# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import mindspore as ms from mindspore import context, Tensor, Parameter from mindspore.common.api import _cell_graph_executor from mindspore.nn import Cell, TrainOneStepCell, Momentum from mindspore.ops import operations as P class Net(Cell): def __init__(self, matmul_weight, strategy1=None): super().__init__() self.gatherv2 = P.Gather().shard(strategy1) self.reshape = P.Reshape().add_prim_attr("skip_redistribution", True) self.matmul = P.MatMul(transpose_b=False) self.index = Tensor(np.ones([64, 64]), dtype=ms.int32) self.matmul_weight = Parameter(matmul_weight, "w1") self.axis = 0 def construct(self, x, b): out = self.gatherv2(x, self.index, self.axis) out = self.reshape(out, (64, -1)) out = self.matmul(out, self.matmul_weight) return out _w1 = Tensor(np.ones([4096, 32]), dtype=ms.float32) _x = Tensor(np.ones([64, 64]), dtype=ms.float32) _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32) def compile_net(net): optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) train_net = TrainOneStepCell(net, optimizer) train_net.set_auto_parallel() train_net.set_train() _cell_graph_executor.compile(train_net, _x, _b) context.reset_auto_parallel_context() def test_reshape_skip_redistribution(): context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) strategy1 = ((1, 8), (1, 1)) net = Net(_w1, strategy1) compile_net(net)