/* Copyright 2004. Vladimir Prus * Distributed under the Boost Software License, Version 1.0. * (See accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) */ #include "../lists.h" #include "../mem.h" #include "../native.h" #include "../object.h" #include "../jam_strings.h" #include "../variable.h" /* Use quite klugy approach: when we add order dependency from 'a' to 'b', just * append 'b' to of value of variable 'a'. */ LIST * add_pair( FRAME * frame, int flags ) { LIST * arg = lol_get( frame->args, 0 ); LISTITER iter = list_begin( arg ); LISTITER const end = list_end( arg ); var_set( frame->module, list_item( iter ), list_copy_range( arg, list_next( iter ), end ), VAR_APPEND ); return L0; } /* Given a list and a value, returns position of that value in the list, or -1 * if not found. */ int list_index( LIST * list, OBJECT * value ) { int result = 0; LISTITER iter = list_begin( list ); LISTITER const end = list_end( list ); for ( ; iter != end; iter = list_next( iter ), ++result ) if ( object_equal( list_item( iter ), value ) ) return result; return -1; } enum colors { white, gray, black }; /* Main routine for topological sort. Calls itself recursively on all adjacent * vertices which were not yet visited. After that, 'current_vertex' is added to * '*result_ptr'. */ void do_ts( int * * graph, int current_vertex, int * colors, int * * result_ptr ) { int i; colors[ current_vertex ] = gray; for ( i = 0; graph[ current_vertex ][ i ] != -1; ++i ) { int adjacent_vertex = graph[ current_vertex ][ i ]; if ( colors[ adjacent_vertex ] == white ) do_ts( graph, adjacent_vertex, colors, result_ptr ); /* The vertex is either black, in which case we do not have to do * anything, or gray, in which case we have a loop. If we have a loop, * it is not clear what useful diagnostic we can emit, so we emit * nothing. */ } colors[ current_vertex ] = black; **result_ptr = current_vertex; ( *result_ptr )++; } void topological_sort( int * * graph, int num_vertices, int * result ) { int i; int * colors = ( int * )BJAM_CALLOC( num_vertices, sizeof( int ) ); for ( i = 0; i < num_vertices; ++i ) colors[ i ] = white; for ( i = num_vertices - 1; i >= 0; --i ) if ( colors[ i ] == white ) do_ts( graph, i, colors, &result ); BJAM_FREE( colors ); } LIST * order( FRAME * frame, int flags ) { LIST * arg = lol_get( frame->args, 0 ); LIST * result = L0; int src; LISTITER iter = list_begin( arg ); LISTITER const end = list_end( arg ); /* We need to create a graph of order dependencies between the passed * objects. We assume there are no duplicates passed to 'add_pair'. */ int length = list_length( arg ); int * * graph = ( int * * )BJAM_CALLOC( length, sizeof( int * ) ); int * order = ( int * )BJAM_MALLOC( ( length + 1 ) * sizeof( int ) ); for ( src = 0; iter != end; iter = list_next( iter ), ++src ) { /* For all objects this one depends upon, add elements to 'graph'. */ LIST * dependencies = var_get( frame->module, list_item( iter ) ); int index = 0; LISTITER dep_iter = list_begin( dependencies ); LISTITER const dep_end = list_end( dependencies ); graph[ src ] = ( int * )BJAM_CALLOC( list_length( dependencies ) + 1, sizeof( int ) ); for ( ; dep_iter != dep_end; dep_iter = list_next( dep_iter ) ) { int const dst = list_index( arg, list_item( dep_iter ) ); if ( dst != -1 ) graph[ src ][ index++ ] = dst; } graph[ src ][ index ] = -1; } topological_sort( graph, length, order ); { int index = length - 1; for ( ; index >= 0; --index ) { int i; LISTITER iter = list_begin( arg ); for ( i = 0; i < order[ index ]; ++i, iter = list_next( iter ) ); result = list_push_back( result, object_copy( list_item( iter ) ) ); } } /* Clean up */ { int i; for ( i = 0; i < length; ++i ) BJAM_FREE( graph[ i ] ); BJAM_FREE( graph ); BJAM_FREE( order ); } return result; } void init_order() { { char const * args[] = { "first", "second", 0 }; declare_native_rule( "class@order", "add-pair", args, add_pair, 1 ); } { char const * args[] = { "objects", "*", 0 }; declare_native_rule( "class@order", "order", args, order, 1 ); } }