/* * Copyright 2019 Google LLC * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/sksl/SkSLByteCodeGenerator.h" #include namespace SkSL { ByteCodeGenerator::ByteCodeGenerator(const Context* context, const Program* program, ErrorReporter* errors, ByteCode* output) : INHERITED(program, errors, nullptr) , fContext(*context) , fOutput(output) , fIntrinsics { { "cos", ByteCodeInstruction::kCos }, { "dot", SpecialIntrinsic::kDot }, { "inverse", ByteCodeInstruction::kInverse2x2 }, { "sin", ByteCodeInstruction::kSin }, { "sqrt", ByteCodeInstruction::kSqrt }, { "tan", ByteCodeInstruction::kTan }, } {} int ByteCodeGenerator::SlotCount(const Type& type) { if (type.kind() == Type::kOther_Kind) { return 0; } else if (type.kind() == Type::kStruct_Kind) { int slots = 0; for (const auto& f : type.fields()) { slots += SlotCount(*f.fType); } SkASSERT(slots <= 255); return slots; } else if (type.kind() == Type::kArray_Kind) { int columns = type.columns(); SkASSERT(columns >= 0); int slots = columns * SlotCount(type.componentType()); SkASSERT(slots <= 255); return slots; } else { return type.columns() * type.rows(); } } bool ByteCodeGenerator::generateCode() { for (const auto& e : fProgram) { switch (e.fKind) { case ProgramElement::kFunction_Kind: { std::unique_ptr f = this->writeFunction((FunctionDefinition&) e); if (!f) { return false; } fOutput->fFunctions.push_back(std::move(f)); fFunctions.push_back(&(FunctionDefinition&)e); break; } case ProgramElement::kVar_Kind: { VarDeclarations& decl = (VarDeclarations&) e; for (const auto& v : decl.fVars) { const Variable* declVar = ((VarDeclaration&) *v).fVar; if (declVar->fModifiers.fLayout.fBuiltin >= 0) { continue; } if (declVar->fModifiers.fFlags & Modifiers::kIn_Flag) { for (int i = SlotCount(declVar->fType); i > 0; --i) { fOutput->fInputSlots.push_back(fOutput->fGlobalCount++); } } else { fOutput->fGlobalCount += SlotCount(declVar->fType); } } break; } default: ; // ignore } } return 0 == fErrors.errorCount(); } std::unique_ptr ByteCodeGenerator::writeFunction(const FunctionDefinition& f) { fFunction = &f; std::unique_ptr result(new ByteCodeFunction(&f.fDeclaration)); fParameterCount = result->fParameterCount; fLoopCount = fMaxLoopCount = 0; fConditionCount = fMaxConditionCount = 0; fStackCount = fMaxStackCount = 0; fCode = &result->fCode; this->writeStatement(*f.fBody); if (0 == fErrors.errorCount()) { SkASSERT(fLoopCount == 0); SkASSERT(fConditionCount == 0); SkASSERT(fStackCount == 0); } this->write(ByteCodeInstruction::kReturn, 0); this->write8(0); result->fLocalCount = fLocals.size(); result->fConditionCount = fMaxConditionCount; result->fLoopCount = fMaxLoopCount; result->fStackCount = fMaxStackCount; const Type& returnType = f.fDeclaration.fReturnType; if (returnType != *fContext.fVoid_Type) { result->fReturnCount = SlotCount(returnType); } fLocals.clear(); fFunction = nullptr; return result; } enum class TypeCategory { kBool, kSigned, kUnsigned, kFloat, }; static TypeCategory type_category(const Type& type) { switch (type.kind()) { case Type::Kind::kVector_Kind: case Type::Kind::kMatrix_Kind: return type_category(type.componentType()); default: if (type.fName == "bool") { return TypeCategory::kBool; } else if (type.fName == "int" || type.fName == "short") { return TypeCategory::kSigned; } else if (type.fName == "uint" || type.fName == "ushort") { return TypeCategory::kUnsigned; } else { SkASSERT(type.fName == "float" || type.fName == "half"); return TypeCategory::kFloat; } ABORT("unsupported type: %s\n", type.description().c_str()); } } // A "simple" Swizzle is based on a variable (or a compound variable like a struct or array), and // that references consecutive values, such that it can be implemented using normal load/store ops // with an offset. Note that all single-component swizzles (of suitable base types) are simple. static bool swizzle_is_simple(const Swizzle& s) { switch (s.fBase->fKind) { case Expression::kFieldAccess_Kind: case Expression::kIndex_Kind: case Expression::kVariableReference_Kind: break; default: return false; } for (size_t i = 1; i < s.fComponents.size(); ++i) { if (s.fComponents[i] != s.fComponents[i - 1] + 1) { return false; } } return true; } int ByteCodeGenerator::StackUsage(ByteCodeInstruction inst, int count_) { // Ensures that we use count iff we're passed a non-default value. Most instructions have an // implicit count, so the caller shouldn't need to worry about it (or count makes no sense). // The asserts avoids callers thinking they're supplying useful information in that scenario, // or failing to supply necessary information for the ops that need a count. struct CountValue { operator int() { SkASSERT(val != ByteCodeGenerator::kUnusedStackCount); SkDEBUGCODE(used = true); return val; } ~CountValue() { SkASSERT(used || val == ByteCodeGenerator::kUnusedStackCount); } int val; SkDEBUGCODE(bool used = false;) } count = { count_ }; switch (inst) { // Unary functions/operators that don't change stack depth at all: #define VECTOR_UNARY_OP(base) \ case ByteCodeInstruction::base: \ case ByteCodeInstruction::base ## 2: \ case ByteCodeInstruction::base ## 3: \ case ByteCodeInstruction::base ## 4: \ return 0; VECTOR_UNARY_OP(kConvertFtoI) VECTOR_UNARY_OP(kConvertStoF) VECTOR_UNARY_OP(kConvertUtoF) VECTOR_UNARY_OP(kCos) VECTOR_UNARY_OP(kSin) VECTOR_UNARY_OP(kSqrt) VECTOR_UNARY_OP(kTan) VECTOR_UNARY_OP(kNegateF) VECTOR_UNARY_OP(kNegateI) case ByteCodeInstruction::kInverse2x2: case ByteCodeInstruction::kInverse3x3: case