/////////////////////////////////////////////////////////////// // Copyright 2013 John Maddock. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt // Demonstrations of using Boost.Multiprecision float128 quad type. // (Only available using GCC compiler). // Contains Quickbook markup in comments. //[float128_eg #include #include #include int main() { using namespace boost::multiprecision; // Potential to cause name collisions? // using boost::multiprecision::float128; // is safer. /*`The type float128 provides operations at 128-bit precision with [@https://en.wikipedia.org/wiki/Quadruple-precision_floating-point_format#IEEE_754_quadruple-precision_binary_floating-point_format:_binary128 Quadruple-precision floating-point format] and have full `std::numeric_limits` support: */ float128 b = 2; //` There are 15 bits of (biased) binary exponent and 113-bits of significand precision std::cout << std::numeric_limits::digits << std::endl; //` or 33 decimal places: std::cout << std::numeric_limits::digits10 << std::endl; //` We can use any C++ std library function, so let's show all the at-most 36 potentially significant digits, and any trailing zeros, as well: std::cout.setf(std::ios_base::showpoint); // Include any trailing zeros. std::cout << std::setprecision(std::numeric_limits::max_digits10) << log(b) << std::endl; // Shows log(2) = 0.693147180559945309417232121458176575 //` We can also use any function from Boost.Math, for example, the 'true gamma' function `tgamma`: std::cout << boost::math::tgamma(b) << std::endl; /*` And since we have an extended exponent range, we can generate some really large numbers here (4.02387260077093773543702433923004111e+2564): */ std::cout << boost::math::tgamma(float128(1000)) << std::endl; /*` We can declare constants using GCC or Intel's native types, and literals with the Q suffix, and these can be declared `constexpr` if required: */ /*<-*/ #ifndef BOOST_NO_CXX11_CONSTEXPR /*->*/ // std::numeric_limits::max_digits10 = 36 constexpr float128 pi = 3.14159265358979323846264338327950288Q; std::cout.precision(std::numeric_limits::max_digits10); std::cout << "pi = " << pi << std::endl; //pi = 3.14159265358979323846264338327950280 /*<-*/ #endif /*->*/ //] [/float128_eg] return 0; } /* //[float128_numeric_limits GCC 8.1.0 Type name is float128_t: Type is g std::is_fundamental<> = true std::is_signed<> = true std::is_unsigned<> = false std::is_integral<> = false std::is_arithmetic<> = true std::is_const<> = false std::is_trivial<> = true std::is_standard_layout<> = true std::is_pod<> = true std::numeric_limits::<>is_exact = false std::numeric_limits::<>is bounded = true std::numeric_limits::<>is_modulo = false std::numeric_limits::<>is_iec559 = true std::numeric_limits::<>traps = false std::numeric_limits::<>tinyness_before = false std::numeric_limits::<>max() = 1.18973149535723176508575932662800702e+4932 std::numeric_limits::<>min() = 3.36210314311209350626267781732175260e-4932 std::numeric_limits::<>lowest() = -1.18973149535723176508575932662800702e+4932 std::numeric_limits::<>min_exponent = -16381 std::numeric_limits::<>max_exponent = 16384 std::numeric_limits::<>epsilon() = 1.92592994438723585305597794258492732e-34 std::numeric_limits::<>radix = 2 std::numeric_limits::<>digits = 113 std::numeric_limits::<>digits10 = 33 std::numeric_limits::<>max_digits10 = 36 std::numeric_limits::<>has denorm = true std::numeric_limits::<>denorm min = 6.47517511943802511092443895822764655e-4966 std::denorm_loss = false limits::has_signaling_NaN == false std::numeric_limits::<>quiet_NaN = nan std::numeric_limits::<>infinity = inf //] [/float128_numeric_limits] */