/* * Copyright (c) 2022 Huawei Device Co., Ltd. * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "unsqueeze_builder.h" #include "mindir.h" namespace OHOS { namespace NeuralNetworkRuntime { namespace Ops { static const int INPUT_NUM = 1; static const int OUTPUT_NUM = 1; static const std::string OP_NAME = "Unsqueeze"; UnsqueezeBuilder::UnsqueezeBuilder() {} UnsqueezeBuilder::~UnsqueezeBuilder() {} OH_NN_ReturnCode UnsqueezeBuilder::SetAxis(std::shared_ptr tensor) { // Set Axis if (tensor->GetDataType() != OH_NN_INT64) { LOGE("[UnsqueezeBuilder] The 2nd input axis should be type OH_NN_INT64."); return OH_NN_INVALID_PARAMETER; } if (tensor->GetElementCount() != 1) { LOGE("[UnsqueezeBuilder] The 2nd input axis should be scaler."); return OH_NN_INVALID_PARAMETER; } m_axis.clear(); void* buffer = tensor->GetBuffer(); if (buffer == nullptr) { LOGE("[UnsqueezeBuilder] Tensor buffer is nullptr."); return OH_NN_INVALID_PARAMETER; } m_axis.emplace_back(*(static_cast(buffer))); return OH_NN_SUCCESS; } OH_NN_ReturnCode UnsqueezeBuilder::Build(const std::vector& paramsIndex, const std::vector& inputsIndex, const std::vector& outputsIndex, const std::vector>& allTensors) { if (m_isBuild) { LOGE("[UnsqueezeBuilder] Unsqueeze build operation has been build, cannot build again"); return OH_NN_OPERATION_FORBIDDEN; } OH_NN_ReturnCode returnCode = CheckIOIndex(inputsIndex, outputsIndex, allTensors, INPUT_NUM, OUTPUT_NUM); if (returnCode != OH_NN_SUCCESS) { LOGE("[UnsqueezeBuilder] Passed invalid input or output index."); return returnCode; } m_inputsIndex = inputsIndex; m_outputsIndex = outputsIndex; for (int i : paramsIndex) { std::shared_ptr tensor = allTensors[i]; tensor->IdentifyOpParameter(); switch (tensor->GetType()) { case OH_NN_UNSQUEEZE_AXIS: returnCode = SetAxis(tensor); break; default: LOGE("[UnsqueezeBuilder] Parameter Type is invalid. type=%d", tensor->GetType()); return OH_NN_INVALID_PARAMETER; } if (returnCode != OH_NN_SUCCESS) { LOGE("[UnsqueezeBuilder] Passed invalid param."); return returnCode; } } // The quantization type of the first output determinies that of the operator. SetQuantType(outputsIndex, allTensors); m_isBuild = true; m_name = OP_NAME; return OH_NN_SUCCESS; } LiteGraphPrimitvePtr UnsqueezeBuilder::GetPrimitive() { if (!m_isBuild) { LOGE("[UnsqueezeBuilder] Cannot get primitive before call build."); return {nullptr, DestroyLiteGraphPrimitive}; } auto primitive = mindspore::lite::MindIR_Unsqueeze_CreatePrimitive(m_axis); if (primitive == nullptr) { LOGE("[UnsqueezeBuilder] MindIR_Unsqueeze_CreatePrimitive failed."); return {nullptr, DestroyLiteGraphPrimitive}; } LiteGraphPrimitvePtr graphPrimitivePtr(primitive, DestroyLiteGraphPrimitive); return graphPrimitivePtr; } REGISTER_OPS(UnsqueezeBuilder, OH_NN_OPS_UNSQUEEZE); } // namespace Ops } // namespace NeuralNetworkRuntime } // namespace OHOS