ByteCodeInstruction::kInverse4x4: return 0; case ByteCodeInstruction::kClampIndex: return 0; case ByteCodeInstruction::kNotB: return 0; case ByteCodeInstruction::kNegateFN: return 0; #undef VECTOR_UNARY_OP // Binary functions/operators that do a 2 -> 1 reduction (possibly N times) #define VECTOR_BINARY_OP(base) \ case ByteCodeInstruction::base: return -1; \ case ByteCodeInstruction::base ## 2: return -2; \ case ByteCodeInstruction::base ## 3: return -3; \ case ByteCodeInstruction::base ## 4: return -4; #define VECTOR_MATRIX_BINARY_OP(base) \ VECTOR_BINARY_OP(base) \ case ByteCodeInstruction::base ## N: return -count; case ByteCodeInstruction::kAndB: return -1; case ByteCodeInstruction::kOrB: return -1; case ByteCodeInstruction::kXorB: return -1; VECTOR_BINARY_OP(kAddI) VECTOR_MATRIX_BINARY_OP(kAddF) VECTOR_BINARY_OP(kCompareIEQ) VECTOR_MATRIX_BINARY_OP(kCompareFEQ) VECTOR_BINARY_OP(kCompareINEQ) VECTOR_MATRIX_BINARY_OP(kCompareFNEQ) VECTOR_BINARY_OP(kCompareSGT) VECTOR_BINARY_OP(kCompareUGT) VECTOR_BINARY_OP(kCompareFGT) VECTOR_BINARY_OP(kCompareSGTEQ) VECTOR_BINARY_OP(kCompareUGTEQ) VECTOR_BINARY_OP(kCompareFGTEQ) VECTOR_BINARY_OP(kCompareSLT) VECTOR_BINARY_OP(kCompareULT) VECTOR_BINARY_OP(kCompareFLT) VECTOR_BINARY_OP(kCompareSLTEQ) VECTOR_BINARY_OP(kCompareULTEQ) VECTOR_BINARY_OP(kCompareFLTEQ) VECTOR_BINARY_OP(kDivideS) VECTOR_BINARY_OP(kDivideU) VECTOR_MATRIX_BINARY_OP(kDivideF) VECTOR_BINARY_OP(kMultiplyI) VECTOR_MATRIX_BINARY_OP(kMultiplyF) VECTOR_BINARY_OP(kRemainderF) VECTOR_BINARY_OP(kRemainderS) VECTOR_BINARY_OP(kRemainderU) VECTOR_BINARY_OP(kSubtractI) VECTOR_MATRIX_BINARY_OP(kSubtractF) #undef VECTOR_BINARY_OP #undef VECTOR_MATRIX_BINARY_OP // Ops that push or load data to grow the stack: case ByteCodeInstruction::kDup: case ByteCodeInstruction::kLoad: case ByteCodeInstruction::kLoadGlobal: case ByteCodeInstruction::kReadExternal: case ByteCodeInstruction::kPushImmediate: return 1; case ByteCodeInstruction::kDup2: case ByteCodeInstruction::kLoad2: case ByteCodeInstruction::kLoadGlobal2: case ByteCodeInstruction::kReadExternal2: return 2; case ByteCodeInstruction::kDup3: case ByteCodeInstruction::kLoad3: case ByteCodeInstruction::kLoadGlobal3: case ByteCodeInstruction::kReadExternal3: return 3; case ByteCodeInstruction::kDup4: case ByteCodeInstruction::kLoad4: case ByteCodeInstruction::kLoadGlobal4: case ByteCodeInstruction::kReadExternal4: return 4; case ByteCodeInstruction::kDupN: case ByteCodeInstruction::kLoadSwizzle: case ByteCodeInstruction::kLoadSwizzleGlobal: return count; // Pushes 'count' values, minus one for the 'address' that's consumed first case ByteCodeInstruction::kLoadExtended: case ByteCodeInstruction::kLoadExtendedGlobal: return count - 1; // Ops that pop or store data to shrink the stack: case ByteCodeInstruction::kPop: case ByteCodeInstruction::kStore: case ByteCodeInstruction::kStoreGlobal: case ByteCodeInstruction::kWriteExternal: return -1; case ByteCodeInstruction::kPop2: case ByteCodeInstruction::kStore2: case ByteCodeInstruction::kStoreGlobal2: case ByteCodeInstruction::kWriteExternal2: return -2; case ByteCodeInstruction::kPop3: case ByteCodeInstruction::kStore3: case ByteCodeInstruction::kStoreGlobal3: case ByteCodeInstruction::kWriteExternal3: return -3; case ByteCodeInstruction::kPop4: case ByteCodeInstruction::kStore4: case ByteCodeInstruction::kStoreGlobal4: case ByteCodeInstruction::kWriteExternal4: return -4; case ByteCodeInstruction::kPopN: case ByteCodeInstruction::kStoreSwizzle: case ByteCodeInstruction::kStoreSwizzleGlobal: return -count; // Consumes 'count' values, plus one for the 'address' case ByteCodeInstruction::kStoreExtended: case ByteCodeInstruction::kStoreExtendedGlobal: case ByteCodeInstruction::kStoreSwizzleIndirect: case ByteCodeInstruction::kStoreSwizzleIndirectGlobal: return -count - 1; // Strange ops where the caller computes the delta for us: case ByteCodeInstruction::kCallExternal: case ByteCodeInstruction::kMatrixToMatrix: case ByteCodeInstruction::kMatrixMultiply: case ByteCodeInstruction::kReserve: case ByteCodeInstruction::kReturn: case ByteCodeInstruction::kScalarToMatrix: case ByteCodeInstruction::kSwizzle: return count; // Miscellaneous // kCall is net-zero. Max stack depth is adjusted in writeFunctionCall. case ByteCodeInstruction::kCall: return 0; case ByteCodeInstruction::kBranch: return 0; case ByteCodeInstruction::kBranchIfAllFalse: return 0; case ByteCodeInstruction::kMaskPush: return -1; case ByteCodeInstruction::kMaskPop: return 0; case ByteCodeInstruction::kMaskNegate: return 0; case ByteCodeInstruction::kMaskBlend: return -count; case ByteCodeInstruction::kLoopBegin: return 0; case ByteCodeInstruction::kLoopNext: return 0; case ByteCodeInstruction::kLoopMask: return -1; case ByteCodeInstruction::kLoopEnd: return 0; case ByteCodeInstruction::kLoopBreak: return 0; case ByteCodeInstruction::kLoopContinue: return 0; default: ABORT("unsupported instruction %d\n", (int)inst); return 0; } } int ByteCodeGenerator::getLocation(const Variable& var) { // given that we seldom have more than a couple of variables, linear search is probably the most // efficient way to handle lookups switch (var.fStorage) { case Variable::kLocal_Storage: { for (int i = fLocals.size() - 1; i >= 0; --i) { if (fLocals[i] == &var) { SkASSERT(fParameterCount + i <= 255); return fParameterCount + i; } } int result = fParameterCount + fLocals.size(); fLocals.push_back(&var); for (int i = 0; i < SlotCount(var.fType) - 1; ++i) { fLocals.push_back(nullptr); } SkASSERT(result <= 255); return result; } case Variable::kParameter_Storage: { int offset = 0; for (const auto& p : fFunction->fDeclaration.fParameters) { if (p == &var) { SkASSERT(offset <= 255); return offset; } offset += SlotCount(p->fType); } SkASSERT(false); return 0; } case Variable::kGlobal_Storage: { int offset = 0; for (const auto& e : fProgram) { if (e.fKind == ProgramElement::kVar_Kind) { VarDeclarations& decl = (VarDeclarations&) e; for (const auto& v : decl.fVars) { const Variable* declVar = ((VarDeclaration&) *v).fVar; if (declVar->fModifiers.fLayout.fBuiltin >= 0) { continue; } if (declVar == &var) { SkASSERT(offset <= 255); return offset; } offset += SlotCount(declVar->fType); } } } SkASSERT(false); return 0; } default: SkASSERT(false); return 0; } } int ByteCodeGenerator::getLocation(const Expression& expr, Variable::Storage* storage) { switch (expr.fKind) { case Expression::kFieldAccess_Kind: { const FieldAccess& f = (const FieldAccess&)expr; int baseAddr = this->getLocation(*f.fBase, storage); int offset = 0; for (int i = 0; i < f.fFieldIndex; ++i) { offset += SlotCount(*f.fBase->fType.fields()[i].fType); } if (baseAddr < 0) { if (offset != 0) { this->write(ByteCodeInstruction::kPushImmediate); this->write32(offset); this->write(ByteCodeInstruction::kAddI); } return -1; } else { return baseAddr + offset; } } case Expression::kIndex_Kind: { const IndexExpression& i = (const IndexExpression&)expr; int stride = SlotCount(i.fType); int length = i.fBase->fType.columns(); SkASSERT(length <= 255); int offset = -1; if (i.fIndex->isConstant()) { int64_t index = i.fIndex->getConstantInt(); if (index < 0 || index >= length) { fErrors.error(i.fIndex->fOffset, "Array index out of bounds."); return 0; } offset = index * stride; } else { if (i.fIndex->hasSideEffects()) { // Having a side-effect in an indexer is technically safe for an rvalue, // but with lvalues we have to evaluate the indexer twice, so make it an error. fErrors.error(i.fIndex->fOffset, "Index expressions with side-effects not supported in byte code."); return 0; } this->writeExpression(*i.fIndex); this->write(ByteCodeInstruction::kClampIndex); this->write8(length); if (stride != 1) { this->write(ByteCodeInstruction::kPushImmediate); this->write32(stride); this->write(ByteCodeInstruction::kMultiplyI); } } int baseAddr = this->getLocation(*i.fBase, storage); // Are both components known statically? if (baseAddr >= 0 && offset >= 0) { return baseAddr + offset; } // At least one component is dynamic (and on the stack). // If the other component is zero, we're done if (baseAddr == 0 || offset == 0) { return -1; } // Push the non-dynamic component (if any) to the stack, then add the two if (baseAddr >= 0) { this->write(ByteCodeInstruction::kPushImmediate); this->write32(baseAddr); } if (offset >= 0) { this->write(ByteCodeInstruction::kPushImmediate); this->write32(offset); } this->write(ByteCodeInstruction::kAddI); return -1; } case Expression::kSwizzle_Kind: { const Swizzle& s = (const Swizzle&)expr; SkASSERT(swizzle_is_simple(s)); int baseAddr = this->getLocation(*s.fBase, storage); int offset = s.fComponents[0]; if (baseAddr < 0) { if (offset != 0) { this->write(ByteCodeInstruction::kPushImmediate); this->write32(offset); this->write(ByteCodeInstruction::kAddI); } return -1; } else { return baseAddr + offset; } } case Expression::kVariableReference_Kind: { const Variable& var = ((const VariableReference&)expr).fVariable; *storage = var.fStorage; return this->getLocation(var); } default: SkASSERT(false); return 0; } } void ByteCodeGenerator::write8(uint8_t b) { fCode->push_back(b); } void ByteCodeGenerator::write16(uint16_t i) { size_t n = fCode->size(); fCode->resize(n+2); memcpy(fCode->data() + n, &i, 2); } void ByteCodeGenerator::write32(uint32_t i) { size_t n = fCode->size(); fCode->resize(n+4); memcpy(fCode->data() + n, &i, 4); } void ByteCodeGenerator::write(ByteCodeInstruction i, int count) { switch (i) { case ByteCodeInstruction::kLoopBegin: this->enterLoop(); break; case ByteCodeInstruction::kLoopEnd: this->exitLoop(); break; case ByteCodeInstruction::kMaskPush: this->enterCondition(); break; case ByteCodeInstruction::kMaskPop: case ByteCodeInstruction::kMaskBlend: this->exitCondition(); break; default: /* Do nothing */ break; } this->write16((uint16_t)i); fStackCount += StackUsage(i, count); fMaxStackCount = std::max(fMaxStackCount, fStackCount); } static ByteCodeInstruction vector_instruction(ByteCodeInstruction base, int count) { SkASSERT(count >= 1 && count <= 4); return ((ByteCodeInstruction) ((int) base + count - 1)); } void ByteCodeGenerator::writeTypedInstruction(const Type& type, ByteCodeInstruction s, ByteCodeInstruction u, ByteCodeInstruction f, int count) { switch (type_category(type)) { case TypeCategory::kSigned: this->write(vector_instruction(s, count)); break; case TypeCategory::kUnsigned: this->write(vector_instruction(u, count)); break; case TypeCategory::kFloat: { if (count > 4) { this->write((ByteCodeInstruction)((int)f + 4), count); this->write8(count); } else { this->write(vector_instruction(f, count)); } break; } default: SkASSERT(false); } } bool ByteCodeGenerator::writeBinaryExpression(const BinaryExpression& b, bool discard) { if (b.fOperator == Token::Kind::EQ) { std::unique_ptr lvalue = this->getLValue(*b.fLeft); this->writeExpression(*b.fRight); lvalue->store(discard); discard = false; return discard; } const Type& lType = b.fLeft->fType; const Type& rType = b.fRight->fType; bool lVecOrMtx = (lType.kind() == Type::kVector_Kind || lType.kind() == Type::kMatrix_Kind); bool rVecOrMtx = (rType.kind() == Type::kVector_Kind || rType.kind() == Type::kMatrix_Kind); Token::Kind op; std::unique_ptr lvalue; if (is_assignment(b.fOperator)) { lvalue = this->getLValue(*b.fLeft); lvalue->load(); op = remove_assignment(b.fOperator); } else { this->writeExpression(*b.fLeft); op = b.fOperator; if (!lVecOrMtx && rVecOrMtx) { for (int i = SlotCount(rType); i > 1; --i) { this->write(ByteCodeInstruction::kDup); } } } this->writeExpression(*b.fRight); if (lVecOrMtx && !rVecOrMtx) { for (int i = SlotCount(lType); i > 1; --i) { this->write(ByteCodeInstruction::kDup); } } // Special case for M*V, V*M, M*M (but not V*V!) if (op == Token::Kind::STAR && lVecOrMtx && rVecOrMtx && !