# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test callback function.""" import os import platform import stat import secrets from unittest import mock import numpy as np import pytest import mindspore.common.dtype as mstype import mindspore.nn as nn from mindspore.common.api import ms_function from mindspore.common.tensor import Tensor from mindspore.nn import TrainOneStepCell, WithLossCell from mindspore.nn.optim import Momentum from mindspore.train.callback import ModelCheckpoint, RunContext, LossMonitor, _InternalCallbackParam, \ _CallbackManager, Callback, CheckpointConfig, _set_cur_net, _checkpoint_cb_for_save_op from mindspore.train.callback._checkpoint import _chg_ckpt_file_name_if_same_exist class Net(nn.Cell): """Net definition.""" def __init__(self): super(Net, self).__init__() self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal') self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.flatten = nn.Flatten() self.fc = nn.Dense(64 * 222 * 222, 3) @ms_function def construct(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.flatten(x) out = self.fc(x) return out class LossNet(nn.Cell): """ LossNet definition """ def __init__(self): super(LossNet, self).__init__() self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal', pad_mode='valid') self.bn = nn.BatchNorm2d(64) self.relu = nn.ReLU() self.flatten = nn.Flatten() self.fc = nn.Dense(64 * 222 * 222, 3) # padding=0 self.loss = nn.SoftmaxCrossEntropyWithLogits() @ms_function def construct(self, x, y): x = self.conv(x) x = self.bn(x) x = self.relu(x) x = self.flatten(x) x = self.fc(x) out = self.loss(x, y) return out def test_model_checkpoint_prefix_invalid(): """Test ModelCheckpoint prefix invalid.""" with pytest.raises(ValueError): ModelCheckpoint(123) ModelCheckpoint(directory="./") with pytest.raises(TypeError): ModelCheckpoint(config='type_error') ModelCheckpoint(config=CheckpointConfig()) ModelCheckpoint(prefix="ckpt_2", directory="./test_files") def test_save_checkpoint(): """Test save checkpoint.""" train_config = CheckpointConfig( save_checkpoint_steps=16, save_checkpoint_seconds=0, keep_checkpoint_max=5, keep_checkpoint_per_n_minutes=0) cb_params = _InternalCallbackParam() net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) network_ = WithLossCell(net, loss) _train_network = TrainOneStepCell(network_, optim) cb_params.train_network = _train_network cb_params.epoch_num = 10 cb_params.cur_epoch_num = 5 cb_params.cur_step_num = 0 cb_params.batch_num = 32 ckpoint_cb = ModelCheckpoint(prefix="test_ckpt", directory='./test_files', config=train_config) run_context = RunContext(cb_params) ckpoint_cb.begin(run_context) ckpoint_cb.step_end(run_context) if os.path.exists('./test_files/test_ckpt-model.pkl'): os.chmod('./test_files/test_ckpt-model.pkl', stat.S_IWRITE) os.remove('./test_files/test_ckpt-model.pkl') def test_loss_monitor_sink_mode(): """Test loss monitor sink mode.""" cb_params = _InternalCallbackParam() cb_params.cur_epoch_num = 4 cb_params.epoch_num = 4 cb_params.cur_step_num = 2 cb_params.batch_num = 2 cb_params.net_outputs = Tensor(2.0) run_context = RunContext(cb_params) loss_cb = LossMonitor(1) callbacks = [loss_cb] with _CallbackManager(callbacks) as callbacklist: callbacklist.begin(run_context) callbacklist.epoch_begin(run_context) callbacklist.step_begin(run_context) callbacklist.step_end(run_context) callbacklist.epoch_end(run_context) callbacklist.end(run_context) def test_loss_monitor_normal_mode(): """Test loss monitor normal(non-sink) mode.""" cb_params = _InternalCallbackParam() run_context = RunContext(cb_params) loss_cb = LossMonitor(1) cb_params.cur_epoch_num = 4 