/* * Copyright (c) 2022 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "concat_builder.h" namespace OHOS { namespace NeuralNetworkRuntime { namespace Ops { static constexpr int MINIMUM_INTPUT = 2; static constexpr int OUTPUT_NUM = 1; static constexpr int AXIS_LENGTH = 1; static const std::string OP_NAME = "Concat"; ConcatBuilder::ConcatBuilder() {} ConcatBuilder::~ConcatBuilder() {} OH_NN_ReturnCode ConcatBuilder::SetAxis(std::shared_ptr tensor) { tensor->IdentifyOpParameter(); if (tensor->GetElementCount() != AXIS_LENGTH) { LOGE("[Concat] SetAxis failed, the Activation shoule be a scalar"); return OH_NN_INVALID_PARAMETER; } if (tensor->GetDataType() != OH_NN_INT64) { LOGE("[Concat] SetAxis failed, the axis should be type OH_NN_INT64."); return OH_NN_INVALID_PARAMETER; } void* buffer = tensor->GetBuffer(); if (buffer == nullptr) { LOGE("[Concat] SetAxis GetBuffer return nullptr."); return OH_NN_INVALID_PARAMETER; } m_axis = *(static_cast(buffer)); return OH_NN_SUCCESS; } OH_NN_ReturnCode ConcatBuilder::Build(const std::vector& paramsIndex, const std::vector& inputsIndex, const std::vector& outputsIndex, const std::vector>& allTensors) { if (m_isBuild) { LOGE("[Concat] Build failed, operation has been build, cannot build again."); return OH_NN_OPERATION_FORBIDDEN; } if (inputsIndex.size() < MINIMUM_INTPUT) { LOGE("[Concat] Build failed, Concat need more than one inputs."); return OH_NN_INVALID_PARAMETER; } if (outputsIndex.size() != OUTPUT_NUM) { LOGE("[Concat] Build failed, The number of index of outputs not equal to 1."); return OH_NN_INVALID_PARAMETER; } OH_NN_ReturnCode returnCode = SetInputsAndOutputs(inputsIndex, outputsIndex, allTensors); if (returnCode != OH_NN_SUCCESS) { LOGE("[Concat] Build failed, set inputs or outputs failed."); return returnCode; } for (int i : paramsIndex) { std::shared_ptr tensor = allTensors[i]; switch (tensor->GetType()) { case OH_NN_CONCAT_AXIS: returnCode = SetAxis(tensor); break; default: LOGE("[Concat] Build failed, param invalid, type = %d.", tensor->GetType()); return OH_NN_INVALID_PARAMETER; } if (returnCode != OH_NN_SUCCESS) { LOGE("[Concat] Build failed, passed invalid param."); return returnCode; } } // The quantization type of the first output determinies that of the operator. SetQuantType(outputsIndex, allTensors); m_isBuild = true; m_name = OP_NAME; return OH_NN_SUCCESS; } OH_NN_ReturnCode ConcatBuilder::SetInputsAndOutputs(const std::vector& inputsIndex, const std::vector& outputsIndex, const std::vector>& allTensors) { size_t allTensorsSize = allTensors.size(); for (auto index : inputsIndex) { if (index >= allTensorsSize) { LOGE("[Concat] Invalid input index, it is out of range %zu.", allTensorsSize); return OH_NN_INVALID_PARAMETER; } } for (auto index : outputsIndex) { if (index >= allTensorsSize) { LOGE("[Concat] Invalid output index, it is out of range %zu.", allTensorsSize); return OH_NN_INVALID_PARAMETER; } } m_inputsIndex.clear(); m_inputsIndex = inputsIndex; m_outputsIndex.clear(); m_outputsIndex = outputsIndex; return OH_NN_SUCCESS; } LiteGraphPrimitvePtr ConcatBuilder::GetPrimitive() { if (!m_isBuild) { LOGE("[Concat] GetPrimitive failed, cannot get primitive before call build."); return {nullptr, DestroyLiteGraphPrimitive}; } void* primitive = mindspore::lite::MindIR_Concat_CreatePrimitive(m_axis); LiteGraphPrimitvePtr graphPrimitivePtr(primitive, DestroyLiteGraphPrimitive); return graphPrimitivePtr; } REGISTER_OPS(ConcatBuilder, OH_NN_OPS_CONCAT); } // namespace Ops } // namespace NeuralNetworkRuntime } // namespace OHOS