1 /**
2 * Copyright 2020-2021 Huawei Technologies Co., Ltd
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "frontend/optimizer/irpass/branch_culling.h"
18
19 #include <memory>
20 #include <utility>
21 #include <unordered_map>
22
23 #include "ir/func_graph.h"
24 #include "frontend/operator/ops.h"
25
26 namespace mindspore {
27 namespace opt {
28 namespace irpass {
29 constexpr size_t kCondIndex = 1;
30 constexpr size_t kTrueBranchIndex = 2;
31 constexpr size_t kFalseBranchIndex = 3;
32 namespace internal {
GenerateSwitchNode(const FuncGraphPtr & graph,const AnfNodePtr & cond,const AnfNodePtr & data,int64_t switch_idx)33 AnfNodePtr GenerateSwitchNode(const FuncGraphPtr &graph, const AnfNodePtr &cond, const AnfNodePtr &data,
34 int64_t switch_idx) {
35 auto switch_node = prim::GetPythonOps("geswitch", "mindspore.ops.functional")->cast<PrimitivePtr>();
36 std::vector<AnfNodePtr> switch_nodes{NewValueNode(switch_node), data, cond};
37 auto switch_apply = graph->NewCNode(switch_nodes);
38 std::vector<AnfNodePtr> tuple_getitem_nodes{NewValueNode(prim::kPrimTupleGetItem), switch_apply,
39 NewValueNode(MakeValue(switch_idx))};
40 return graph->NewCNode(tuple_getitem_nodes);
41 }
42
GenerateSwitchTrueNode(const FuncGraphPtr & graph,const AnfNodePtr & cond,const AnfNodePtr & data)43 AnfNodePtr GenerateSwitchTrueNode(const FuncGraphPtr &graph, const AnfNodePtr &cond, const AnfNodePtr &data) {
44 return GenerateSwitchNode(graph, cond, data, 1);
45 }
46
GenerateSwitchFalseNode(const FuncGraphPtr & graph,const AnfNodePtr & cond,const AnfNodePtr & data)47 AnfNodePtr GenerateSwitchFalseNode(const FuncGraphPtr &graph, const AnfNodePtr &cond, const AnfNodePtr &data) {
48 return GenerateSwitchNode(graph, cond, data, 0);
49 }
50
InConvertWhiteList(const AnfNodePtr & node,size_t index)51 bool InConvertWhiteList(const AnfNodePtr &node, size_t index) {
52 // The CNode inputs of the following Primitive with index in std::vector<size_t> should not be guarded by geswitch
53 // node because it is attribute or ge specific reason.
54 // Example : when convert CNode(kPrimReduceSum, x, axis), node of index 2 in CNode->inputs is axis which should not be
55 // converted to switch guarded.
56 #ifndef ENABLE_SECURITY
57 std::vector<std::pair<PrimitivePtr, std::vector<size_t>>> white_list({{prim::kPrimApplyMomentum, {1, 2}},
58 {prim::kPrimMomentum, {2, 3}},
59 {prim::kPrimStateSetItem, {1}},
60 {prim::kPrimTupleGetItem, {2}},
61 {prim::kPrimEnvGetItem, {1}},
62 {prim::kPrimEnvSetItem, {1}},
63 {prim::kPrimReduceSum, {2}},
64 {prim::kPrimReduceMean, {2}},
65 {prim::kPrimReduceAll, {2}},
66 {prim::kPrimCast, {2}},
67 {prim::kPrimTranspose, {2}},
68 {prim::kPrimOneHot, {2}},
69 {prim::kPrimGather, {3}},
70 {prim::kPrimReshape, {2}},
71 {prim::kPrimAssign, {1}},
72 {prim::kPrimAssignAdd, {1}},
73 {prim::kPrimAssignSub, {1}},
74 {prim::kPrimTensorSummary, {1}},
75 {prim::kPrimImageSummary, {1}},
76 {prim::kPrimScalarSummary, {1}},
77 {prim::kPrimApplyRMSProp, {6, 7, 8}},
78 {prim::kPrimCumSum, {2}},
79 {prim::kPrimTile, {2}},
80 {prim::kPrimExpandDims, {2}},
81 {prim::kPrimHistogramSummary, {1}}});
82 #else
83 std::vector<std::pair<PrimitivePtr, std::vector<size_t>>> white_list(
