/* * Copyright (c) 2021 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "thread_state_table.h" #include namespace SysTuning { namespace TraceStreamer { namespace { enum Index { ID = 0, TYPE, TS, DUR, CPU, INTERNAL_TID, TID, PID, STATE }; } ThreadStateTable::ThreadStateTable(const TraceDataCache* dataCache) : TableBase(dataCache) { tableColumn_.push_back(TableBase::ColumnInfo("id", "INTEGER")); tableColumn_.push_back(TableBase::ColumnInfo("type", "TEXT")); tableColumn_.push_back(TableBase::ColumnInfo("ts", "INTEGER")); tableColumn_.push_back(TableBase::ColumnInfo("dur", "INTEGER")); tableColumn_.push_back(TableBase::ColumnInfo("cpu", "INTEGER")); tableColumn_.push_back(TableBase::ColumnInfo("itid", "INTEGER")); tableColumn_.push_back(TableBase::ColumnInfo("tid", "INTEGER")); tableColumn_.push_back(TableBase::ColumnInfo("pid", "INTEGER")); tableColumn_.push_back(TableBase::ColumnInfo("state", "TEXT")); tablePriKey_.push_back("id"); } ThreadStateTable::~ThreadStateTable() {} void ThreadStateTable::EstimateFilterCost(FilterConstraints& fc, EstimatedIndexInfo& ei) { constexpr double filterBaseCost = 1000.0; // set-up and tear-down constexpr double indexCost = 2.0; ei.estimatedCost = filterBaseCost; auto rowCount = dataCache_->GetConstThreadStateData().Size(); if (rowCount == 0 || rowCount == 1) { ei.estimatedRows = rowCount; ei.estimatedCost += indexCost * rowCount; return; } double filterCost = 0.0; auto constraints = fc.GetConstraints(); if (constraints.empty()) { // scan all rows filterCost = rowCount; } else { FilterByConstraint(fc, filterCost, rowCount); } ei.estimatedCost += filterCost; ei.estimatedRows = rowCount; ei.estimatedCost += rowCount * indexCost; ei.isOrdered = true; auto orderbys = fc.GetOrderBys(); for (auto i = 0; i < orderbys.size(); i++) { switch (orderbys[i].iColumn) { case ID: case TS: break; default: // other columns can be sorted by SQLite ei.isOrdered = false; break; } } } void ThreadStateTable::FilterByConstraint(FilterConstraints& fc, double& filterCost, size_t rowCount) { auto fcConstraints = fc.GetConstraints(); for (int i = 0; i < static_cast(fcConstraints.size()); i++) { if (rowCount <= 1) { // only one row or nothing, needn't filter by constraint filterCost += rowCount; break; } const auto& c = fcConstraints[i]; switch (c.col) { case ID: { if (CanFilterId(c.op, rowCount)) { fc.UpdateConstraint(i, true); filterCost += 1; // id can position by 1 step } else { filterCost += rowCount; // scan all rows } break; } case TS: { auto oldRowCount = rowCount; if (CanFilterSorted(c.op, rowCount)) { fc.UpdateConstraint(i, true); filterCost += log2(oldRowCount); // binary search } else { filterCost += oldRowCount; } break; } default: // other column filterCost += rowCount; // scan all rows break; } } } bool ThreadStateTable::CanFilterId(const char op, size_t& rowCount) { switch (op) { case SQLITE_INDEX_CONSTRAINT_EQ: rowCount = 1; break; case SQLITE_INDEX_CONSTRAINT_GT: case SQLITE_INDEX_CONSTRAINT_GE: case SQLITE_INDEX_CONSTRAINT_LE: case SQLITE_INDEX_CONSTRAINT_LT: // assume filter out a half of rows rowCount = (rowCount >> 1); break; default: return false; } return true; } bool ThreadStateTable::CanFilterSorted(const char op, size_t& rowCount) const { switch (op) { case SQLITE_INDEX_CONSTRAINT_EQ: rowCount = rowCount / log2(rowCount); break; case SQLITE_INDEX_CONSTRAINT_GT: case SQLITE_INDEX_CONSTRAINT_GE: case SQLITE_INDEX_CONSTRAINT_LE: case SQLITE_INDEX_CONSTRAINT_LT: rowCount = (rowCount >> 1); break; default: return false; } return true; } std::unique_ptr ThreadStateTable::CreateCursor() { return std::make_unique(dataCache_, this); } ThreadStateTable::Cursor::Cursor(const TraceDataCache* dataCache, TableBase* table) : TableBase::Cursor(dataCache, table, dataCache->GetConstThreadStateData().Size()), threadStateObj_(dataCache->GetConstThreadStateData()) { } ThreadStateTable::Cursor::~Cursor() {} int ThreadStateTable::Cursor::Filter(const FilterConstraints& fc, sqlite3_value** argv) { // reset if (rowCount_ <= 0) { return SQLITE_OK; } IndexMap* indexMapBack = indexMap_.get(); if (indexMap_->HasData()) { indexMapBack = std::make_unique(0, rowCount_).get(); } auto& cs = fc.GetConstraints(); for (size_t i = 0; i < cs.size(); i++) { const auto& c = cs[i]; switch (c.col) { case ID: indexMapBack->FilterId(c.op, argv[i]); break; case TS: indexMapBack->FilterTS(c.op, argv[i], threadStateObj_.TimeStamsData()); break; case INTERNAL_TID: indexMapBack->MixRange(c.op, static_cast(sqlite3_value_int(argv[i])), threadStateObj_.ItidsData()); break; case TID: indexMapBack->MixRange(c.op, static_cast(sqlite3_value_int(argv[i])), threadStateObj_.TidsData()); break; case PID: indexMapBack->MixRange(c.op, static_cast(sqlite3_value_int(argv[i])), threadStateObj_.PidsData()); break; case DUR: indexMapBack->MixRange(c.op, static_cast(sqlite3_value_int64(argv[i])), threadStateObj_.DursData()); break; case CPU: indexMapBack->MixRange(c.op, static_cast(sqlite3_value_int(argv[i])), threadStateObj_.CpusData()); break; case STATE: indexMapBack->MixRange(c.op, dataCache_->GetConstDataIndex( std::string(reinterpret_cast(sqlite3_value_text(argv[i])))), threadStateObj_.StatesData()); break; default: break; } } if (indexMap_->HasData()) { indexMap_->Merge(indexMapBack); } auto orderbys = fc.GetOrderBys(); for (auto i = orderbys.size(); i > 0;) { i--; switch (orderbys[i].iColumn) { case ID: case TS: indexMap_->SortBy(orderbys[i].desc); break; default: break; } } return SQLITE_OK; } int ThreadStateTable::Cursor::Column(int col) const { switch (col) { case ID: sqlite3_result_int64(context_, static_cast(CurrentRow())); break; case TYPE: sqlite3_result_text(context_, "thread_state", STR_DEFAULT_LEN, nullptr); break; case TS: sqlite3_result_int64(context_, static_cast(threadStateObj_.TimeStamsData()[CurrentRow()])); break; case DUR: if (static_cast(threadStateObj_.DursData()[CurrentRow()]) != INVALID_TIME) { sqlite3_result_int64(context_, static_cast(threadStateObj_.DursData()[CurrentRow()])); } break; case CPU: if (threadStateObj_.CpusData()[CurrentRow()] != INVALID_CPU) { sqlite3_result_int64(context_, static_cast(threadStateObj_.CpusData()[CurrentRow()])); } break; case INTERNAL_TID: sqlite3_result_int64(context_, static_cast(threadStateObj_.ItidsData()[CurrentRow()])); break; case TID: sqlite3_result_int64(context_, static_cast(threadStateObj_.TidsData()[CurrentRow()])); break; case PID: sqlite3_result_int64(context_, static_cast(threadStateObj_.PidsData()[CurrentRow()])); break; case STATE: { const std::string& str = dataCache_->GetConstSchedStateData(threadStateObj_.StatesData()[CurrentRow()]); sqlite3_result_text(context_, str.c_str(), STR_DEFAULT_LEN, nullptr); break; } default: TS_LOGF("Unregistered column : %d", col); break; } return SQLITE_OK; } } // namespace TraceStreamer } // namespace SysTuning