# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor, Parameter from mindspore.common.initializer import initializer from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE) class Assign(nn.Cell): def __init__(self, x, y): super(Assign, self).__init__() self.x = Parameter(initializer(x, x.shape), name="x") self.y = Parameter(initializer(y, y.shape), name="y") self.assign = P.Assign() def construct(self): self.assign(self.y, self.x) return self.y def test_assign_bool(): x = Tensor(np.ones([3, 3]).astype(np.bool_)) y = Tensor(np.zeros([3, 3]).astype(np.bool_)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.ones([3, 3]).astype(np.bool_) print(output) assert np.all(output == output_expect) def test_assign_int8(): x = Tensor(np.ones([3, 3]).astype(np.int8)) y = Tensor(np.zeros([3, 3]).astype(np.int8)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.ones([3, 3]).astype(np.int8) print(output) assert np.all(output == output_expect) def test_assign_uint8(): x = Tensor(np.ones([3, 3]).astype(np.uint8)) y = Tensor(np.zeros([3, 3]).astype(np.uint8)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.ones([3, 3]).astype(np.uint8) print(output) assert np.all(output == output_expect) def test_assign_int16(): x = Tensor(np.ones([3, 3]).astype(np.int16)) y = Tensor(np.zeros([3, 3]).astype(np.int16)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.ones([3, 3]).astype(np.int16) print(output) assert np.all(output == output_expect) def test_assign_uint16(): x = Tensor(np.ones([3, 3]).astype(np.uint16)) y = Tensor(np.zeros([3, 3]).astype(np.uint16)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.ones([3, 3]).astype(np.uint16) print(output) assert np.all(output == output_expect) def test_assign_int32(): x = Tensor(np.ones([3, 3]).astype(np.int32)) y = Tensor(np.zeros([3, 3]).astype(np.int32)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.ones([3, 3]).astype(np.int32) print(output) assert np.all(output == output_expect) def test_assign_uint32(): x = Tensor(np.ones([3, 3]).astype(np.uint32)) y = Tensor(np.zeros([3, 3]).astype(np.uint32)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.ones([3, 3]).astype(np.uint32) print(output) assert np.all(output == output_expect) def test_assign_int64(): x = Tensor(np.ones([3, 3]).astype(np.int64)) y = Tensor(np.zeros([3, 3]).astype(np.int64)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.ones([3, 3]).astype(np.int64) print(output) assert np.all(output == output_expect) def test_assign_uint64(): x = Tensor(np.ones([3, 3]).astype(np.uint64)) y = Tensor(np.zeros([3, 3]).astype(np.uint64)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.ones([3, 3]).astype(np.uint64) print(output) assert np.all(output == output_expect) def test_assign_float16(): x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.5], [0.6, 0.7, 0.8]]).astype(np.float16)) y = Tensor(np.array([[0.4, 0.5, 0.5], [0.6, 0.7, 0.8], [0.1, 0.2, 0.3]]).astype(np.float16)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.5], [0.6, 0.7, 0.8]]).astype(np.float16) print(output) assert np.all(output - output_expect < 1e-6) def test_assign_float32(): x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.5], [0.6, 0.7, 0.8]]).astype(np.float32)) y = Tensor(np.array([[0.4, 0.5, 0.5], [0.6, 0.7, 0.8], [0.1, 0.2, 0.3]]).astype(np.float32)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.5], [0.6, 0.7, 0.8]]).astype(np.float32) print(output) assert np.all(output - output_expect < 1e-6) def test_assign_float64(): x = Tensor(np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.5], [0.6, 0.7, 0.8]]).astype(np.float64)) y = Tensor(np.array([[0.4, 0.5, 0.5], [0.6, 0.7, 0.8], [0.1, 0.2, 0.3]]).astype(np.float64)) assign = Assign(x, y) output = assign() output = output.asnumpy() output_expect = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.5], [0.6, 0.7, 0.8]]).astype(np.float64) print(output) assert np.all(output - output_expect < 1e-6) class AssignAdd(nn.Cell): def __init__(self, x, y): super(AssignAdd, self).