84 {{prim::kPrimApplyMomentum, {1, 2}}, {prim::kPrimMomentum, {2, 3}},
85 {prim::kPrimStateSetItem, {1}}, {prim::kPrimTupleGetItem, {2}},
86 {prim::kPrimEnvGetItem, {1}}, {prim::kPrimEnvSetItem, {1}},
87 {prim::kPrimReduceSum, {2}}, {prim::kPrimReduceMean, {2}},
88 {prim::kPrimReduceAll, {2}}, {prim::kPrimCast, {2}},
89 {prim::kPrimTranspose, {2}}, {prim::kPrimOneHot, {2}},
90 {prim::kPrimGather, {3}}, {prim::kPrimReshape, {2}},
91 {prim::kPrimAssign, {1}}, {prim::kPrimAssignAdd, {1}},
92 {prim::kPrimAssignSub, {1}}, {prim::kPrimApplyRMSProp, {6, 7, 8}},
93 {prim::kPrimCumSum, {2}}, {prim::kPrimTile, {2}},
94 {prim::kPrimExpandDims, {2}}});
95 #endif
96 for (auto &item : white_list) {
97 auto matched = std::any_of(item.second.begin(), item.second.end(), [&item, &node, &index](size_t idx) {
98 return IsPrimitiveCNode(node, item.first) && idx == index;
99 });
100 if (matched) {
101 return true;
102 }
103 }
104
105 std::vector<PrimitivePtr> adapter_convert_ops = {prim::kPrimDepend, prim::kPrimLoad};
106 for (auto &item : adapter_convert_ops) {
107 if (IsPrimitiveCNode(node, item)) {
108 return true;
109 }
110 }
111 return false;
112 }
113
114 using NodeInputReplMap = std::unordered_map<std::pair<AnfNodePtr, size_t>, AnfNodePtr, PairHasher>;
115 // replace the nodes which should be changed
RunSwitchNodeReplace(const FuncGraphManagerPtr & manager,std::vector<std::pair<CNodePtr,CNodePtr>> nodes_changed,std::unordered_map<AnfNodePtr,AnfNodePtr> repl_node,NodeInputReplMap repl_node_inputs,const FuncGraphPtr & func_graph)116 void RunSwitchNodeReplace(const FuncGraphManagerPtr &manager, std::vector<std::pair<CNodePtr, CNodePtr>> nodes_changed,
117 std::unordered_map<AnfNodePtr, AnfNodePtr> repl_node, NodeInputReplMap repl_node_inputs,
118 const FuncGraphPtr &func_graph) {
119 for (auto &node_pair : nodes_changed) {
120 CNodePtr old_node = node_pair.first;
121 CNodePtr new_node = node_pair.second;
122 MS_EXCEPTION_IF_NULL(old_node);
123 MS_EXCEPTION_IF_NULL(new_node);
124 for (size_t i = 0; i < old_node->size(); i++) {
125 auto input = old_node->input(i);
126 if (repl_node.count(input) != 0) {
127 new_node->add_input(repl_node[input]);
128 } else if (repl_node_inputs.count(std::pair<AnfNodePtr, size_t>(old_node, i)) != 0) {
129 new_node->add_input(repl_node_inputs[std::pair<AnfNodePtr, size_t>(old_node, i)]);
130 } else {
131 new_node->add_input(input);
132 }
133 }
134 }
135
136 for (auto &item : repl_node) {
137 if (IsPrimitiveCNode(item.second, prim::kPrimReturn)) {
138 func_graph->set_output(item.second->cast<CNodePtr>()->input(1));
139 } else if (!manager->Replace(item.first, item.second)) {
140 MS_LOG(EXCEPTION) << "TransformGraphDependNode replace node failed original:" << item.first->DebugString(2)
141 << " to new: " << item.second->DebugString(2);
142 }
143 }
144 }
145
146 // trace the node that should add switch and replace them with new nodes in the graph
TransformGraphCondBranchNodes(const FuncGraphPtr & graph,const AnfNodePtr & cond,const std::function<AnfNodePtr (FuncGraphPtr graph,AnfNodePtr cond,AnfNodePtr data)> & generate_func)147 FuncGraphPtr TransformGraphCondBranchNodes(
148 const FuncGraphPtr &graph, const AnfNodePtr &cond,
149 const std::function<AnfNodePtr(FuncGraphPtr graph, AnfNodePtr cond, AnfNodePtr data)> &generate_func) {
