/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkMatrixPriv.h" #include "src/gpu/effects/GrBicubicEffect.h" #include "include/gpu/GrTexture.h" #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/glsl/GrGLSLProgramDataManager.h" #include "src/gpu/glsl/GrGLSLUniformHandler.h" class GrGLBicubicEffect : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor& effect, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrBicubicEffect& bicubicEffect = effect.cast(); b->add32(GrTextureDomain::GLDomain::DomainKey(bicubicEffect.domain())); uint32_t bidir = bicubicEffect.direction() == GrBicubicEffect::Direction::kXY ? 1 : 0; b->add32(bidir | (bicubicEffect.alphaType() << 1)); } protected: void onSetData(const GrGLSLProgramDataManager&, const GrFragmentProcessor&) override; private: typedef GrGLSLProgramDataManager::UniformHandle UniformHandle; UniformHandle fDimensions; GrTextureDomain::GLDomain fDomain; typedef GrGLSLFragmentProcessor INHERITED; }; void GrGLBicubicEffect::emitCode(EmitArgs& args) { const GrBicubicEffect& bicubicEffect = args.fFp.cast(); GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; fDimensions = uniformHandler->addUniform(kFragment_GrShaderFlag, kHalf4_GrSLType, "Dimensions"); const char* dims = uniformHandler->getUniformCStr(fDimensions); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; SkString coords2D = fragBuilder->ensureCoords2D(args.fTransformedCoords[0]); /* * Filter weights come from Don Mitchell & Arun Netravali's 'Reconstruction Filters in Computer * Graphics', ACM SIGGRAPH Computer Graphics 22, 4 (Aug. 1988). * ACM DL: http://dl.acm.org/citation.cfm?id=378514 * Free : http://www.cs.utexas.edu/users/fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf * * The authors define a family of cubic filters with two free parameters (B and C): * * { (12 - 9B - 6C)|x|^3 + (-18 + 12B + 6C)|x|^2 + (6 - 2B) if |x| < 1 * k(x) = 1/6 { (-B - 6C)|x|^3 + (6B + 30C)|x|^2 + (-12B - 48C)|x| + (8B + 24C) if 1 <= |x| < 2 * { 0 otherwise * * Various well-known cubic splines can be generated, and the authors select (1/3, 1/3) as their * favorite overall spline - this is now commonly known as the Mitchell filter, and is the * source of the specific weights below. * * This is GLSL, so the matrix is column-major (transposed from standard matrix notation). */ fragBuilder->codeAppend("half4x4 kMitchellCoefficients = half4x4(" " 1.0 / 18.0, 16.0 / 18.0, 1.0 / 18.0, 0.0 / 18.0," "-9.0 / 18.0, 0.0 / 18.0, 9.0 / 18.0, 0.0 / 18.0," "15.0 / 18.0, -36.0 / 18.0, 27.0 / 18.0, -6.0 / 18.0," "-7.0 / 18.0, 21.0 / 18.0, -21.0 / 18.0, 7.0 / 18.0);"); fragBuilder->codeAppendf("float2 coord = %s - %s.xy * float2(0.5);", coords2D.c_str(), dims); // We unnormalize the coord in order to determine our fractional offset (f) within the texel // We then snap coord to a texel center and renormalize. The snap prevents cases where the // starting coords are near a texel boundary and accumulations of dims would cause us to skip/ // double hit a texel. fragBuilder->codeAppendf("half2 f = half2(fract(coord * %s.zw));", dims); fragBuilder->codeAppendf("coord = coord + (half2(0.5) - f) * %s.xy;", dims); if (bicubicEffect.direction() == GrBicubicEffect::Direction::kXY) { fragBuilder->codeAppend( "half4 wx = kMitchellCoefficients * half4(1.0, f.x, f.x * f.x, f.x * f.x * f.x);"); fragBuilder->codeAppend( "half4 wy = kMitchellCoefficients * half4(1.0, f.y, f.y * f.y, f.y * f.y * f.y);"); fragBuilder->codeAppend("half4 rowColors[4];"); for (int y = 0; y < 4; ++y) { for (int x = 0; x < 4; ++x) { SkString coord; coord.printf("coord + %s.xy * float2(%d, %d)", dims, x - 1, y - 1); SkString sampleVar; sampleVar.printf("rowColors[%d]", x); fDomain.sampleTexture(fragBuilder, args.fUniformHandler, args.fShaderCaps, bicubicEffect.domain(), sampleVar.c_str(), coord, args.fTexSamplers[0]); } fragBuilder->codeAppendf( "half4 s%d = wx.x * rowColors[0] + wx.y * rowColors[1] + wx.z * rowColors[2] + " "wx.w * rowColors[3];", y); } fragBuilder->codeAppend( "half4 bicubicColor = wy.x * s0 + wy.y * s1 + wy.z * s2 + wy.w * s3;"); } else { // One of the dims.xy values will be zero. So v here selects the nonzero value of f. fragBuilder->codeAppend("half v = f.x + f.y;"); fragBuilder->codeAppend("half v2 = v * v;"); fragBuilder->codeAppend("half4 w = kMitchellCoefficients * half4(1.0, v, v2, v2 * v);"); fragBuilder->codeAppend("half4 c[4];"); for (int i = 0; i < 4; ++i) { SkString coord; coord.printf("coord + %s.xy * half(%d)", dims, i - 1); SkString samplerVar; samplerVar.printf("c[%d]", i); // With added complexity we could apply the domain once in X or Y depending on // direction