# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pytest import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import context from mindspore.common.parameter import Parameter from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.nn.optim.momentum import Momentum from mindspore.ops import operations as P from mindspore.parallel._utils import _reset_op_id from mindspore.train import Model from mindspore.context import ParallelMode from tests.dataset_mock import MindData class Dataset(MindData): def __init__(self, predict, label, length=3): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.predict, self.label def reset(self): self.index = 0 class AllToAllNet(nn.Cell): def __init__(self, strategy1): super(AllToAllNet, self).__init__() self.matmul = P.MatMul().shard(((1, 1), (1, 8))) self.matmul_weight = Parameter(Tensor(np.ones([128, 256]), dtype=ms.float32), name="weight") self.transpose1 = P.Transpose().shard(strategy1) def construct(self, x): x = self.matmul(x, self.matmul_weight) x = self.transpose1(x, (1, 0)) return x def all_to_all_net(strategy1): return AllToAllNet(strategy1=strategy1) def all_to_all_common(strategy1): learning_rate = 0.1 momentum = 0.9 epoch_size = 2 context.set_context(mode=context.GRAPH_MODE) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, device_num=8, dataset_strategy="full_batch") predict = Tensor(np.ones([256, 128]), dtype=ms.float32) label = Tensor(np.ones([256]), dtype=ms.int32) dataset = Dataset(predict, label, 2) net = all_to_all_net(strategy1) loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') loss.softmax_cross_entropy.shard(((8, 1), (8, 1))) loss.one_hot.shard(((8, 1), (), ())) opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss, opt) model.train(epoch_size, dataset, dataset_sink_mode=False) def test_all_to_all(): strategy1 = ((8, 1),) _reset_op_id() all_to_all_common(strategy1) def test_data_parallel_mode(): _reset_op_id() learning_rate = 0.1 momentum = 0.9 epoch_size = 2 context.set_context(mode=context.GRAPH_MODE) context.reset_auto_parallel_context() context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, full_batch=True) predict = Tensor(np.ones([256, 128]), dtype=ms.float32) label = Tensor(np.ones([256]), dtype=ms.int32) dataset = Dataset(predict, label, 2) net = all_to_all_net(None) loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss, opt) with pytest.raises(RuntimeError): model.train(epoch_size, dataset, dataset_sink_mode=False)