150 auto manager = graph->manager();
151 MS_EXCEPTION_IF_NULL(manager);
152
153 // record the node that has been changed
154 std::vector<std::pair<CNodePtr, CNodePtr>> nodes_changed;
155 // record the node to be replaced
156 std::unordered_map<AnfNodePtr, AnfNodePtr> repl_node;
157 // record the node input to be replaced
158 NodeInputReplMap repl_node_inputs;
159 const AnfNodeSet &nodes = graph->nodes();
160 for (auto &node : nodes) {
161 MS_EXCEPTION_IF_NULL(node);
162 if (!node->isa<CNode>()) {
163 continue;
164 }
165 auto inputs = node->cast<CNodePtr>()->inputs();
166 bool should_replace = false;
167 // if the apply input does not belong to graph, insert a switch node
168 for (size_t index = 0; index < inputs.size(); index++) {
169 auto input_node = inputs[index];
170 MS_EXCEPTION_IF_NULL(input_node);
171 if (HasAbstractMonad(input_node)) {
172 // Do not guard with switch for monad inputs.
173 continue;
174 }
175 // for some ops input should not guard it with switch
176 if (InConvertWhiteList(node, index)) {
177 continue;
178 }
179
180 // If the input for node is not the graph belonged, or it is an ValueNode.
181 // Bypass the Primitive node which is inputs[0].
182 if ((index >= 1 && input_node->func_graph() != nullptr && input_node->func_graph() != graph) ||
183 ((index >= 1 && input_node->isa<ValueNode>()))) {
184 input_node = generate_func(graph, cond, input_node);
185 repl_node_inputs[std::pair<AnfNodePtr, size_t>(node, index)] = input_node;
186 should_replace = true;
187 }
188 if (input_node == nullptr) {
189 MS_LOG(EXCEPTION) << "generate switch node failed";
190 }
191 }
192 if (should_replace) {
193 auto new_node = graph->NewCNode();
194 repl_node[node] = new_node;
195 nodes_changed.emplace_back(node->cast<CNodePtr>(), new_node);
196 }
197 }
198 RunSwitchNodeReplace(manager, nodes_changed, repl_node, repl_node_inputs, graph);
199 return graph;
200 }
201
202 struct SharedOp {
203 tensor::TensorPtr const_data;
204 CNodePtr square_ops[2];
205 CNodePtr merge_ops[2];
206 } MergeNetOutput;
207
GetConstData()208 inline tensor::TensorPtr GetConstData() { return MergeNetOutput.const_data; }
SetConstData(const tensor::TensorPtr & const_value)209 inline void SetConstData(const tensor::TensorPtr &const_value) { MergeNetOutput.const_data = const_value; }
210
GetSquareOp(int64_t switch_idx)211 inline CNodePtr GetSquareOp(int64_t switch_idx) { return MergeNetOutput.square_ops[switch_idx]; }
SetSquareOp(int64_t switch_idx,const CNodePtr & op)212 inline void SetSquareOp(int64_t switch_idx, const CNodePtr &op) { MergeNetOutput.square_ops[switch_idx] = op; }
213
GetMergeOp(int64_t switch_idx)214 inline CNodePtr GetMergeOp(int64_t switch_idx) { return MergeNetOutput.merge_ops[switch_idx]; }
SetMergeOp(int64_t switch_idx,const CNodePtr & op)215 inline void SetMergeOp(int64_t switch_idx, const CNodePtr &op) { MergeNetOutput.merge_ops[switch_idx] = op; }
216
ResetSharedOp()217 inline void ResetSharedOp() {
218 SetConstData(nullptr);
219 SetSquareOp(0, nullptr);
220 SetSquareOp(1, nullptr);
221 SetMergeOp(0, nullptr);
222 SetMergeOp(1, nullptr);
223 }
224
ConstData()225 tensor::TensorPtr ConstData() {
226 std::vector<int64_t> shp = {1};
