# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops.operations import _grad_ops as G context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class NetEluGrad(nn.Cell): def __init__(self): super(NetEluGrad, self).__init__() self.elu_grad = G.EluGrad() def construct(self, dy, y): return self.elu_grad(dy, y) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_elu_grad_fp32(): y = Tensor(np.array([[[[-0.3, 1, 2], [1, -0.6, 1], [2, 1, -2]]]]).astype(np.float32)) dy = Tensor(np.array([[[[-11, 2, 4], [-1, 1, -1], [-4, 4, -4]]]]).astype(np.float32)) expect = np.array([[[[-7.7, 2, 4], [-1, 0.4, -1], [-4, 4, 4]]]]).astype(np.float32) error = np.ones(shape=[1, 1, 3, 3]) * 1.0e-6 elu_grad = NetEluGrad() output = elu_grad(dy, y) print(output) diff = np.abs(output.asnumpy() - expect) double_check = diff / expect assert np.all(double_check < error) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_elu_grad_fp16(): y = Tensor(np.array([[0.5, 2, 5.5], [4.5, -2, 0]]).astype(np.float16)) dy = Tensor(np.array([[2, 1, 1.5], [-0.5, -1, -3]]).astype(np.float16)) expect = np.array([[2, 1, 1.5], [-0.5, 1, -3]]).astype(np.float16) error = np.ones(shape=[2, 3]) * 1.0e-3 elu_grad = NetEluGrad() output = elu_grad(dy, y) print(output) diff = np.abs(output.asnumpy() - expect) double_check = diff / expect assert np.all(double_check < error)