/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ccpr/GrCCPathProcessor.h" #include "include/gpu/GrTexture.h" #include "src/gpu/GrGpuCommandBuffer.h" #include "src/gpu/GrOnFlushResourceProvider.h" #include "src/gpu/GrTexturePriv.h" #include "src/gpu/ccpr/GrCCPerFlushResources.h" #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/glsl/GrGLSLGeometryProcessor.h" #include "src/gpu/glsl/GrGLSLProgramBuilder.h" #include "src/gpu/glsl/GrGLSLVarying.h" // Paths are drawn as octagons. Each point on the octagon is the intersection of two lines: one edge // from the path's bounding box and one edge from its 45-degree bounding box. The selectors // below indicate one corner from the bounding box, paired with a corner from the 45-degree bounding // box. The octagon vertex is the point that lies between these two corners, found by intersecting // their edges. static constexpr float kOctoEdgeNorms[8*4] = { // bbox // bbox45 0,0, 0,0, 0,0, 1,0, 1,0, 1,0, 1,0, 1,1, 1,1, 1,1, 1,1, 0,1, 0,1, 0,1, 0,1, 0,0, }; GR_DECLARE_STATIC_UNIQUE_KEY(gVertexBufferKey); sk_sp GrCCPathProcessor::FindVertexBuffer(GrOnFlushResourceProvider* onFlushRP) { GR_DEFINE_STATIC_UNIQUE_KEY(gVertexBufferKey); return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kVertex, sizeof(kOctoEdgeNorms), kOctoEdgeNorms, gVertexBufferKey); } static constexpr uint16_t kRestartStrip = 0xffff; static constexpr uint16_t kOctoIndicesAsStrips[] = { 3, 4, 2, 0, 1, kRestartStrip, // First half. 7, 0, 6, 4, 5 // Second half. }; static constexpr uint16_t kOctoIndicesAsTris[] = { // First half. 3, 4, 2, 4, 0, 2, 2, 0, 1, // Second half. 7, 0, 6, 0, 4, 6, 6, 4, 5, }; GR_DECLARE_STATIC_UNIQUE_KEY(gIndexBufferKey); constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kInstanceAttribs[]; constexpr GrPrimitiveProcessor::Attribute GrCCPathProcessor::kCornersAttrib; sk_sp GrCCPathProcessor::FindIndexBuffer(GrOnFlushResourceProvider* onFlushRP) { GR_DEFINE_STATIC_UNIQUE_KEY(gIndexBufferKey); if (onFlushRP->caps()->usePrimitiveRestart()) { return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex, sizeof(kOctoIndicesAsStrips), kOctoIndicesAsStrips, gIndexBufferKey); } else { return onFlushRP->findOrMakeStaticBuffer(GrGpuBufferType::kIndex, sizeof(kOctoIndicesAsTris), kOctoIndicesAsTris, gIndexBufferKey); } } GrCCPathProcessor::GrCCPathProcessor(CoverageMode coverageMode, const GrTexture* atlasTexture, const GrSwizzle& swizzle, GrSurfaceOrigin atlasOrigin, const SkMatrix& viewMatrixIfUsingLocalCoords) : INHERITED(kGrCCPathProcessor_ClassID) , fCoverageMode(coverageMode) , fAtlasAccess(atlasTexture->texturePriv().textureType(), GrSamplerState::Filter::kNearest, GrSamplerState::WrapMode::kClamp, swizzle) , fAtlasSize(SkISize::Make(atlasTexture->width(), atlasTexture->height())) , fAtlasOrigin(atlasOrigin) { // TODO: Can we just assert that atlas has GrCCAtlas::kTextureOrigin and remove fAtlasOrigin? this->setInstanceAttributes(kInstanceAttribs, SK_ARRAY_COUNT(kInstanceAttribs)); SkASSERT(this->instanceStride() == sizeof(Instance)); this->setVertexAttributes(&kCornersAttrib, 1); this->setTextureSamplerCnt(1); if (!viewMatrixIfUsingLocalCoords.invert(&fLocalMatrix)) { fLocalMatrix.setIdentity(); } } class GrCCPathProcessor::Impl : public GrGLSLGeometryProcessor { public: void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override; private: void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, FPCoordTransformIter&& transformIter) override { const auto& proc = primProc.cast(); pdman.set2f( fAtlasAdjustUniform, 1.0f / proc.fAtlasSize.fWidth, 1.0f / proc.fAtlasSize.fHeight); this->setTransformDataHelper(proc.fLocalMatrix, pdman, &transformIter); } GrGLSLUniformHandler::UniformHandle fAtlasAdjustUniform; typedef GrGLSLGeometryProcessor INHERITED; }; GrGLSLPrimitiveProcessor* GrCCPathProcessor::createGLSLInstance(const GrShaderCaps&) const { return new Impl(); } void GrCCPathProcessor::drawPaths(GrOpFlushState* flushState, const GrPipeline& pipeline, const GrPipeline::FixedDynamicState* fixedDynamicState, const GrCCPerFlushResources& resources, int baseInstance, int endInstance, const SkRect& bounds) const { const GrCaps& caps = flushState->caps(); GrPrimitiveType primitiveType = caps.usePrimitiveRestart() ? GrPrimitiveType::kTriangleStrip : GrPrimitiveType::kTriangles; int numIndicesPerInstance = caps.usePrimitiveRestart() ? SK_ARRAY_COUNT(kOctoIndicesAsStrips) : SK_ARRAY_COUNT(kOctoIndicesAsTris); GrMesh mesh(primitiveType); auto enablePrimitiveRestart = GrPrimitiveRestart(flushState->caps().usePrimitiveRestart()); mesh.setIndexedInstanced(resources.refIndexBuffer(), numIndicesPerInstance, resources.refInstanceBuffer(), endInstance - baseInstance, baseInstance, enablePrimitiveRestart); mesh.setVertexData(resources.refVertexBuffer()); flushState->rtCommandBuffer()->draw(*this, pipeline, fixedDynamicState, nullptr, &mesh, 1, bounds); } void GrCCPathProcessor::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { using Interpolation = GrGLSLVaryingHandler::Interpolation; const GrCCPathProcessor& proc = args.fGP.cast(); GrGLSLUniformHandler* uniHandler = args.fUniformHandler; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; bool isCoverageCount = (CoverageMode::kCoverageCount == proc.fCoverageMode); const char* atlasAdjust; fAtlasAdjustUniform = uniHandler->addUniform( kVertex_GrShaderFlag, kFloat2_GrSLType, "atlas_adjust", &atlasAdjust); varyingHandler->emitAttributes(proc); GrGLSLVarying texcoord((isCoverageCount) ? kFloat3_GrSLType : kFloat2_GrSLType); varyingHandler->addVarying("texcoord", &texcoord); GrGLSLVarying color(kHalf4_GrSLType); varyingHandler->addPassThroughAttribute( kInstanceAttribs[kColorAttribIdx], args.fOutputColor, Interpolation::kCanBeFlat); // The vertex shader bloats and intersects the devBounds and devBounds45 rectangles, in order to // find an octagon that circumscribes the (bloated) path. GrGLSLVertexBuilder* v = args.fVertBuilder; // Are we clockwise? (Positive wind => nonzero fill rule.) // Or counter-clockwise? (negative wind => even/odd fill rule.) v->codeAppendf("float wind = sign(devbounds.z - devbounds.x);"); // Find our reference corner from the device-space bounding box. v->codeAppendf("float2 refpt = mix(devbounds.xy, devbounds.zw, corners.xy);"); // Find our reference corner from the 45-degree bounding box. v->codeAppendf("float2 refpt45 = mix(devbounds45.xy, devbounds45.zw, corners.zw);"); // Transform back to device space. v->codeAppendf("refpt45 *= float2x2(+1, +1, -wind, +wind) * .5;"); // Find the normals to each edge, then intersect them to find our octagon vertex. v->codeAppendf("float2x2 N = float2x2(" "corners.z + corners.w - 1, corners.w - corners.z, " "corners.xy*2 - 1);"); v->codeAppendf("N = float2x2(wind, 0, 0, 1) * N;"); v->codeAppendf("float2 K = float2(dot(N[0], refpt), dot(N[1], refpt45));"); v->codeAppendf("float2 octocoord = K * inverse(N);"); // Round the octagon out to ensure we rasterize every pixel the path might touch. (Positive // bloatdir means we should take the "ceil" and negative means to take the "floor".) // // NOTE: If we were just drawing a rect, ceil/floor would be enough. But since there are also // diagonals in the octagon that cross through pixel centers, we need to outset by another // quarter px to ensure those pixels get rasterized. v->codeAppendf("float2 bloatdir = (0 != N[0].x) " "? float2(N[0].x, N[1].y)" ": float2(N[1].x, N[0].y);"); v->codeAppendf("octocoord = (ceil(octocoord * bloatdir - 1e-4) + 0.25) * bloatdir;"); v->codeAppendf("float2 atlascoord = octocoord + float2(dev_to_atlas_offset);"); // Convert to atlas coordinates in order to do our texture lookup. if (kTopLeft_GrSurfaceOrigin == proc.fAtlasOrigin) { v->codeAppendf("%s.xy = atlascoord * %s;", texcoord.vsOut(), atlasAdjust); } else { SkASSERT(kBottomLeft_GrSurfaceOrigin == proc.fAtlasOrigin); v->codeAppendf("%s.xy = float2(atlascoord.x * %s.x, 1 - atlascoord.y * %s.y);", texcoord.vsOut(), atlasAdjust, atlasAdjust); } if (isCoverageCount) { v->codeAppendf("%s.z = wind * .5;", texcoord.vsOut()); } gpArgs->fPositionVar.set(kFloat2_GrSLType, "octocoord"); this->emitTransforms(v, varyingHandler, uniHandler, gpArgs->fPositionVar, proc.fLocalMatrix, args.fFPCoordTransformHandler); // Fragment shader. GrGLSLFPFragmentBuilder* f = args.fFragBuilder; // Look up coverage in the atlas. f->codeAppendf("half coverage = "); f->appendTextureLookup(args.fTexSamplers[0], SkStringPrintf("%s.xy", texcoord.fsIn()).c_str(), kFloat2_GrSLType); f->codeAppendf(".a;"); if (isCoverageCount) { f->codeAppendf("coverage = abs(coverage);"); // Scale coverage count by .5. Make it negative for even-odd paths and positive for // winding ones. Clamp winding coverage counts at 1.0 (i.e. min(coverage/2, .5)). f->codeAppendf("coverage = min(abs(coverage) * half(%s.z), .5);", texcoord.fsIn()); // For negative values, this finishes the even-odd sawtooth function. Since positive // (winding) values were clamped at "coverage/2 = .5", this only undoes the previous // multiply by .5. f->codeAppend ("coverage = 1 - abs(fract(coverage) * 2 - 1);"); } f->codeAppendf("%s = half4(coverage);", args.fOutputCoverage); }