227 tensor::TensorPtr const_data = std::make_shared<tensor::Tensor>(kInt64->type_id(), shp);
228 auto *val = static_cast<int64_t *>(const_data->data_c());
229 *val = 0;
230 return const_data;
231 }
232
SquareOp(const FuncGraphPtr & graph,const AnfNodePtr & cond,int64_t switch_idx,const tensor::TensorPtr & const_data)233 CNodePtr SquareOp(const FuncGraphPtr &graph, const AnfNodePtr &cond, int64_t switch_idx,
234 const tensor::TensorPtr &const_data) {
235 auto PrimSquare = prim::GetPythonOps("square", "mindspore.ops.functional")->cast<PrimitivePtr>();
236 // for the depended node , add two const data to merge the flow ,one for depended node with same switch,
237 // the other use the opposite
238 auto ctrl_data = NewValueNode(const_data);
239 auto ctrl_node = GenerateSwitchNode(graph, cond, ctrl_data, switch_idx);
240
241 std::vector<AnfNodePtr> square_nodes{NewValueNode(PrimSquare), ctrl_node};
242 auto square_op = graph->NewCNode(square_nodes);
243
244 return square_op;
245 }
246
MergeNode(const FuncGraphPtr & graph,const AnfNodePtr & cond,int64_t switch_idx,const tensor::TensorPtr & const_data,const CNodePtr & square_op)247 CNodePtr MergeNode(const FuncGraphPtr &graph, const AnfNodePtr &cond, int64_t switch_idx,
248 const tensor::TensorPtr &const_data, const CNodePtr &square_op) {
249 // for the depended node , add two const data to merge the flow ,one for depended node with same switch,
250 // the other use the opposite
251 auto oppsite_ctrl_data = NewValueNode(const_data);
252 auto opposite_ctrl_node = GenerateSwitchNode(graph, cond, oppsite_ctrl_data, 1 - switch_idx);
253
254 std::vector<AnfNodePtr> merge_nodes;
255 auto PrimMerge = prim::GetPythonOps("merge", "mindspore.ops.functional")->cast<PrimitivePtr>();
256 merge_nodes.push_back(NewValueNode(PrimMerge));
257 std::vector<AnfNodePtr> make_tuple_nodes{NewValueNode(prim::kPrimMakeTuple), square_op, opposite_ctrl_node};
258 merge_nodes.push_back(graph->NewCNode(make_tuple_nodes));
259 auto merge_op = graph->NewCNode(merge_nodes);
260
261 return merge_op;
262 }
263
264 // merge(square_op(switch(ctrl_data)), switch(opposite_ctrl_data))
GenerateSwitchDependNode(const FuncGraphPtr & graph,const AnfNodePtr & cond,const AnfNodePtr & output_node,int64_t switch_idx)265 AnfNodePtr GenerateSwitchDependNode(const FuncGraphPtr &graph, const AnfNodePtr &cond, const AnfNodePtr &output_node,
266 int64_t switch_idx) {
267 tensor::TensorPtr const_data = GetConstData();
268 if (const_data == nullptr) {
269 const_data = ConstData();
270 SetConstData(const_data);
271 }
272
273 CNodePtr square_op = GetSquareOp(switch_idx);
274 if (square_op == nullptr) {
275 square_op = SquareOp(graph, cond, switch_idx, const_data);
276 SetSquareOp(switch_idx, square_op);
277 }
278
279 auto manager = graph->manager();
280 MS_EXCEPTION_IF_NULL(manager);
281 AnfNodePtrList inputs = {NewValueNode(prim::kPrimDepend), square_op, output_node};
282 auto depend_cnode = graph->NewCNode(inputs);
283 if (!manager->Replace(square_op, depend_cnode)) {
284 MS_LOG(EXCEPTION) << square_op->DebugString() << ", replace node failed.";
285 }
286
287 CNodePtr merge_op = GetMergeOp(switch_idx);
288 if (merge_op == nullptr) {
289 merge_op = MergeNode(graph, cond, switch_idx, const_data, square_op);
