# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function context.set_context(mode=context.PYNATIVE_MODE, device_target='CPU') class NetNorm(nn.Cell): def __init__(self): super(NetNorm, self).__init__() self.norm_1 = nn.Norm(axis=0) self.norm_2 = nn.Norm(axis=1) self.norm_3 = nn.Norm(axis=-1) self.norm_4 = nn.Norm(axis=-1, keep_dims=True) @ms_function def construct(self, indices): return (self.norm_1(indices), self.norm_2(indices), self.norm_3(indices), self.norm_4(indices)) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_norm(): norm = NetNorm() indices = Tensor(np.array([[4, 4, 9, 1], [2, 1, 3, 6]]), mindspore.float32) output = norm(indices) expect_0 = np.array([4.472136, 4.1231055, 9.486833, 6.0827627]).astype(np.float32) expect_1 = np.array([10.677078, 7.071068]).astype(np.float32) expect_2 = np.array([10.677078, 7.071068]).astype(np.float32) expect_3 = np.array([[10.677078], [7.071068]]).astype(np.float32) assert (output[0].asnumpy() == expect_0).all() assert (output[1].asnumpy() == expect_1).all() assert (output[2].asnumpy() == expect_2).all() assert (output[3].asnumpy() == expect_3).all()