# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.nn import Cell import mindspore.ops.operations as P class Net(Cell): def __init__(self): super(Net, self).__init__() self.addn = P.AddN() def construct(self, *args): return self.addn(*args) def get_output(*tensors): net = Net() output = net(tensors) return output def test_basic(): np.random.seed(0) tensors = [] expect = np.array([0], np.float32) for _ in range(10): t = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32) expect = t + expect tensors.append(Tensor(t)) output = get_output(*tensors).asnumpy() assert np.allclose(expect, output, 1.e-4, 1.e-7) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_basic_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU", enable_graph_kernel=True) test_basic() @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_basic_ascend(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", enable_graph_kernel=True) test_basic()