290 SetMergeOp(switch_idx, merge_op);
291 }
292
293 return merge_op;
294 }
295
296 // generate switch nodes for true graph node inputs
GenerateSwitchDependTrueNode(const FuncGraphPtr & graph,const AnfNodePtr & cond,const AnfNodePtr & data)297 AnfNodePtr GenerateSwitchDependTrueNode(const FuncGraphPtr &graph, const AnfNodePtr &cond, const AnfNodePtr &data) {
298 // for switch op ,the output is a tuple ,0-th is false_branch, 1-th is true branch
299 return GenerateSwitchDependNode(graph, cond, data, 1);
300 }
301
302 // generate switch nodes for false graph node inputs
GenerateSwitchDependFalseNode(const FuncGraphPtr & graph,const AnfNodePtr & cond,const AnfNodePtr & data)303 AnfNodePtr GenerateSwitchDependFalseNode(const FuncGraphPtr &graph, const AnfNodePtr &cond, const AnfNodePtr &data) {
304 // for switch op ,the output is a tuple ,0-th is false_branch, 1-th is true branch
305 return GenerateSwitchDependNode(graph, cond, data, 0);
306 }
307
308 // to judge if the node used in Depend is a net output node
IsNetOutputNode(const FuncGraphManagerPtr & manager,const AnfNodePtr & node)309 bool IsNetOutputNode(const FuncGraphManagerPtr &manager, const AnfNodePtr &node) {
310 auto uses = manager->node_users()[node];
311 bool is_output_node = true;
312 for (auto &item : uses) {
313 if (IsPrimitiveCNode(item.first, prim::kPrimDepend)) {
314 continue;
315 }
316 is_output_node = false;
317 break;
318 }
319 return is_output_node;
320 }
321
322 // generate node for Depended MakeTuple
GenerateReplNodeForDependMakeTuple(const AnfNodePtr & depended_node,const FuncGraphPtr & graph,const AnfNodePtr & cond,const std::shared_ptr<std::unordered_map<AnfNodePtr,AnfNodePtr>> & repl_node,const std::function<AnfNodePtr (FuncGraphPtr graph,AnfNodePtr cond,AnfNodePtr data)> & generate_func)323 void GenerateReplNodeForDependMakeTuple(
324 const AnfNodePtr &depended_node, const FuncGraphPtr &graph, const AnfNodePtr &cond,
325 const std::shared_ptr<std::unordered_map<AnfNodePtr, AnfNodePtr>> &repl_node,
326 const std::function<AnfNodePtr(FuncGraphPtr graph, AnfNodePtr cond, AnfNodePtr data)> &generate_func) {
327 MS_EXCEPTION_IF_NULL(graph->manager());
328
329 auto make_tuple_inputs = depended_node->cast<CNodePtr>()->inputs();
330 const size_t make_tuple_begin_idx = 1;
331 std::vector<AnfNodePtr> new_make_tuple_nodes;
332 bool replace_make_tuple = false;
333 new_make_tuple_nodes.push_back(NewValueNode(prim::kPrimMakeTuple));
334 for (size_t idx = make_tuple_begin_idx; idx < make_tuple_inputs.size(); idx++) {
335 auto depended_tuple_input_node = make_tuple_inputs[idx];
336 if (IsPrimitiveCNode(depended_tuple_input_node->cast<CNodePtr>(), prim::kPrimDepend)) {
337 new_make_tuple_nodes.push_back(depended_tuple_input_node);
338 continue;
339 }
340
341 if (graph->manager()->node_users()[depended_tuple_input_node].size() == 1) {
342 auto gen_node = generate_func(graph, cond, depended_tuple_input_node);
343 new_make_tuple_nodes.push_back(gen_node);
344 replace_make_tuple = true;
345 continue;
346 }
347
348 MS_LOG(WARNING) << "depended node being used by others, ";
349 }
350 if (replace_make_tuple) {
351 auto make_tuple_op = graph->NewCNode(new_make_tuple_nodes);
