# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.bias_add = P.BiasAdd() def construct(self, x, b): return self.bias_add(x, b) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_bias_add4d(): x_shape = [2, 3, 4, 5] x = np.ones(x_shape).astype(np.float32) b = np.array([0.3, 0.5, 0.7]).astype(np.float32) bias_add = Net() output = bias_add(Tensor(x), Tensor(b)) expect_output = x for i in range(x_shape[0]): for j in range(x_shape[1]): expect_output[i][j] = x[i][j] + b[j] print(output) assert np.all(output.asnumpy() == expect_output), "bias_add execute failed, please check current code commit" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_bias_add2d(): x_shape = [2, 3] x = np.ones(x_shape).astype(np.float32) b = np.array([0.3, 0.5, 0.7]).astype(np.float32) bias_add = Net() output = bias_add(Tensor(x), Tensor(b)) expect_output = x for i in range(x_shape[0]): for j in range(x_shape[1]): expect_output[i][j] = x[i][j] + b[j] print(output) assert np.all(output.asnumpy() == expect_output), "bias_add execute failed, please check current code commit" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_bias_add3d(): x_shape = [2, 3, 4] x = np.ones(x_shape).astype(np.float32) b = np.array([0.3, 0.5, 0.7]).astype(np.float32) bias_add = Net() output = bias_add(Tensor(x), Tensor(b)) expect_output = x for i in range(x_shape[0]): for j in range(x_shape[1]): expect_output[i][j] = x[i][j] + b[j] print(output) assert np.all(output.asnumpy() == expect_output), "bias_add execute failed, please check current code commit" @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_bias_add5d(): x_shape = [2, 5, 2, 3, 4] x = np.ones(x_shape).astype(np.float32) b = np.array([0.1, 0.3, 0.5, 0.7, 0.9]).astype(np.float32) bias_add = Net() output = bias_add(Tensor(x), Tensor(b)) expect_output = x for i in range(x_shape[0]): for j in range(x_shape[1]): expect_output[i][j] = x[i][j] + b[j] print(output) assert np.all(output.asnumpy() == expect_output), "bias_add execute failed, please check current code commit" class Net2(nn.Cell): def __init__(self): super(Net2, self).__init__() self.bias_add = P.BiasAdd() self.mul = P.Mul() self.div = P.Div() self.add = P.Add() def construct(self, x, y, z, w): mul_ = self.mul(x, y) div_ = self.div(z, w) temp = self.bias_add(mul_, div_) temp = self.bias_add(temp, div_) return self.add(temp, x) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_net2(): x_shape = [2, 3, 4] x = np.ones(x_shape).astype(np.float32) y = np.ones(x_shape).astype(np.float32) z = np.array([1.1, 2.2, 3.4]).astype(np.float32) w = np.array([10, 10, 10]).astype(np.float32) net2 = Net2() output = net2(Tensor(x), Tensor(y), Tensor(z), Tensor(w)) expect_out = (np.array([[[2.22, 2.22, 2.22, 2.22], [2.44, 2.44, 2.44, 2.44], [2.68, 2.68, 2.68, 2.68]], [[2.22, 2.22, 2.22, 2.22], [2.44, 2.44, 2.44, 2.44], [2.68, 2.68, 2.68, 2.68]]])) assert np.allclose(output.asnumpy(), expect_out)