cb_params.epoch_num = 4 cb_params.cur_step_num = 1 cb_params.batch_num = 1 cb_params.net_outputs = Tensor(2.0) loss_cb.begin(run_context) loss_cb.epoch_begin(run_context) loss_cb.step_begin(run_context) loss_cb.step_end(run_context) loss_cb.epoch_end(run_context) loss_cb.end(run_context) def test_chg_ckpt_file_name_if_same_exist(): """Test chg ckpt file name if same exist.""" _chg_ckpt_file_name_if_same_exist(directory="./test_files", prefix="ckpt") def test_checkpoint_cb_for_save_op(): """Test checkpoint cb for save op.""" parameter_list = [] one_param = {} one_param['name'] = "conv1.weight" one_param['data'] = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), dtype=mstype.float32) parameter_list.append(one_param) _checkpoint_cb_for_save_op(parameter_list) def test_checkpoint_cb_for_save_op_update_net(): """Test checkpoint cb for save op.""" parameter_list = [] one_param = {} one_param['name'] = "conv.weight" one_param['data'] = Tensor(np.ones(shape=(64, 3, 3, 3)), dtype=mstype.float32) parameter_list.append(one_param) net = Net() _set_cur_net(net) _checkpoint_cb_for_save_op(parameter_list) assert net.conv.weight.data.asnumpy()[0][0][0][0] == 1 def test_internal_callback_param(): """Test Internal CallbackParam.""" cb_params = _InternalCallbackParam() cb_params.member1 = 1 cb_params.member2 = "abc" assert cb_params.member1 == 1 assert cb_params.member2 == "abc" def test_checkpoint_save_ckpt_steps(): """Test checkpoint save ckpt steps.""" train_config = CheckpointConfig( save_checkpoint_steps=16, save_checkpoint_seconds=0, keep_checkpoint_max=5, keep_checkpoint_per_n_minutes=0) ckpt_cb = ModelCheckpoint(config=train_config) cb_params = _InternalCallbackParam() net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) network_ = WithLossCell(net, loss) _train_network = TrainOneStepCell(network_, optim) cb_params.train_network = _train_network cb_params.epoch_num = 10 cb_params.cur_epoch_num = 5 cb_params.cur_step_num = 160 cb_params.batch_num = 32 run_context = RunContext(cb_params) ckpt_cb.begin(run_context) ckpt_cb.step_end(run_context) ckpt_cb2 = ModelCheckpoint(config=train_config) cb_params.cur_epoch_num = 1 cb_params.cur_step_num = 15 ckpt_cb2.begin(run_context) ckpt_cb2.step_end(run_context) def test_checkpoint_save_ckpt_seconds(): """Test checkpoint save ckpt seconds.""" train_config = CheckpointConfig( save_checkpoint_steps=16, save_checkpoint_seconds=100, keep_checkpoint_max=0, keep_checkpoint_per_n_minutes=1) ckpt_cb = ModelCheckpoint(config=train_config) cb_params = _InternalCallbackParam() net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) network_ = WithLossCell(net, loss) _train_network = TrainOneStepCell(network_, optim) cb_params.train_network = _train_network cb_params.epoch_num = 10 cb_params.cur_epoch_num = 4 cb_params.cur_step_num = 128 cb_params.batch_num = 32 run_context = RunContext(cb_params) ckpt_cb.begin(run_context) ckpt_cb.step_end(run_context) ckpt_cb2 = ModelCheckpoint(config=train_config) cb_params.cur_epoch_num = 1 cb_params.cur_step_num = 16 ckpt_cb2.begin(run_context) ckpt_cb2.step_end(run_context) def test_checkpoint_save_ckpt_with_encryption(): """Test checkpoint save ckpt with encryption.""" train_config = CheckpointConfig( save_checkpoint_steps=16, save_checkpoint_seconds=0, keep_checkpoint_max=5, keep_checkpoint_per_n_minutes=0, enc_key=secrets.token_bytes(16), enc_mode="AES-GCM") ckpt_cb = ModelCheckpoint(config=train_config) cb_params = _InternalCallbackParam() net = Net() loss = nn.SoftmaxCrossEntropyWithLogits() optim = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) network_ = WithLossCell(net, loss) _train_network = TrainOneStepCell(network_, optim) cb_params.train_network = _train_network cb_params.epoch_num = 10 cb_params.cur_epoch_num = 5 cb_params.cur_step_num = 160 cb_params.batch_num = 32 run_context = RunContext(cb_params) ckpt_cb.begin(run_context) ckpt_cb.step_end(run_context) ckpt_cb2 = ModelCheckpoint(config=train_config) cb_params.cur_epoch_num = 1 cb_params.cur_step_num = 15 if platform.system().lower() == "windows": with pytest.raises(NotImplementedError): ckpt_cb2.begin(run_context) ckpt_cb2.step_end(run_context) else: ckpt_cb2.begin(run_context) ckpt_cb2.step_end(run_context) def test_CallbackManager(): """TestCallbackManager.""" ck_obj = ModelCheckpoint() loss_cb_1 = LossMonitor(1) callbacks = [None] with pytest.raises(TypeError): _CallbackManager(callbacks) callbacks = ['Error'] with pytest.raises(TypeError): _CallbackManager(callbacks) callbacks = [ck_obj, loss_cb_1, 'Error', None] with pytest.raises(TypeError): _CallbackManager(callbacks) def test_CallbackManager_exit_called(): with mock.patch.object(Callback, '__exit__', return_value=None) as mock_exit: cb1, cb2 = Callback(), Callback() with _CallbackManager([cb1, cb2]): pass for call_args in mock_exit.call_args_list: assert call_args == mock.call(mock.ANY, None, None, None) assert mock_exit.call_count == 2 def test_CallbackManager_exit_called_when_raises(): with mock.patch.object(Callback, '__exit__', return_value=None) as mock_exit: cb1, cb2 = Callback(), Callback() with pytest.raises(ValueError): with _CallbackManager([cb1, cb2]): raise ValueError() for call_args in mock_exit.call_args_list: assert call_args == mock.call(*[mock.ANY] * 4) assert mock_exit.call_count == 2 def test_CallbackManager_begin_called(): context = dict() with mock.patch.object(Callback, 'begin', return_value=None) as mock_begin: cb1, cb2 = Callback(), Callback() with _CallbackManager([cb1, cb2]) as cm: cm.begin(context) for call_args in mock_begin.call_args_list: assert call_args == mock.call(context) assert mock_begin.call_count == 2 def test_RunContext(): """Test RunContext.""" context_err = 666 with pytest.raises(TypeError): RunContext(context_err) cb_params = _InternalCallbackParam() cb_params.member1 = 1 cb_params.member2 = "abc" run_context = RunContext(cb_params) run_context.original_args() assert cb_params.member1 == 1 assert cb_params.member2 == "abc" run_context.request_stop() should_stop = run_context.get_stop_requested() assert should_stop def test_Checkpoint_Config(): """Test CheckpointConfig all None or 0.""" with pytest.raises(ValueError): CheckpointConfig(0, 0, 0, 0, True) with pytest.raises(ValueError): CheckpointConfig(0, None, 0, 0, True) def test_step_end_save_graph(): """Test save checkpoint.""" train_config = CheckpointConfig( save_checkpoint_steps=16, save_checkpoint_seconds=0, keep_checkpoint_max=5, keep_checkpoint_per_n_minutes=0) cb_params = _InternalCallbackParam() net = LossNet() input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) input_label = Tensor(np.random.randint(0, 3, [1, 3]).astype(np.float32)) net(input_data, input_label) cb_params.train_network = net cb_params.epoch_num = 10 cb_params.cur_epoch_num = 5 cb_params.cur_step_num = 0 cb_params.batch_num = 32 ckpoint_cb = ModelCheckpoint(prefix="test", directory='./test_files', config=train_config) run_context = RunContext(cb_params) ckpoint_cb.begin(run_context) ckpoint_cb.step_end(run_context) assert os.path.exists('./test_files/test-graph.meta') if os.path.exists('./test_files/test-graph.meta'): os.chmod('./test_files/test-graph.meta', stat.S_IWRITE) os.remove('./test_files/test-graph.meta') ckpoint_cb.step_end(run_context) assert not os.path.exists('./test_files/test-graph.meta')