352 (*repl_node)[depended_node] = make_tuple_op;
353 }
354 }
355
356 // generate a replace depend node for a single network output node
GenerateRepDepend(const CNodePtr & node,const FuncGraphPtr & graph,const AnfNodePtr & cond,const std::shared_ptr<std::unordered_map<AnfNodePtr,AnfNodePtr>> & repl_node,const std::function<AnfNodePtr (FuncGraphPtr graph,AnfNodePtr cond,AnfNodePtr data)> & generate_func)357 void GenerateRepDepend(
358 const CNodePtr &node, const FuncGraphPtr &graph, const AnfNodePtr &cond,
359 const std::shared_ptr<std::unordered_map<AnfNodePtr, AnfNodePtr>> &repl_node,
360 const std::function<AnfNodePtr(FuncGraphPtr graph, AnfNodePtr cond, AnfNodePtr data)> &generate_func) {
361 MS_EXCEPTION_IF_NULL(graph->manager());
362
363 auto inputs = node->inputs();
364 if (inputs.size() != kDependInputSize) {
365 MS_LOG(EXCEPTION) << "Inputs should be [depend, actual_value, depended_node].";
366 }
367
368 std::vector<AnfNodePtr> new_depened_inputs;
369 // Inputs should be [depend, actual_value, depended_node]
370 auto depended_node = inputs[kDependAttachNodeIndex];
371 new_depened_inputs.push_back(inputs[0]);
372 new_depened_inputs.push_back(inputs[1]);
373 // depended node should be make_tuple or a single depended node
374 if (IsPrimitiveCNode(depended_node, prim::kPrimMakeTuple)) {
375 GenerateReplNodeForDependMakeTuple(depended_node, graph, cond, repl_node, generate_func);
376 } else {
377 // Check if there is only single user for depend_node.
378 if (graph->manager()->node_users()[depended_node].size() == 1) {
379 auto gen_node = generate_func(graph, cond, depended_node);
380 (*repl_node)[depended_node] = gen_node;
381 } else {
382 MS_LOG(WARNING) << "depended node being used by others";
383 }
384 }
385 }
386
387 // generate depend node for netoutput node, to resolve the stream synchronize problem of ge
388 // traverse all nodes of depend node, find the graph output node , generaete a merge node of (square, const)
TransformGraphDependNode(const FuncGraphPtr & graph,const AnfNodePtr & cond,const std::function<AnfNodePtr (FuncGraphPtr graph,AnfNodePtr cond,AnfNodePtr data)> & gen_depend_func)389 FuncGraphPtr TransformGraphDependNode(
390 const FuncGraphPtr &graph, const AnfNodePtr &cond,
391 const std::function<AnfNodePtr(FuncGraphPtr graph, AnfNodePtr cond, AnfNodePtr data)> &gen_depend_func) {
392 auto manager = graph->manager();
393 MS_EXCEPTION_IF_NULL(manager);
394
395 ResetSharedOp();
396 std::shared_ptr<std::unordered_map<AnfNodePtr, AnfNodePtr>> repl_node =
397 std::make_shared<std::unordered_map<AnfNodePtr, AnfNodePtr>>(); // record the node to be replaced
398 const AnfNodeSet &nodes = graph->nodes();
399 for (auto &node : nodes) {
400 MS_EXCEPTION_IF_NULL(node);
401 if (!node->isa<CNode>()) {
402 continue;
403 }
404 if (IsPrimitiveCNode(node, prim::kPrimDepend)) {
405 auto cnode = node->cast<CNodePtr>();
406 if (cnode->size() != kDependInputSize) {
407 MS_LOG(EXCEPTION) << "Dependnode input size != " << kDependInputSize;
408 }
409 auto depended_node = cnode->input(kDependAttachNodeIndex);
410 MS_EXCEPTION_IF_NULL(depended_node);
411 if (!depended_node->isa<CNode>()) {
412 continue;
413 }
414 if (IsPrimitiveCNode(depended_node, prim::kPrimDepend)) {
415 continue;
416 }
