# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import numpy as np import pytest import mindspore.dataset as ds import mindspore.dataset.audio.transforms as audio from mindspore import log as logger def count_unequal_element(data_expected, data_me, rtol, atol): assert data_expected.shape == data_me.shape total_count = len(data_expected.flatten()) error = np.abs(data_expected - data_me) greater = np.greater(error, atol + np.abs(data_expected) * rtol) loss_count = np.count_nonzero(greater) assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format( data_expected[greater], data_me[greater], error[greater]) def test_func_contrast_eager(): """ mindspore eager mode normal testcase:contrast op""" # Original waveform waveform = np.array([[1, 2], [3, 4]], dtype=np.float32) # Expect waveform expect_waveform = np.array([[1., -8.742277e-08], [-1., 1.748455e-07]], dtype=np.float32) contrast_op = audio.Contrast(75.0) # Filtered waveform by contrast output = contrast_op(waveform) count_unequal_element(expect_waveform, output, 0.0001, 0.0001) def test_func_contrast_pipeline(): """ mindspore pipeline mode normal testcase:contrast op""" # Original waveform waveform = np.array([[0.4941969, 0.53911686, 0.4846254], [0.10841596, 0.029320478, 0.52353495], [0.23657, 0.087965, 0.43579]], dtype=np.float64) # Expect waveform expect_waveform = np.array([[7.032282948493957520e-01, 7.328570485115051270e-01, 6.967759728431701660e-01], [2.311619222164154053e-01, 6.433061510324478149e-02, 7.226532697677612305e-01], [4.539981484413146973e-01, 1.895205676555633545e-01, 6.622338891029357910e-01]], dtype=np.float64) dataset = ds.NumpySlicesDataset(waveform, ["audio"], shuffle=False) contrast_op = audio.Contrast() # Filtered waveform by contrast dataset = dataset.map(input_columns=["audio"], operations=contrast_op, num_parallel_workers=8) i = 0 for item in dataset.create_dict_iterator(output_numpy=True): count_unequal_element(expect_waveform[i, :], item['audio'], 0.0001, 0.0001) i += 1 def test_contrast_invalid_input(): def test_invalid_input(test_name, enhancement_amount, error, error_msg): logger.info("Test Contrast with bad input: {0}".format(test_name)) with pytest.raises(error) as error_info: audio.Contrast(enhancement_amount) assert error_msg in str(error_info.value) test_invalid_input("invalid enhancement_amount parameter type as a String", "75.0", TypeError, "Argument enhancement_amount with value 75.0 is not of type [, ]," + " but got .") test_invalid_input("invalid enhancement_amount parameter value", -1, ValueError, "Input enhancement_amount is not within the required interval of [0, 100].") test_invalid_input("invalid enhancement_amount parameter value", 101, ValueError, "Input enhancement_amount is not within the required interval of [0, 100].") if __name__ == "__main__": test_func_contrast_eager() test_func_contrast_pipeline() test_contrast_invalid_input()