# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from mindspore import Tensor from mindspore.ops import operations as P @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_topk(): context.set_context(mode=context.GRAPH_MODE, device_target="CPU") x_np = np.random.rand(3, 4).astype(np.float32) k = 4 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(3, 4).astype(np.float32) k = 4 ms_output = P.TopK(False)(Tensor(x_np), k) assert np.allclose(ms_output[0].asnumpy(), x_np) x_np = np.random.rand(2, 3, 4).astype(np.float32) k = 2 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(512, 1024).astype(np.float32) k = 512 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) # sorted elements num greater than max thread per block x_np = np.random.rand(512, 2048).astype(np.float32) k = 1 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(512, 2048).astype(np.float32) k = 2048 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) # sorted elements num greater than max share memory per block x_np = np.random.rand(512, 40960).astype(np.float32) k = 1 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(512, 40960).astype(np.float32) k = 40960 ms_output = P.TopK(True)(Tensor(x_np), k) np_output = np.sort(x_np, axis=-1)[..., ::-1][..., 0:k] assert np.allclose(ms_output[0].asnumpy(), np_output) x_np = np.random.rand(512, 40960).astype(np.float32) k = 40960 ms_output = P.TopK(False)(Tensor(x_np), k) assert np.allclose(ms_output[0].asnumpy(), x_np)