rather than for each of the four lookups, but then we might not be // be able to share code for Direction::kX and ::kY. fDomain.sampleTexture(fragBuilder, args.fUniformHandler, args.fShaderCaps, bicubicEffect.domain(), samplerVar.c_str(), coord, args.fTexSamplers[0]); } fragBuilder->codeAppend( "half4 bicubicColor = c[0] * w.x + c[1] * w.y + c[2] * w.z + c[3] * w.w;"); } // Bicubic can send colors out of range, so clamp to get them back in (source) gamut. // The kind of clamp we have to do depends on the alpha type. if (kPremul_SkAlphaType == bicubicEffect.alphaType()) { fragBuilder->codeAppend("bicubicColor.a = saturate(bicubicColor.a);"); fragBuilder->codeAppend( "bicubicColor.rgb = max(half3(0.0), min(bicubicColor.rgb, bicubicColor.aaa));"); } else { fragBuilder->codeAppend("bicubicColor = saturate(bicubicColor);"); } fragBuilder->codeAppendf("%s = bicubicColor * %s;", args.fOutputColor, args.fInputColor); } void GrGLBicubicEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrFragmentProcessor& processor) { const GrBicubicEffect& bicubicEffect = processor.cast(); GrTextureProxy* proxy = processor.textureSampler(0).proxy(); GrTexture* texture = proxy->peekTexture(); float dims[4] = {0, 0, 0, 0}; if (bicubicEffect.direction() != GrBicubicEffect::Direction::kY) { dims[0] = 1.0f / texture->width(); dims[2] = texture->width(); } if (bicubicEffect.direction() != GrBicubicEffect::Direction::kX) { dims[1] = 1.0f / texture->height(); dims[3] = texture->height(); } pdman.set4fv(fDimensions, 1, dims); fDomain.setData(pdman, bicubicEffect.domain(), proxy, processor.textureSampler(0).samplerState()); } GrBicubicEffect::GrBicubicEffect(sk_sp proxy, const SkMatrix& matrix, const SkRect& domain, const GrSamplerState::WrapMode wrapModes[2], GrTextureDomain::Mode modeX, GrTextureDomain::Mode modeY, Direction direction, SkAlphaType alphaType) : INHERITED{kGrBicubicEffect_ClassID, ModulateForSamplerOptFlags( proxy->config(), GrTextureDomain::IsDecalSampled(wrapModes, modeX, modeY))} , fCoordTransform(matrix, proxy.get()) , fDomain(proxy.get(), domain, modeX, modeY) , fTextureSampler(std::move(proxy), GrSamplerState(wrapModes, GrSamplerState::Filter::kNearest)) , fAlphaType(alphaType) , fDirection(direction) { this->addCoordTransform(&fCoordTransform); this->setTextureSamplerCnt(1); } GrBicubicEffect::GrBicubicEffect(const GrBicubicEffect& that) : INHERITED(kGrBicubicEffect_ClassID, that.optimizationFlags()) , fCoordTransform(that.fCoordTransform) , fDomain(that.fDomain) , fTextureSampler(that.fTextureSampler) , fAlphaType(that.fAlphaType) , fDirection(that.fDirection) { this->addCoordTransform(&fCoordTransform); this->setTextureSamplerCnt(1); } void GrBicubicEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLBicubicEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* GrBicubicEffect::onCreateGLSLInstance() const { return new GrGLBicubicEffect; } bool GrBicubicEffect::onIsEqual(const GrFragmentProcessor& sBase) const { const GrBicubicEffect& s = sBase.cast(); return fDomain == s.fDomain && fDirection == s.fDirection && fAlphaType == s.fAlphaType; } GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrBicubicEffect); #if GR_TEST_UTILS std::unique_ptr GrBicubicEffect::TestCreate(GrProcessorTestData* d) { int texIdx = d->fRandom->nextBool() ? GrProcessorUnitTest::kSkiaPMTextureIdx : GrProcessorUnitTest::kAlphaTextureIdx; static const GrSamplerState::WrapMode kClampClamp[] = {GrSamplerState::WrapMode::kClamp, GrSamplerState::WrapMode::kClamp}; SkAlphaType alphaType = d->fRandom->nextBool() ? kPremul_SkAlphaType : kUnpremul_SkAlphaType; Direction direction = Direction::kX; switch (d->fRandom->nextULessThan(3)) { case 0: direction = Direction::kX; break; case 1: direction = Direction::kY; break; case 2: direction = Direction::kXY; break; } return GrBicubicEffect::Make(d->textureProxy(texIdx), SkMatrix::I(), kClampClamp, direction, alphaType); } #endif ////////////////////////////////////////////////////////////////////////////// bool GrBicubicEffect::ShouldUseBicubic(const SkMatrix& matrix, GrSamplerState::Filter* filterMode) { switch (SkMatrixPriv::AdjustHighQualityFilterLevel(matrix)) { case kNone_SkFilterQuality: *filterMode = GrSamplerState::Filter::kNearest; break; case kLow_SkFilterQuality: *filterMode = GrSamplerState::Filter::kBilerp; break; case kMedium_SkFilterQuality: *filterMode = GrSamplerState::Filter::kMipMap; break; case kHigh_SkFilterQuality: // When we use the bicubic filtering effect each sample is read from the texture using // nearest neighbor sampling. *filterMode = GrSamplerState::Filter::kNearest; return true; } return false; }