# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.nn import Cell, Momentum from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits from mindspore.ops import operations as P from mindspore.train import Model from tests.dataset_mock import MindData class Dataset(MindData): def __init__(self, predict, label, length=3): super(Dataset, self).__init__(size=length) self.predict = predict self.label = label self.index = 0 self.length = length def __iter__(self): return self def __next__(self): if self.index >= self.length: raise StopIteration self.index += 1 return self.predict, self.label def reset(self): self.index = 0 class Net(Cell): def __init__(self, mul_weight, strategy1=None, strategy2=None): super().__init__() self.mul = P.Mul().shard(strategy1) self.neg = P.Neg().shard(strategy2) self.mul_weight = Parameter(mul_weight, "w1") def construct(self, x): out = self.mul(x, self.mul_weight) out = self.neg(out) return out _x = Tensor(np.ones([32, 128]), dtype=ms.float32) _b = Tensor(np.ones([32]), dtype=ms.int32) _w1 = Tensor(np.ones([512, 128]), dtype=ms.float32) def compile_net(net): learning_rate = 0.1 momentum = 0.9 epoch_size = 2 dataset = Dataset(_x, _b) loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean') opt = Momentum(net.trainable_params(), learning_rate, momentum) model = Model(net, loss, optimizer=opt) model.train(epoch_size, dataset, dataset_sink_mode=False) context.reset_auto_parallel_context() def test_neg_data_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((16, 1), (16, 1)) strategy2 = ((16, 1),) net = Net(_w1, strategy1, strategy2) compile_net(net) def test_neg_model_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((1, 16), (1, 16)) strategy2 = ((1, 16),) net = Net(_w1, strategy1, strategy2) compile_net(net) def test_neg_hybrid_parallel(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((4, 4), (4, 4)) strategy2 = ((4, 4),) net = Net(_w1, strategy1, strategy2) compile_net(net) def test_neg_auto_parallel(): context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0) net = Net(_w1) compile_net(net) def test_neg_repeat_calc(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((4, 4), (4, 4)) strategy2 = ((2, 2),) net = Net(_w1, strategy1, strategy2) compile_net(net) def test_neg_repeat_calc2(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0) strategy1 = ((4, 2), (4, 2)) strategy2 = ((4, 4),) net = Net(_w1, strategy1, strategy2) compile_net(net)