# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest from mindspore.common import dtype as mstype from mindspore import nn from mindspore import Tensor from mindspore.ops import composite as C from mindspore import context context.set_context(mode=context.GRAPH_MODE) class ForwardNet(nn.Cell): def construct(self, x, y): y = y + 10 while x < y: x = (x + 2) * (y - 9) y = y + 2 x = x + 5 return x class BackwardNet(nn.Cell): def __init__(self, forward_net): super(BackwardNet, self).__init__() self.forward_net = forward_net self.grad = C.GradOperation() def construct(self, *inputs): grads = self.grad(self.forward_net)(*inputs) return grads @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_forward(): c1 = Tensor([0], mstype.int32) c2 = Tensor([0], mstype.int32) expect = Tensor([75], mstype.int32) forward_net = ForwardNet() output = forward_net(c1, c2) assert expect == output @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_backward(): c1 = Tensor([0], mstype.int32) c2 = Tensor([0], mstype.int32) expect = Tensor([75], mstype.int32) forward_net = ForwardNet() output = forward_net(c1, c2) assert expect == output