417 GenerateRepDepend(cnode, graph, cond, repl_node, gen_depend_func);
418 }
419 }
420 ResetSharedOp();
421
422 for (auto &item : *repl_node) {
423 if (!manager->Replace(item.first, item.second)) {
424 MS_LOG(EXCEPTION) << "TransformGraphDependNode replace node failed";
425 }
426 }
427
428 return graph;
429 }
430
TransformGraphCondTrueBranchNodes(const FuncGraphPtr & graph,const AnfNodePtr & cond)431 FuncGraphPtr TransformGraphCondTrueBranchNodes(const FuncGraphPtr &graph, const AnfNodePtr &cond) {
432 (void)TransformGraphCondBranchNodes(graph, cond, GenerateSwitchTrueNode);
433 return TransformGraphDependNode(graph, cond, GenerateSwitchDependTrueNode);
434 }
435
TransformGraphCondFalseBranchNodes(const FuncGraphPtr & graph,const AnfNodePtr & cond)436 FuncGraphPtr TransformGraphCondFalseBranchNodes(const FuncGraphPtr &graph, const AnfNodePtr &cond) {
437 (void)TransformGraphCondBranchNodes(graph, cond, GenerateSwitchFalseNode);
438 return TransformGraphDependNode(graph, cond, GenerateSwitchDependFalseNode);
439 }
440
441 // judge if the true and false graph output is compatible(they shall have same tuple size)
GraphOutputCompatible(const AbstractBasePtr & true_branch_abs,const AbstractBasePtr & false_branch_abs)442 bool GraphOutputCompatible(const AbstractBasePtr &true_branch_abs, const AbstractBasePtr &false_branch_abs) {
443 MS_EXCEPTION_IF_NULL(true_branch_abs);
444 MS_EXCEPTION_IF_NULL(false_branch_abs);
445
446 if (true_branch_abs->isa<abstract::AbstractTuple>() && false_branch_abs->isa<abstract::AbstractTuple>()) {
447 abstract::AbstractTuplePtr true_branch_tuple = true_branch_abs->cast<abstract::AbstractTuplePtr>();
448 abstract::AbstractTuplePtr false_branch_tuple = false_branch_abs->cast<abstract::AbstractTuplePtr>();
449 if (true_branch_tuple->elements().size() != false_branch_tuple->elements().size()) {
450 MS_LOG(ERROR) << "true branch size:" << true_branch_tuple->elements().size()
451 << ", not equal to false branch size:" << false_branch_tuple->elements().size() << " ";
452 return false;
453 }
454 bool all_compatible = true;
455 for (size_t i = 0; i < true_branch_tuple->elements().size(); i++) {
456 all_compatible =
457 all_compatible && GraphOutputCompatible(true_branch_tuple->elements()[i], false_branch_tuple->elements()[i]);
458 }
459 return all_compatible;
460 }
461 TypePtr true_branch_type = true_branch_abs->BuildType();
462 TypePtr false_branch_type = false_branch_abs->BuildType();
463 MS_LOG(DEBUG) << "branch output Type equal?" << (*true_branch_type == *false_branch_type)
464 << " true:" << true_branch_type->ToString() << " false:" << false_branch_type->ToString();
465 return (*true_branch_type == *false_branch_type);
466 }
467
468 // block_nodes[0]: condition node
469 // block_nodes[1]: true branch node
470 // block_nodes[2]: false branch node
471 // branch_output_abs[0]: true branch abstract
472 // branch_output_abs[1]: false branch abstract
GenerateMergeNodes(const std::vector<AnfNodePtr> & block_nodes,const std::vector<AbstractBasePtr> & branch_output_abs,const FuncGraphPtr & switch_graph)473 AnfNodePtr GenerateMergeNodes(const std::vector<AnfNodePtr> &block_nodes,
474 const std::vector<AbstractBasePtr> &branch_output_abs, const FuncGraphPtr &switch_graph) {