__init__() self.x = Parameter(initializer(x, x.shape), name="x") self.y = Parameter(initializer(y, y.shape), name="y") self.assignadd = P.AssignAdd() def construct(self): self.assignadd(self.y, self.x) return self.y def test_number_assignadd_number(): input_x = 2 result1 = 5 result2 = 5 result1 += input_x assignadd = AssignAdd(result2, input_x) result2 = assignadd() expect = 7 assert np.all(result1 == expect) assert np.all(result2 == expect) def test_tensor_assignadd_tensor(): input_x = Tensor(np.array([[2, 2], [3, 3]])) result1 = Tensor(np.array([[4, -2], [2, 17]])) result2 = Tensor(np.array([[4, -2], [2, 17]])) result1 += input_x result2 = AssignAdd(result2, input_x)() expect = Tensor(np.array([[6, 0], [5, 20]])) assert np.all(result1.asnumpy() == expect) assert np.all(result2.asnumpy() == expect) def test_tensor_assignadd_number(): input_x = 3 result1 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16) result2 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16) result1 += input_x result2 = AssignAdd(result2, input_x)() expect = Tensor(np.array([[7, 1], [5, 20]])) assert np.all(result1.asnumpy() == expect) assert np.all(result2.asnumpy() == expect) def test_number_assignadd_tensor(): result1 = 3 result2 = 3 input_x = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16) result1 += input_x result2 = AssignAdd(result2, input_x)() expect = Tensor(np.array([[7, 1], [5, 20]])) assert np.all(result1.asnumpy() == expect) assert np.all(result2.asnumpy() == expect) def test_tuple_assignadd_tuple(): result1 = (1, 2, 3, 4) result2 = (1, 2, 3, 4) input_x = (2, 3, 4, 5, 6) result1 += input_x result2 = AssignAdd(result2, input_x)() expect = (1, 2, 3, 4, 2, 3, 4, 5, 6) assert np.all(result1.asnumpy() == expect) assert np.all(result2.asnumpy() == expect) def test_string_assignadd_string(): result1 = "string111" result2 = "string111" input_x = "string222" result1 += input_x result2 = AssignAdd(result2, input_x)() expect = "string111string222" assert result1 == expect assert result2 == expect class AssignSub(nn.Cell): def __init__(self, x, y): super(AssignSub, self).__init__() self.x = Parameter(initializer(x, x.shape), name="x") self.y = Parameter(initializer(y, y.shape), name="y") self.assignsub = P.AssignSub() def construct(self): self.assignsub(self.y, self.x) return self.y def test_number_assignsub_number(): input_x = 2 result1 = 5 result2 = 5 result1 -= input_x result2 = AssignSub(result2, input_x)() expect = 3 assert np.all(result1 == expect) assert np.all(result2 == expect) def test_tensor_assignsub_tensor(): input_x = Tensor(np.array([[2, 2], [3, 3]])) result1 = Tensor(np.array([[4, -2], [2, 17]])) result2 = Tensor(np.array([[4, -2], [2, 17]])) result1 -= input_x result2 = AssignSub(result2, input_x)() expect = Tensor(np.array([[2, -4], [-1, 14]])) assert np.all(result1.asnumpy() == expect) assert np.all(result2.asnumpy() == expect) def test_tensor_assignsub_number(): input_x = 3 result1 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16) result2 = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16) result1 -= input_x result2 = AssignSub(result2, input_x)() expect = Tensor(np.array([[1, -5], [-1, 14]])) assert np.all(result1.asnumpy() == expect) assert np.all(result2.asnumpy() == expect) def test_number_assignsub_tensor(): result1 = 3 result2 = 3 input_x = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16) result1 -= input_x result2 = AssignSub(result2, input_x)() expect = Tensor(np.array([[-1, 5], [1, -14]])) assert np.all(result1.asnumpy() == expect) assert np.all(result2.asnumpy() == expect) def test_number_assignmul_number(): input_x = 2 result = 5 result *= input_x expect = 10 assert np.all(result == expect) def