(lType.kind() == Type::kVector_Kind && rType.kind() == Type::kVector_Kind)) { this->write(ByteCodeInstruction::kMatrixMultiply, SlotCount(b.fType) - (SlotCount(lType) + SlotCount(rType))); int rCols = rType.columns(), rRows = rType.rows(), lCols = lType.columns(), lRows = lType.rows(); // M*V treats the vector as a column if (rType.kind() == Type::kVector_Kind) { std::swap(rCols, rRows); } SkASSERT(lCols == rRows); SkASSERT(SlotCount(b.fType) == lRows * rCols); this->write8(lCols); this->write8(lRows); this->write8(rCols); } else { int count = std::max(SlotCount(lType), SlotCount(rType)); switch (op) { case Token::Kind::EQEQ: this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareIEQ, ByteCodeInstruction::kCompareIEQ, ByteCodeInstruction::kCompareFEQ, count); // Collapse to a single bool for (int i = count; i > 1; --i) { this->write(ByteCodeInstruction::kAndB); } break; case Token::Kind::GT: this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSGT, ByteCodeInstruction::kCompareUGT, ByteCodeInstruction::kCompareFGT, count); break; case Token::Kind::GTEQ: this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSGTEQ, ByteCodeInstruction::kCompareUGTEQ, ByteCodeInstruction::kCompareFGTEQ, count); break; case Token::Kind::LT: this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSLT, ByteCodeInstruction::kCompareULT, ByteCodeInstruction::kCompareFLT, count); break; case Token::Kind::LTEQ: this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareSLTEQ, ByteCodeInstruction::kCompareULTEQ, ByteCodeInstruction::kCompareFLTEQ, count); break; case Token::Kind::MINUS: this->writeTypedInstruction(lType, ByteCodeInstruction::kSubtractI, ByteCodeInstruction::kSubtractI, ByteCodeInstruction::kSubtractF, count); break; case Token::Kind::NEQ: this->writeTypedInstruction(lType, ByteCodeInstruction::kCompareINEQ, ByteCodeInstruction::kCompareINEQ, ByteCodeInstruction::kCompareFNEQ, count); // Collapse to a single bool for (int i = count; i > 1; --i) { this->write(ByteCodeInstruction::kOrB); } break; case Token::Kind::PERCENT: this->writeTypedInstruction(lType, ByteCodeInstruction::kRemainderS, ByteCodeInstruction::kRemainderU, ByteCodeInstruction::kRemainderF, count); break; case Token::Kind::PLUS: this->writeTypedInstruction(lType, ByteCodeInstruction::kAddI, ByteCodeInstruction::kAddI, ByteCodeInstruction::kAddF, count); break; case Token::Kind::SLASH: this->writeTypedInstruction(lType, ByteCodeInstruction::kDivideS, ByteCodeInstruction::kDivideU, ByteCodeInstruction::kDivideF, count); break; case Token::Kind::STAR: this->writeTypedInstruction(lType, ByteCodeInstruction::kMultiplyI, ByteCodeInstruction::kMultiplyI, ByteCodeInstruction::kMultiplyF, count); break; case Token::Kind::LOGICALAND: SkASSERT(type_category(lType) == SkSL::TypeCategory::kBool && count == 1); this->write(ByteCodeInstruction::kAndB); break; case Token::Kind::LOGICALNOT: SkASSERT(type_category(lType) == SkSL::TypeCategory::kBool && count == 1); this->write(ByteCodeInstruction::kNotB); break; case Token::Kind::LOGICALOR: SkASSERT(type_category(lType) == SkSL::TypeCategory::kBool && count == 1); this->write(ByteCodeInstruction::kOrB); break; case Token::Kind::LOGICALXOR: SkASSERT(type_category(lType) == SkSL::TypeCategory::kBool && count == 1); this->write(ByteCodeInstruction::kXorB); break; default: fErrors.error(b.fOffset, SkSL::String::printf("Unsupported binary operator '%s'", Compiler::OperatorName(op))); break; } } if (lvalue) { lvalue->store(discard); discard = false; } return discard; } void ByteCodeGenerator::writeBoolLiteral(const BoolLiteral& b) { this->write(ByteCodeInstruction::kPushImmediate); this->write32(b.fValue ? ~0 : 0); } void ByteCodeGenerator::writeConstructor(const Constructor& c) { for (const auto& arg : c.fArguments) { this->writeExpression(*arg); } if (c.fArguments.size() == 1) { const Type& inType = c.fArguments[0]->fType; const Type& outType = c.fType; TypeCategory inCategory = type_category(inType); TypeCategory outCategory = type_category(outType); int inCount = SlotCount(inType); int outCount = SlotCount(outType); if (inCategory != outCategory) { SkASSERT(inCount == outCount); if (inCategory == TypeCategory::kFloat) { SkASSERT(outCategory == TypeCategory::kSigned || outCategory == TypeCategory::kUnsigned); this->write(vector_instruction(ByteCodeInstruction::kConvertFtoI, outCount)); } else if (outCategory == TypeCategory::kFloat) { if (inCategory == TypeCategory::kSigned) { this->write(vector_instruction(ByteCodeInstruction::kConvertStoF, outCount)); } else { SkASSERT(inCategory == TypeCategory::kUnsigned); this->write(vector_instruction(ByteCodeInstruction::kConvertUtoF, outCount)); } } else { SkASSERT(false); } } if (inType.kind() == Type::kMatrix_Kind && outType.kind() == Type::kMatrix_Kind) { this->write(ByteCodeInstruction::kMatrixToMatrix, SlotCount(outType) - SlotCount(inType)); this->write8(inType.columns()); this->write8(inType.rows()); this->write8(outType.columns()); this->write8(outType.rows()); } else if (inCount != outCount) { SkASSERT(inCount == 1); if (outType.kind() == Type::kMatrix_Kind) { this->write(ByteCodeInstruction::kScalarToMatrix, SlotCount(outType) - 1); this->write8(outType.columns()); this->write8(outType.rows()); } else { SkASSERT(outType.kind() == Type::kVector_Kind); for (; inCount != outCount; ++inCount) { this->write(ByteCodeInstruction::kDup); } } } } } void ByteCodeGenerator::writeExternalFunctionCall(const ExternalFunctionCall& f) { int argumentCount = 0; for (const auto& arg : f.fArguments) { this->writeExpression(*arg); argumentCount += SlotCount(arg->fType); } this->write(ByteCodeInstruction::kCallExternal, SlotCount(f.fType) - argumentCount); SkASSERT(argumentCount <= 255); this->write8(argumentCount); this->write8(SlotCount(f.fType)); int index = fOutput->fExternalValues.size(); fOutput->fExternalValues.push_back(f.fFunction); SkASSERT(index <= 255); this->write8(index); } void ByteCodeGenerator::writeExternalValue(const ExternalValueReference& e) { this->write(vector_instruction(ByteCodeInstruction::kReadExternal, SlotCount(e.fValue->type()))); int index = fOutput->fExternalValues.size(); fOutput->fExternalValues.push_back(e.fValue); SkASSERT(index <= 255); this->write8(index); } void ByteCodeGenerator::writeVariableExpression(const Expression& expr) { Variable::Storage storage = Variable::kLocal_Storage; int location = this->getLocation(expr, &storage); bool isGlobal = storage == Variable::kGlobal_Storage; int count = SlotCount(expr.fType); if (location < 0 || count > 4) { if (location >= 0) { this->write(ByteCodeInstruction::kPushImmediate); this->write32(location); } this->write(isGlobal ? ByteCodeInstruction::kLoadExtendedGlobal : ByteCodeInstruction::kLoadExtended, count); this->write8(count); } else { this->write(vector_instruction(isGlobal ? ByteCodeInstruction::kLoadGlobal : ByteCodeInstruction::kLoad, count)); this->write8(location); } } static inline uint32_t float_to_bits(float x) { uint32_t u; memcpy(&u, &x, sizeof(uint32_t)); return u; } void ByteCodeGenerator::writeFloatLiteral(const FloatLiteral& f) { this->write(ByteCodeInstruction::kPushImmediate); this->write32(float_to_bits(f.fValue)); } void ByteCodeGenerator::writeIntrinsicCall(const FunctionCall& c) { auto found = fIntrinsics.find(c.fFunction.fName); if (found == fIntrinsics.end()) { fErrors.error(c.fOffset, "unsupported intrinsic function"); return; } int count = SlotCount(c.fArguments[0]->fType); if (found->second.fIsSpecial) { SpecialIntrinsic special = found->second.fValue.fSpecial; switch (special) { case SpecialIntrinsic::kDot: { SkASSERT(c.fArguments.size() == 2); SkASSERT(count == SlotCount(c.fArguments[1]->fType)); this->write((ByteCodeInstruction)((int)ByteCodeInstruction::kMultiplyF + count-1)); for (int i = count; i > 1; --i) { this->write(ByteCodeInstruction::kAddF); } break; } default: SkASSERT(false); } } else { switch (found->second.fValue.fInstruction) { case ByteCodeInstruction::kCos: case ByteCodeInstruction::kSin: case ByteCodeInstruction::kSqrt: case ByteCodeInstruction::kTan: SkASSERT(c.fArguments.size() > 0); this->write((ByteCodeInstruction) ((int) found->second.fValue.fInstruction + count - 1)); break; case ByteCodeInstruction::kInverse2x2: { SkASSERT(c.fArguments.size() > 0); auto op = ByteCodeInstruction::kInverse2x2; switch (count) { case 4: break; // float2x2 case 9: op = ByteCodeInstruction::kInverse3x3; break; case 16: op = ByteCodeInstruction::kInverse4x4; break; default: SkASSERT(false); } this->write(op); break; } default: SkASSERT(false); } } } void ByteCodeGenerator::writeFunctionCall(const FunctionCall& f) { // Builtins have simple signatures... if (f.fFunction.fBuiltin) { for (const auto& arg : f.fArguments) { this->writeExpression(*arg); } this->writeIntrinsicCall(f); return; } // Find the index of the function we're calling. We explicitly do not allow calls to functions // before they're defined. This is an easy-to-understand rule that prevents recursion. size_t idx; for (idx = 0; idx < fFunctions.size(); ++idx) { if (f.fFunction.matches(fFunctions[idx]->fDeclaration)) { break; } } if (idx > 255) { fErrors.error(f.fOffset, "Function count limit exceeded"); return; } else if (idx >= fFunctions.size()) { fErrors.error(f.fOffset, "Call to undefined function"); return; } // We may need to deal with out parameters, so the sequence is tricky if (int returnCount = SlotCount(f.fType)) { this->write(ByteCodeInstruction::kReserve, returnCount); this->write8(returnCount); } int argCount = f.fArguments.size(); std::vector> lvalues; for (int i = 0; i < argCount; ++i) { const auto& param = f.fFunction.fParameters[i]; const auto& arg = f.fArguments[i]; if (param->fModifiers.fFlags & Modifiers::kOut_Flag) { lvalues.emplace_back(this->getLValue(*arg)); lvalues.back()->load(); } else { this->writeExpression(*arg); } } // The space used by the call is based on the callee, but it also unwinds all of that before // we continue execution. We adjust our max stack depths below. this->write(ByteCodeInstruction::kCall); this->write8(idx); const ByteCodeFunction* callee = fOutput->fFunctions[idx].get(); fMaxLoopCount = std::max(fMaxLoopCount, fLoopCount + callee->fLoopCount); fMaxConditionCount = std::max(fMaxConditionCount, fConditionCount + callee->fConditionCount); fMaxStackCount = std::max(fMaxStackCount, fStackCount + callee->fLocalCount + callee->fStackCount); // After the called function returns, the stack will still contain our arguments. We have to // pop them (storing any out parameters back to their lvalues as we go). We glob together slot // counts for all parameters that aren't out-params, so we can pop them in one big chunk. int popCount = 0; auto pop = [&]() { if (popCount > 4) { this->write(ByteCodeInstruction::kPopN, popCount); this->write8(popCount); } else if (popCount > 0) { this->write(vector_instruction(ByteCodeInstruction::kPop, popCount)); } popCount = 0; }; for (int i = argCount - 1; i >= 0; --i) { const auto& param = f.fFunction.fParameters[i]; const auto& arg = f.fArguments[i]; if (param->fModifiers.fFlags & Modifiers::kOut_Flag) { pop(); lvalues.back()->store(true); lvalues.pop_back(); } else { popCount += SlotCount(arg->fType); } } pop(); } void ByteCodeGenerator::writeIntLiteral(const IntLiteral& i) { this->write(ByteCodeInstruction::kPushImmediate); this->write32(i.fValue); } void ByteCodeGenerator::writeNullLiteral(const NullLiteral& n) { // not yet implemented abort(); } bool ByteCodeGenerator::writePrefixExpression(const PrefixExpression& p, bool discard) { switch (p.fOperator) { case Token::Kind::PLUSPLUS: // fall through case Token::Kind::MINUSMINUS: { SkASSERT(SlotCount(p.fOperand->fType) == 1); std::unique_ptr lvalue = this->getLValue(*p.fOperand); lvalue->load(); this->write(ByteCodeInstruction::kPushImmediate); this->write32(type_category(p.fType) == TypeCategory::kFloat ? float_to_bits(1.0f) : 1); if (p.fOperator == Token::Kind::PLUSPLUS) { this->writeTypedInstruction(p.fType, ByteCodeInstruction::kAddI, ByteCodeInstruction::kAddI, ByteCodeInstruction::kAddF, 1); } else { this->writeTypedInstruction(p.fType, ByteCodeInstruction::kSubtractI, ByteCodeInstruction::kSubtractI, ByteCodeInstruction::kSubtractF, 1); } lvalue->store(discard); discard = false; break; } case Token::Kind::MINUS: { this->writeExpression(*p.fOperand); this->writeTypedInstruction(p.fType, ByteCodeInstruction::kNegateI, ByteCodeInstruction::kNegateI, ByteCodeInstruction::kNegateF, SlotCount(p.fOperand->fType)); break; } default: SkASSERT(false); } return discard; } bool ByteCodeGenerator::writePostfixExpression(const PostfixExpression& p, bool discard) { switch (p.fOperator) { case Token::Kind::PLUSPLUS: // fall through case Token::Kind::MINUSMINUS: { SkASSERT(SlotCount(p.fOperand->fType) == 1); std::unique_ptr lvalue = this->getLValue(*p.fOperand); lvalue->load(); // If we're not supposed to discard the result, then make a copy *before* the +/- if (!discard) { this->write(ByteCodeInstruction::kDup); } this->write(ByteCodeInstruction::kPushImmediate); this->write32(type_category(p.fType) == TypeCategory::kFloat ? float_to_bits(1.0f) : 1); if (p.fOperator == Token::Kind::PLUSPLUS) { this->writeTypedInstruction(p.fType, ByteCodeInstruction::kAddI, ByteCodeInstruction::kAddI, ByteCodeInstruction::kAddF, 1); } else { this->writeTypedInstruction(p.fType, ByteCodeInstruction::kSubtractI, ByteCodeInstruction::kSubtractI, ByteCodeInstruction::kSubtractF, 1); } // Always consume the result as part of the store lvalue->store(true); discard = false; break; } default: SkASSERT(false); } return discard; } void ByteCodeGenerator::writeSwizzle(const Swizzle& s) { if (swizzle_is_simple(s)) { this->writeVariableExpression(s); return; } switch (s.fBase->fKind) { case Expression::kVariableReference_Kind: { const Variable& var = ((VariableReference&) *s.fBase).fVariable; this->write(var.fStorage == Variable::kGlobal_Storage ? ByteCodeInstruction::kLoadSwizzleGlobal : ByteCodeInstruction::kLoadSwizzle, s.fComponents.size()); this->write8(this->getLocation(var)); this->write8(s.fComponents.size()); for (int c : s.fComponents) { this->write8(c); } break; } default: this->writeExpression(*s.fBase); this->write(ByteCodeInstruction::kSwizzle, s.fComponents.size() - s.fBase->fType.columns()); this->write8(s.fBase->fType.columns()); this->write8(s.fComponents.size()); for (int c : s.fComponents) { this->write8(c); } } } void ByteCodeGenerator::writeTernaryExpression(const TernaryExpression& t) { int count = SlotCount(t.fType); SkASSERT(count == SlotCount(t.fIfTrue->fType)); SkASSERT(count == SlotCount(t.fIfFalse->fType)); this->writeExpression(*t.fTest); this->write(ByteCodeInstruction::kMaskPush); this->writeExpression(*t.fIfTrue); this->write(ByteCodeInstruction::kMaskNegate); this->writeExpression(*t.fIfFalse); this->write(ByteCodeInstruction::kMaskBlend, count); this->write8(count); } void ByteCodeGenerator::writeExpression(const Expression& e, bool discard) { switch (e.fKind) { case Expression::kBinary_Kind: discard = this->writeBinaryExpression((BinaryExpression&) e, discard); break; case Expression::kBoolLiteral_Kind: this->writeBoolLiteral((BoolLiteral&) e); break; case Expression::kConstructor_Kind: this->writeConstructor((Constructor&) e); break; case Expression::kExternalFunctionCall_Kind: this->writeExternalFunctionCall((ExternalFunctionCall&) e); break; case Expression::kExternalValue_Kind: this->writeExternalValue((ExternalValueReference&) e); break; case Expression::kFieldAccess_Kind: case Expression::kIndex_Kind: case Expression::kVariableReference_Kind: this->writeVariableExpression(e); break; case Expression::kFloatLiteral_Kind: this->writeFloatLiteral((FloatLiteral&) e); break; case Expression::kFunctionCall_Kind: this->writeFunctionCall((FunctionCall&) e); break; case Expression::kIntLiteral_Kind: this->writeIntLiteral((IntLiteral&) e); break; case Expression::kNullLiteral_Kind: this->writeNullLiteral((NullLiteral&) e); break; case Expression::kPrefix_Kind: discard = this->writePrefixExpression((PrefixExpression&) e, discard); break; case Expression::kPostfix_Kind: discard = this->writePostfixExpression((PostfixExpression&) e, discard); break; case Expression::kSwizzle_Kind: this->writeSwizzle((Swizzle&) e); break; case Expression::kTernary_Kind: this->writeTernaryExpression((TernaryExpression&) e); break; default: printf("unsupported expression %s\n", e.description().c_str()); SkASSERT(false); } if (discard) { int count = SlotCount(e.fType); if (count > 4) { this->write(ByteCodeInstruction::kPopN, count); this->write8(count); } else if (count != 0) { this->write(vector_instruction(ByteCodeInstruction::kPop, count)); } discard = false; } } class ByteCodeExternalValueLValue : public ByteCodeGenerator::LValue { public: ByteCodeExternalValueLValue(ByteCodeGenerator* generator, ExternalValue& value, int index) : INHERITED(*generator) , fCount(ByteCodeGenerator::SlotCount(value.type())) , fIndex(index) {} void load() override { fGenerator.write(vector_instruction(ByteCodeInstruction::kReadExternal, fCount)); fGenerator.write8(fIndex); } void store(bool discard) override { if (!discard) { fGenerator.write(vector_instruction(ByteCodeInstruction::kDup, fCount)); } fGenerator.write(vector_instruction(ByteCodeInstruction::kWriteExternal, fCount)); fGenerator.write8(fIndex); } private: typedef LValue INHERITED; int fCount; int fIndex; }; class ByteCodeSwizzleLValue : public ByteCodeGenerator::LValue { public: ByteCodeSwizzleLValue(ByteCodeGenerator* generator, const Swizzle& swizzle) : INHERITED(*generator) , fSwizzle(swizzle) {} void load() override { fGenerator.writeSwizzle(fSwizzle); } void store(bool discard) override { int count = fSwizzle.fComponents.size(); if (!discard) { fGenerator.write(vector_instruction(ByteCodeInstruction::kDup, count)); } Variable::Storage storage = Variable::kLocal_Storage; int location = fGenerator.getLocation(*fSwizzle.fBase, &storage); bool isGlobal = storage == Variable::kGlobal_Storage; if (location < 0) { fGenerator.write(isGlobal ? ByteCodeInstruction::kStoreSwizzleIndirectGlobal : ByteCodeInstruction::kStoreSwizzleIndirect, count); } else { fGenerator.write(isGlobal ? ByteCodeInstruction::kStoreSwizzleGlobal : ByteCodeInstruction::kStoreSwizzle, count); fGenerator.write8(location); } fGenerator.write8(count); for (int c : fSwizzle.fComponents) { fGenerator.write8(c); } } private: const Swizzle& fSwizzle; typedef LValue INHERITED; }; class ByteCodeExpressionLValue : public ByteCodeGenerator::LValue { public: ByteCodeExpressionLValue(ByteCodeGenerator* generator, const Expression& expr) : INHERITED(*generator) , fExpression(expr) {} void load() override { fGenerator.writeVariableExpression(fExpression); } void store(bool discard) override { int count = ByteCodeGenerator::SlotCount(fExpression.fType); if (!discard) { if (count > 4) { fGenerator.write(ByteCodeInstruction::kDupN, count); fGenerator.write8(count); } else { fGenerator.write(vector_instruction(ByteCodeInstruction::kDup, count)); } } Variable::Storage storage = Variable::kLocal_Storage; int location = fGenerator.getLocation(fExpression, &storage); bool isGlobal = storage == Variable::kGlobal_Storage; if (location < 0 || count > 4) { if (location >= 0) { fGenerator.write(ByteCodeInstruction::kPushImmediate); fGenerator.write32(location); } fGenerator.write(isGlobal ? ByteCodeInstruction::kStoreExtendedGlobal : ByteCodeInstruction::kStoreExtended, count); fGenerator.write8(count); } else { fGenerator.write(vector_instruction(isGlobal ? ByteCodeInstruction::kStoreGlobal : ByteCodeInstruction::kStore, count)); fGenerator.write8(location); } } private: typedef LValue INHERITED; const Expression& fExpression; }; std::unique_ptr ByteCodeGenerator::getLValue(const Expression& e) { switch (e.fKind) { case Expression::kExternalValue_Kind: { ExternalValue* value = ((ExternalValueReference&) e).fValue; int index = fOutput->fExternalValues.size(); fOutput->fExternalValues.push_back(value); SkASSERT(index <= 255); return std::unique_ptr(new ByteCodeExternalValueLValue(this, *value, index)); } case Expression::kFieldAccess_Kind: case Expression::kIndex_Kind: case Expression::kVariableReference_Kind: return std::unique_ptr(new ByteCodeExpressionLValue(this, e)); case Expression::kSwizzle_Kind: { const Swizzle& s = (const Swizzle&) e; return swizzle_is_simple(s) ? std::unique_ptr(new ByteCodeExpressionLValue(this, e)) : std::unique_ptr(new ByteCodeSwizzleLValue(this, s)); } case Expression::kTernary_Kind: default: printf("unsupported lvalue %s\n", e.description().c_str()); return nullptr; } } void ByteCodeGenerator::writeBlock(const Block& b) { for (const auto& s : b.fStatements) { this->writeStatement(*s); } } void ByteCodeGenerator::setBreakTargets() { std::vector& breaks = fBreakTargets.top(); for (DeferredLocation& b : breaks) { b.set(); } fBreakTargets.pop(); } void ByteCodeGenerator::setContinueTargets() { std::vector& continues = fContinueTargets.top(); for (DeferredLocation& c : continues) { c.set(); } fContinueTargets.pop(); } void ByteCodeGenerator::writeBreakStatement(const BreakStatement& b) { // TODO: Include BranchIfAllFalse to top-most LoopNext this->write(ByteCodeInstruction::kLoopBreak); } void