/* * Copyright (c) 2022 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "argmax_builder.h" namespace OHOS { namespace NeuralNetworkRuntime { namespace Ops { static const int INPUT_NUM = 1; static const int OUTPUT_NUM = 1; static const std::string OP_NAME = "ArgMax"; ArgMaxBuilder::ArgMaxBuilder() {} ArgMaxBuilder::~ArgMaxBuilder() {} OH_NN_ReturnCode ArgMaxBuilder::SetAxis(std::shared_ptr tensor) { tensor->IdentifyOpParameter(); if (tensor->GetDataType() != OH_NN_INT64) { LOGE("[ArgMax] SetAxis failed, the axis should be type HNN_INT64."); return OH_NN_INVALID_PARAMETER; } void* buffer = tensor->GetBuffer(); if (buffer == nullptr) { LOGE("[ArgMax] SetAxis GetBuffer return nullptr."); return OH_NN_INVALID_PARAMETER; } m_axis = *(static_cast(buffer)); return OH_NN_SUCCESS; } OH_NN_ReturnCode ArgMaxBuilder::SetKeepdims(std::shared_ptr tensor) { tensor->IdentifyOpParameter(); if (tensor->GetDataType() != OH_NN_BOOL) { LOGE("[ArgMax] SetKeepdims failed, the keep_dims should be type HNN_BOOL."); return OH_NN_INVALID_PARAMETER; } void* buffer = tensor->GetBuffer(); if (buffer == nullptr) { LOGE("[ArgMax] SetKeepdims GetBuffer return nullptr."); return OH_NN_INVALID_PARAMETER; } m_keepDims = *(static_cast(buffer)); return OH_NN_SUCCESS; } /** * Build method. * 1.build primitive of ops. * 2.build inputIndex of ops. * 3.build outputIndex of ops. */ OH_NN_ReturnCode ArgMaxBuilder::Build(const std::vector& paramsIndex, const std::vector& inputsIndex, const std::vector& outputsIndex, const std::vector>& allTensors) { if (m_isBuild) { LOGE("[ArgMax] Build failed, build operation has been completed, cannot build again."); return OH_NN_OPERATION_FORBIDDEN; } OH_NN_ReturnCode returnCode = CheckIOIndex(inputsIndex, outputsIndex, allTensors, INPUT_NUM, OUTPUT_NUM); if (returnCode != OH_NN_SUCCESS) { LOGE("[ArgMax] Build failed, passed invalid input or output index."); return returnCode; } m_inputsIndex = inputsIndex; m_outputsIndex = outputsIndex; for (int i : paramsIndex) { const std::shared_ptr tensor = allTensors[i]; switch (tensor->GetType()) { case OH_NN_ARG_MAX_AXIS: returnCode = SetAxis(tensor); break; case OH_NN_ARG_MAX_KEEPDIMS: returnCode = SetKeepdims(tensor); break; default: LOGE("[ArgMax] Build failed, param invalid, type = %d.", tensor->GetType()); return OH_NN_INVALID_PARAMETER; } if (returnCode != OH_NN_SUCCESS) { LOGE("[ArgMax] Build failed, passed invalid param."); return returnCode; } } // The quantization type of the first output determinies that of the operator. SetQuantType(outputsIndex, allTensors); m_name = OP_NAME; m_isBuild = true; return OH_NN_SUCCESS; } LiteGraphPrimitvePtr ArgMaxBuilder::GetPrimitive() { if (!m_isBuild) { LOGE("[ArgMax] GetPrimitive failed, cannot get primitive before call build."); return {nullptr, DestroyLiteGraphPrimitive}; } void* primitive = mindspore::lite::MindIR_ArgMaxFusion_CreatePrimitive(m_axis, m_topK, m_keepDims, m_outMaxValue); LiteGraphPrimitvePtr graphPrimitivePtr(primitive, DestroyLiteGraphPrimitive); return graphPrimitivePtr; } REGISTER_OPS(ArgMaxBuilder, OH_NN_OPS_ARG_MAX); } // namespace Ops } // namespace NeuralNetworkRuntime } // namespace OHOS