
2903  		if (!exist->checked)
2904  			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2905  	} else {
2906  		exist = NULL;
2907  	}
2908  
2909  	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2910  		struct extent_buffer *eb;
2911  		struct btrfs_key key;
2912  		int type;
2913  
2914  		cond_resched();
2915  		eb = btrfs_backref_get_eb(iter);
2916  
2917  		key.objectid = iter->bytenr;
2918  		if (btrfs_backref_iter_is_inline_ref(iter)) {
2919  			struct btrfs_extent_inline_ref *iref;
2920  
2921  			/* Update key for inline backref */
2922  			iref = (struct btrfs_extent_inline_ref *)
2923  				((unsigned long)iter->cur_ptr);
2924  			type = btrfs_get_extent_inline_ref_type(eb, iref,
2925  							BTRFS_REF_TYPE_BLOCK);
2926  			if (type == BTRFS_REF_TYPE_INVALID) {
2927  				ret = -EUCLEAN;
2928  				goto out;
2929  			}
2930  			key.type = type;
2931  			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2932  		} else {
2933  			key.type = iter->cur_key.type;
2934  			key.offset = iter->cur_key.offset;
2935  		}
2936  
2937  		/*
2938  		 * Parent node found and matches current inline ref, no need to
2939  		 * rebuild this node for this inline ref
2940  		 */
2941  		if (exist &&
2942  		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2943  		      exist->owner == key.offset) ||
2944  		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2945  		      exist->bytenr == key.offset))) {
2946  			exist = NULL;
2947  			continue;
2948  		}
2949  
2950  		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2951  		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2952  			ret = handle_direct_tree_backref(cache, &key, cur);
2953  			if (ret < 0)
2954  				goto out;
2955  			continue;
2956  		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2957  			ret = -EINVAL;
2958  			btrfs_print_v0_err(fs_info);
2959  			btrfs_handle_fs_error(fs_info, ret, NULL);
2960  			goto out;
2961  		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2962  			continue;
2963  		}
2964  
2965  		/*
2966  		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2967  		 * means the root objectid. We need to search the tree to get
2968  		 * its parent bytenr.
2969  		 */
2970  		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2971  						   cur);
2972  		if (ret < 0)
2973  			goto out;
2974  	}
2975  	ret = 0;
2976  	cur->checked = 1;
2977  	WARN_ON(exist);
2978  out:
2979  	btrfs_backref_iter_release(iter);
2980  	return ret;
2981  }
2982  
2983  /*
2984   * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2985   */
2986  int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2987  				     struct btrfs_backref_node *start)
2988  {
2989  	struct list_head *useless_node = &cache->useless_node;
2990  	struct btrfs_backref_edge *edge;
2991  	struct rb_node *rb_node;
2992  	LIST_HEAD(pending_edge);
2993  
2994  	ASSERT(start->checked);
2995  
2996  	/* Insert this node to cache if it's not COW-only */
2997  	if (!start->cowonly) {
2998  		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2999  					   &start->rb_node);
3000  		if (rb_node)
3001  			btrfs_backref_panic(cache->fs_info, start->bytenr,
3002  					    -EEXIST);
3003  		list_add_tail(&start->lower, &cache->leaves);
3004  	}
3005  
3006  	/*
3007  	 * Use breadth first search to iterate all related edges.
3008  	 *
3009  	 * The starting points are all the edges of this node
3010  	 */
3011  	list_for_each_entry(edge, &start->upper, list[LOWER])
3012  		list_add_tail(&edge->list[UPPER], &pending_edge);
3013  
3014  	while (!list_empty(&pending_edge)) {
3015  		struct btrfs_backref_node *upper;
3016  		struct btrfs_backref_node *lower;
3017  
3018  		edge = list_first_entry(&pending_edge,
3019  				struct btrfs_backref_edge, list[UPPER]);
3020  		list_del_init(&edge->list[UPPER]);
3021  		upper = edge->node[UPPER];
3022  		lower = edge->node[LOWER];
3023  
3024  		/* Parent is detached, no need to keep any edges */
3025  		if (upper->detached) {
3026  			list_del(&edge->list[LOWER]);
3027  			btrfs_backref_free_edge(cache, edge);
3028  
3029  			/* Lower node is orphan, queue for cleanup */
3030  			if (list_empty(&lower->upper))
3031  				list_add(&lower->list, useless_node);
3032  			continue;
3033  		}
3034  
3035  		/*
3036  		 * All new nodes added in current build_backref_tree() haven't
3037  		 * been linked to the cache rb tree.