ByteCodeGenerator::writeContinueStatement(const ContinueStatement& c) { // TODO: Include BranchIfAllFalse to top-most LoopNext this->write(ByteCodeInstruction::kLoopContinue); } void ByteCodeGenerator::writeDoStatement(const DoStatement& d) { this->write(ByteCodeInstruction::kLoopBegin); size_t start = fCode->size(); this->writeStatement(*d.fStatement); this->write(ByteCodeInstruction::kLoopNext); this->writeExpression(*d.fTest); this->write(ByteCodeInstruction::kLoopMask); // TODO: Could shorten this with kBranchIfAnyTrue this->write(ByteCodeInstruction::kBranchIfAllFalse); DeferredLocation endLocation(this); this->write(ByteCodeInstruction::kBranch); this->write16(start); endLocation.set(); this->write(ByteCodeInstruction::kLoopEnd); } void ByteCodeGenerator::writeForStatement(const ForStatement& f) { fContinueTargets.emplace(); fBreakTargets.emplace(); if (f.fInitializer) { this->writeStatement(*f.fInitializer); } this->write(ByteCodeInstruction::kLoopBegin); size_t start = fCode->size(); if (f.fTest) { this->writeExpression(*f.fTest); this->write(ByteCodeInstruction::kLoopMask); } this->write(ByteCodeInstruction::kBranchIfAllFalse); DeferredLocation endLocation(this); this->writeStatement(*f.fStatement); this->write(ByteCodeInstruction::kLoopNext); if (f.fNext) { this->writeExpression(*f.fNext, true); } this->write(ByteCodeInstruction::kBranch); this->write16(start); endLocation.set(); this->write(ByteCodeInstruction::kLoopEnd); } void ByteCodeGenerator::writeIfStatement(const IfStatement& i) { this->writeExpression(*i.fTest); this->write(ByteCodeInstruction::kMaskPush); this->write(ByteCodeInstruction::kBranchIfAllFalse); DeferredLocation falseLocation(this); this->writeStatement(*i.fIfTrue); falseLocation.set(); if (i.fIfFalse) { this->write(ByteCodeInstruction::kMaskNegate); this->write(ByteCodeInstruction::kBranchIfAllFalse); DeferredLocation endLocation(this); this->writeStatement(*i.fIfFalse); endLocation.set(); } this->write(ByteCodeInstruction::kMaskPop); } void ByteCodeGenerator::writeReturnStatement(const ReturnStatement& r) { if (fLoopCount || fConditionCount) { fErrors.error(r.fOffset, "return not allowed inside conditional or loop"); return; } int count = SlotCount(r.fExpression->fType); this->writeExpression(*r.fExpression); // Technically, the kReturn also pops fOutput->fLocalCount values from the stack, too, but we // haven't counted pushing those (they're outside the scope of our stack tracking). Instead, // we account for those in writeFunction(). // This is all fine because we don't allow conditional returns, so we only return once anyway. this->write(ByteCodeInstruction::kReturn, -count); this->write8(count); } void ByteCodeGenerator::writeSwitchStatement(const SwitchStatement& r) { // not yet implemented abort(); } void ByteCodeGenerator::writeVarDeclarations(const VarDeclarations& v) { for (const auto& declStatement : v.fVars) { const VarDeclaration& decl = (VarDeclaration&) *declStatement; // we need to grab the location even if we don't use it, to ensure it // has been allocated int location = getLocation(*decl.fVar); if (decl.fValue) { this->writeExpression(*decl.fValue); int count = SlotCount(decl.fValue->fType); if (count > 4) { this->write(ByteCodeInstruction::kPushImmediate); this->write32(location); this->write(ByteCodeInstruction::kStoreExtended, count); this->write8(count); } else { this->write(vector_instruction(ByteCodeInstruction::kStore, count)); this->write8(location); } } } } void ByteCodeGenerator::writeWhileStatement(const WhileStatement& w) { this->write(ByteCodeInstruction::kLoopBegin); size_t cond = fCode->size(); this->writeExpression(*w.fTest); this->write(ByteCodeInstruction::kLoopMask); this->write(ByteCodeInstruction::kBranchIfAllFalse); DeferredLocation endLocation(this); this->writeStatement(*w.fStatement); this->write(ByteCodeInstruction::kLoopNext); this->write(ByteCodeInstruction::kBranch); this->write16(cond); endLocation.set(); this->write(ByteCodeInstruction::kLoopEnd); } void ByteCodeGenerator::writeStatement(const Statement& s) { switch (s.fKind) { case Statement::kBlock_Kind: this->writeBlock((Block&) s); break; case Statement::kBreak_Kind: this->writeBreakStatement((BreakStatement&) s); break; case Statement::kContinue_Kind: this->writeContinueStatement((ContinueStatement&) s); break; case Statement::kDiscard_Kind: // not yet implemented abort(); case Statement::kDo_Kind: this->writeDoStatement((DoStatement&) s); break; case Statement::kExpression_Kind: this->writeExpression(*((ExpressionStatement&) s).fExpression, true); break; case Statement::kFor_Kind: this->writeForStatement((ForStatement&) s); break; case Statement::kIf_Kind: this->writeIfStatement((IfStatement&) s); break; case Statement::kNop_Kind: break; case Statement::kReturn_Kind: this->writeReturnStatement((ReturnStatement&) s); break; case Statement::kSwitch_Kind: this->writeSwitchStatement((SwitchStatement&) s); break; case Statement::kVarDeclarations_Kind: this->writeVarDeclarations(*((VarDeclarationsStatement&) s).fDeclaration); break; case Statement::kWhile_Kind: this->writeWhileStatement((WhileStatement&) s); break; default: SkASSERT(false); } } ByteCodeFunction::ByteCodeFunction(const FunctionDeclaration* declaration) : fName(declaration->fName) { fParameterCount = 0; for (const auto& p : declaration->fParameters) { int slots = ByteCodeGenerator::SlotCount(p->fType); fParameters.push_back({ slots, (bool)(p->fModifiers.fFlags & Modifiers::kOut_Flag) }); fParameterCount += slots; } } }