# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import copy import numpy as np import pytest import mindspore.context as context from mindspore import Tensor import mindspore.nn as nn from mindspore.ops.operations import _grad_ops as G import mindspore.ops.operations as P class LayerNormNet(nn.Cell): def __init__(self, begin_norm_axis, begin_params_axis): super(LayerNormNet, self).__init__() self.layernorm = P.LayerNorm(begin_norm_axis, begin_params_axis) def construct(self, x, gamma, beta): return self.layernorm(x, gamma, beta) class LayerNormGradNet(nn.Cell): def __init__(self, begin_norm_axis, begin_params_axis): super(LayerNormGradNet, self).__init__() self.layernorm_grad = G.LayerNormGrad(begin_norm_axis, begin_params_axis) def construct(self, dy, x, var, mean, gamma): return self.layernorm_grad(dy, x, var, mean, gamma) def get_layernorm_output(x, gamma, beta, begin_norm_axis, begin_params_axis, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net = LayerNormNet(begin_norm_axis, begin_params_axis) output = net(x, gamma, beta) return output def get_layernorm_grad_output(x, dy, var, mean, gamma, begin_norm_axis, begin_params_axis, enable_graph_kernel=False): context.set_context(enable_graph_kernel=enable_graph_kernel) net = LayerNormGradNet(begin_norm_axis, begin_params_axis) output = net(x, dy, var, mean, gamma) return output def get_rtol_atol(dtype): if dtype == np.float16: return 1.e-3, 1.e-3 return 1.e-4, 1.e-4 def compare_result(expect, output, dtype): rtol, atol = get_rtol_atol(dtype) if isinstance(expect, (list, tuple)): assert isinstance(output, (list, tuple)) and len(expect) == len(output) expect_list = list(expect) output_list = list(output) for e, o in zip(expect_list, output_list): assert np.allclose(e.asnumpy(), o.asnumpy(), rtol, atol, equal_nan=True) else: assert np.allclose(expect.asnumpy(), output.asnumpy(), rtol, atol, equal_nan=True) def test_layernorm(shape, dtype, begin_norm_axis=-1, begin_params_axis=-1): begin_norm_axis = begin_norm_axis if begin_norm_axis >= 0 else begin_norm_axis + len(shape) begin_params_axis = begin_params_axis if begin_params_axis >= 0 else begin_params_axis + len(shape) assert 0 <= begin_norm_axis < len(shape) assert 0 <= begin_params_axis < len(shape) normalized_shape = shape[begin_params_axis:] np.random.seed(0) # input tensors x = Tensor(np.random.normal(0, 1, shape).astype(dtype)) gamma = Tensor(np.random.normal(0, 1, normalized_shape).astype(dtype)) beta = Tensor(np.random.normal(0, 1, normalized_shape).astype(dtype)) expect = get_layernorm_output(x, gamma, beta, begin_norm_axis, begin_params_axis, False) output = get_layernorm_output(x, gamma, beta, begin_norm_axis, begin_params_axis, True) compare_result(expect, output, dtype) def test_layernorm_grad(shape, dtype, begin_norm_axis=-1, begin_params_axis=-1): begin_norm_axis = begin_norm_axis if begin_norm_axis >= 0 else begin_norm_axis + len(shape) begin_params_axis = begin_params_axis if begin_params_axis >= 0 else begin_params_axis + len(shape) assert 0 <= begin_norm_axis < len(shape) assert 0 <= begin_params_axis < len(shape) norm_axis = [i for i in range(begin_norm_axis, len(shape))] norm_shape = copy.deepcopy(shape) for i, _ in enumerate(norm_shape): if i in norm_axis: norm_shape[i] = 1 params_shape = shape[begin_params_axis:] np.random.seed(0) # input tensors dy = Tensor(np.random.normal(0, 1, shape).astype(dtype)) x = Tensor(np.random.normal(0, 1, shape).astype(dtype)) var = Tensor(np.random.normal(0, 1, norm_shape).astype(dtype)) mean = Tensor(np.random.normal(0, 1, norm_shape).astype(dtype)) gamma = Tensor(np.random.normal(0, 1, params_shape).astype(dtype)) expect = get_layernorm_grad_output(x, dy, var, mean, gamma, begin_norm_axis, begin_params_axis, False) output = get_layernorm_grad_output(x, dy, var, mean, gamma, begin_norm_axis, begin_params_axis, True) compare_result(expect, output, dtype) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_layernorm_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test_layernorm([4, 32, 32], np.float32, -1, -1) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_layernorm_ascend(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") test_layernorm([4, 32, 32], np.float16, -1, -1) test_layernorm([4, 32, 32], np.float32, -1, -1) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_layernorm_grad_gpu(): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") test_layernorm_grad([4, 32, 32], np.float32, -1, -1) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard def test_layernorm_grad_ascend(): context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") test_layernorm_grad([2, 16, 32], np.float16, -1, -1) test_layernorm_grad([4, 32, 32], np.float32, -1, -1)