# Copyright 2019-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.common.initializer import initializer from mindspore.common.parameter import Parameter from mindspore.ops import operations as P from mindspore.ops.composite import GradOperation # context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(device_target="Ascend") class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(get_all=True, sens_param=True) self.network = network @ms_function def construct(self, input_, output_grad): return self.grad(self.network)(input_, output_grad) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.bn = P.BatchNorm() self.scale = Parameter(initializer('ones', [64]), name='scale') self.b = Parameter(initializer('zeros', [64]), name='b') self.mean = Parameter(initializer('ones', [64]), name='mean') self.variance = Parameter(initializer('zeros', [64]), name='variance') def construct(self, x): return self.bn(x, self.scale, self.b, self.mean, self.variance)[0] def test_net(): x = np.random.randn(1, 64, 112, 112).astype(np.float32) sens = np.random.randn(1, 64, 112, 112).astype(np.float32) net = Grad(Net()) output = net(Tensor(x), Tensor(sens)) print("***********x*********") print(x) print("***********output y*********") print(output.asnumpy())