3038  		 * So if we have upper->rb_node populated, this means a cache
3039  		 * hit. We only need to link the edge, as @upper and all its
3040  		 * parents have already been linked.
3041  		 */
3042  		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3043  			if (upper->lowest) {
3044  				list_del_init(&upper->lower);
3045  				upper->lowest = 0;
3046  			}
3047  
3048  			list_add_tail(&edge->list[UPPER], &upper->lower);
3049  			continue;
3050  		}
3051  
3052  		/* Sanity check, we shouldn't have any unchecked nodes */
3053  		if (!upper->checked) {
3054  			ASSERT(0);
3055  			return -EUCLEAN;
3056  		}
3057  
3058  		/* Sanity check, COW-only node has non-COW-only parent */
3059  		if (start->cowonly != upper->cowonly) {
3060  			ASSERT(0);
3061  			return -EUCLEAN;
3062  		}
3063  
3064  		/* Only cache non-COW-only (subvolume trees) tree blocks */
3065  		if (!upper->cowonly) {
3066  			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3067  						   &upper->rb_node);
3068  			if (rb_node) {
3069  				btrfs_backref_panic(cache->fs_info,
3070  						upper->bytenr, -EEXIST);
3071  				return -EUCLEAN;
3072  			}
3073  		}
3074  
3075  		list_add_tail(&edge->list[UPPER], &upper->lower);
3076  
3077  		/*
3078  		 * Also queue all the parent edges of this uncached node
3079  		 * to finish the upper linkage
3080  		 */
3081  		list_for_each_entry(edge, &upper->upper, list[LOWER])
3082  			list_add_tail(&edge->list[UPPER], &pending_edge);
3083  	}
3084  	return 0;
3085  }
3086  
3087  void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3088  				 struct btrfs_backref_node *node)
3089  {
3090  	struct btrfs_backref_node *lower;
3091  	struct btrfs_backref_node *upper;
3092  	struct btrfs_backref_edge *edge;
3093  
3094  	while (!list_empty(&cache->useless_node)) {
3095  		lower = list_first_entry(&cache->useless_node,
3096  				   struct btrfs_backref_node, list);
3097  		list_del_init(&lower->list);
3098  	}
3099  	while (!list_empty(&cache->pending_edge)) {
3100  		edge = list_first_entry(&cache->pending_edge,
3101  				struct btrfs_backref_edge, list[UPPER]);
3102  		list_del(&edge->list[UPPER]);
3103  		list_del(&edge->list[LOWER]);
3104  		lower = edge->node[LOWER];
3105  		upper = edge->node[UPPER];
3106  		btrfs_backref_free_edge(cache, edge);
3107  
3108  		/*
3109  		 * Lower is no longer linked to any upper backref nodes and
3110  		 * isn't in the cache, we can free it ourselves.
3111  		 */
3112  		if (list_empty(&lower->upper) &&
3113  		    RB_EMPTY_NODE(&lower->rb_node))
3114  			list_add(&lower->list, &cache->useless_node);
3115  
3116  		if (!RB_EMPTY_NODE(&upper->rb_node))
3117  			continue;
3118  
3119  		/* Add this guy's upper edges to the list to process */
3120  		list_for_each_entry(edge, &upper->upper, list[LOWER])
3121  			list_add_tail(&edge->list[UPPER],
3122  				      &cache->pending_edge);
3123  		if (list_empty(&upper->upper))
3124  			list_add(&upper->list, &cache->useless_node);
3125  	}
3126  
3127  	while (!list_empty(&cache->useless_node)) {
3128  		lower = list_first_entry(&cache->useless_node,
3129  				   struct btrfs_backref_node, list);
3130  		list_del_init(&lower->list);
3131  		if (lower == node)
3132  			node = NULL;
3133  		btrfs_backref_drop_node(cache, lower);
3134  	}
3135  
3136  	btrfs_backref_cleanup_node(cache, node);
3137  	ASSERT(list_empty(&cache->useless_node) &&
3138  	       list_empty(&cache->pending_edge));
3139  }
3140