test_tensor_assignmul_tensor(): input_x = Tensor(np.array([[2, 2], [3, 3]])) result = Tensor(np.array([[4, -2], [2, 17]])) result *= input_x expect = Tensor(np.array([[8, -4], [6, 51]])) assert np.all(result.asnumpy() == expect) def test_tensor_assignmul_number(): input_x = 3 result = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16) result *= input_x expect = Tensor(np.array([[12, -6], [6, 51]])) assert np.all(result.asnumpy() == expect) def test_number_assignmul_tensor(): result = 3 input_x = Tensor(np.array([[4, -2], [2, 17]])).astype(np.float16) result *= input_x expect = Tensor(np.array([[12, -6], [6, 51]])) assert np.all(result.asnumpy() == expect) def test_number_assigndiv_number(): input_x = 2 result = 5 result /= input_x expect = 2.5 assert np.all(result == expect) def test_tensor_assigndiv_tensor(): input_x = Tensor(np.array([[2, 2], [3, 3]])) result = Tensor(np.array([[4, -2], [6, 15]])) result /= input_x expect = Tensor(np.array([[2, -1], [2, 5]])) assert np.all(result.asnumpy() == expect) def test_tensor_assigndiv_number(): input_x = 3 result = Tensor(np.array([[9, -3], [6, 15]])).astype(np.float16) result /= input_x expect = Tensor(np.array([[3, -1], [2, 5]])) assert np.all(result.asnumpy() == expect) def test_number_assigndiv_tensor(): result = 3 input_x = Tensor(np.array([[2, -2], [2, -2]])).astype(np.float16) result /= input_x expect = Tensor(np.array([[1.5, -1.5], [1.5, -1.5]])) assert np.all(result.asnumpy() == expect) def test_number_assignmod_number(): input_x = 2 result = 5 result %= input_x expect = 1 assert np.all(result == expect) def test_tensor_assignmod_tensor(): input_x = Tensor(np.array([[2, 2], [3, 3]])) result = Tensor(np.array([[4, -2], [6, 15]])) result %= input_x expect = Tensor(np.array([[0, 0], [0, 0]])) assert np.all(result.asnumpy() == expect) def test_tensor_assignmod_number(): input_x = 3 result = Tensor(np.array([[9, -3], [7, 15]])).astype(np.float16) result %= input_x expect = Tensor(np.array([[0, 0], [1, 0]])) assert np.all(result.asnumpy() == expect) def test_number_assignmod_tensor(): result = 3 input_x = Tensor(np.array([[2, -2], [2, -2]])).astype(np.float16) result %= input_x expect = Tensor(np.array([[1, -1], [1, -1]])) assert np.all(result.asnumpy() == expect) def test_number_assignmulmul_number(): input_x = 2 result = 5 result **= input_x expect = 25 assert np.all(result == expect) def test_tensor_assignmulmul_tensor(): input_x = Tensor(np.array([[2, 2], [3, 3]])) result = Tensor(np.array([[4, -2], [6, 5]])) result **= input_x expect = Tensor(np.array([[16, 4], [216, 125]])) assert np.all(result.asnumpy() == expect) def test_tensor_assignmulmul_number(): input_x = 3 result = Tensor(np.array([[9, -3], [7, 5]])).astype(np.float16) result **= input_x expect = Tensor(np.array([[729, -27], [343, 125]])) assert np.all(result.asnumpy() == expect) def test_number_assignmulmul_tensor(): result = 3 input_x = Tensor(np.array([[2, 2], [2, 2]])).astype(np.float16) result **= input_x expect = Tensor(np.array([[9, 9], [9, 9]])) assert np.all(result.asnumpy() == expect) def test_number_assigndivdiv_number(): input_x = 2 result = 5 result //= input_x expect = 2 assert np.all(result == expect) def test_tensor_assigndivdiv_tensor(): input_x = Tensor(np.array([[2, 2], [3, 3]])) result = Tensor(np.array([[4, -2], [6, 6]])) result //= input_x expect = Tensor(np.array([[2, -1], [2, 2]])) assert np.all(result.asnumpy() == expect) def test_tensor_assigndivdiv_number(): input_x = 3 result = Tensor(np.array([[9, -3], [15, 9]])).astype(np.float16) result //= input_x expect = Tensor(np.array([[3, -1], [5, 3]])) assert np.all(result.asnumpy() == expect) def test_number_assigndivdiv_tensor(): result = 3 input_x = Tensor(np.array([[1, 2], [2, 2]])).astype(np.float16) result //= input_x expect = Tensor(np.array([[3, 1], [1, 1]])) assert np.all(result.asnumpy() == expect)