# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.composite import GradOperation class Grad(nn.Cell): def __init__(self, network): super(Grad, self).__init__() self.grad = GradOperation(get_all=True, sens_param=True) self.network = network def construct(self, input_x, dout): return self.grad(self.network)(input_x, dout) class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.hswish = P.HSwish() def construct(self, x): return self.hswish(x) def expect_hswish_forward_result(x): return np.where(x <= -3, 0, np.where(x >= 3, x, x * (x + 3) / 6)) def expect_hswish_backward_result(x, dout): return np.where(x <= -3, 0, np.where(x >= 3, 1, x / 3 + 0.5)) * dout def judge_result_correct(result, expect): assert result.dtype == expect.dtype assert result.shape == expect.shape assert np.allclose(result, expect) def generate_test_cases(np_type, mode): context.set_context(mode=mode, device_target="GPU") x = np.array([-1, -2, 0, 4, 5]).astype(np_type) net = Net() output = net(Tensor(x)) expect = expect_hswish_forward_result(x) judge_result_correct(output.asnumpy(), expect) sens = np.array([-1.45, 0.63, 0.34, 6.43, 34.6]).astype(np_type) backward_net = Grad(Net()) output = backward_net(Tensor(x), Tensor(sens)) expect = expect_hswish_backward_result(x, sens) judge_result_correct(output[0].asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_hswish_forward_and_backward(): modes = (context.GRAPH_MODE, context.PYNATIVE_MODE) dtypes = (np.float32, np.float16) for mode in modes: for dtype in dtypes: generate_test_cases(dtype, mode)