475 MS_EXCEPTION_IF_NULL(branch_output_abs[0]);
476 MS_EXCEPTION_IF_NULL(branch_output_abs[1]);
477 MS_EXCEPTION_IF_NULL(block_nodes[0]);
478 MS_EXCEPTION_IF_NULL(switch_graph);
479 auto PrimMerge = prim::GetPythonOps("merge", "mindspore.ops.functional")->cast<PrimitivePtr>();
480 MS_EXCEPTION_IF_NULL(PrimMerge);
481
482 if (!branch_output_abs[0]->isa<abstract::AbstractTuple>()) {
483 std::vector<AnfNodePtr> merge_nodes;
484 merge_nodes.push_back(NewValueNode(PrimMerge));
485 std::vector<AnfNodePtr> make_tuple_nodes{NewValueNode(prim::kPrimMakeTuple), block_nodes[1], block_nodes[2]};
486 merge_nodes.push_back(switch_graph->NewCNode(make_tuple_nodes));
487 std::vector<AnfNodePtr> tuple_getitem_nodes{NewValueNode(prim::kPrimTupleGetItem),
488 switch_graph->NewCNode(merge_nodes),
489 NewValueNode(MakeValue(static_cast<int64_t>(0)))};
490 return switch_graph->NewCNode(tuple_getitem_nodes);
491 } else {
492 auto true_branch_tuple = branch_output_abs[0]->cast<abstract::AbstractTuplePtr>();
493 auto false_branch_tuple = branch_output_abs[1]->cast<abstract::AbstractTuplePtr>();
494
495 std::vector<AnfNodePtr> make_tuple_nodes;
496 make_tuple_nodes.push_back(NewValueNode(prim::kPrimMakeTuple));
497 for (size_t i = 0; i < true_branch_tuple->elements().size(); i++) {
498 std::vector<AnfNodePtr> true_getitem_nodes{NewValueNode(prim::kPrimTupleGetItem), block_nodes[1],
499 NewValueNode(MakeValue(SizeToLong(i)))};
500 auto true_node = switch_graph->NewCNode(true_getitem_nodes);
501 std::vector<AnfNodePtr> false_getitem_nodes{NewValueNode(prim::kPrimTupleGetItem), block_nodes[2],
502 NewValueNode(MakeValue(SizeToLong(i)))};
503 auto false_node = switch_graph->NewCNode(false_getitem_nodes);
504
505 auto merge_node = GenerateMergeNodes(
506 {
507 block_nodes[0],
508 true_node,
509 false_node,
510 },
511 {true_branch_tuple->elements()[i], false_branch_tuple->elements()[i]}, switch_graph);
512 make_tuple_nodes.push_back(merge_node);
513 }
514 return switch_graph->NewCNode(make_tuple_nodes);
515 }
516 }
517
TransformMergeBranches(const std::vector<AnfNodePtr> & block_nodes,const std::vector<AbstractBasePtr> & branch_output_abs,const FuncGraphPtr & func_graph)518 AnfNodePtr TransformMergeBranches(const std::vector<AnfNodePtr> &block_nodes,
519 const std::vector<AbstractBasePtr> &branch_output_abs,
520 const FuncGraphPtr &func_graph) {
521 if (!GraphOutputCompatible(branch_output_abs[0], branch_output_abs[1])) {
522 MS_LOG(EXCEPTION) << "Switch output branch not compatible, true:" << branch_output_abs[0]->ToString()
523 << ", false:" << branch_output_abs[1]->ToString();
524 }
525 return GenerateMergeNodes(block_nodes, branch_output_abs, func_graph);
526 }
527 } // namespace internal
528
CheckSwitchBranch(const AnfNodePtr & node)529 bool ConvertSwitchReplacement::CheckSwitchBranch(const AnfNodePtr &node) {
530 if (!IsValueNode<FuncGraph>(node)) {
531 return false;
532 }
533 // If graph contains FuncGraph, then ignore this node.
534 auto graph = GetValueNode<FuncGraphPtr>(node);
535 for (auto &item : graph->value_nodes()) {
536 auto value_node = item.first;
537 if (IsValueNode<FuncGraph>(value_node)) {
538 return false;
539 }
540 }
541 return true;
542 }
543
CheckSwitchWrapNode(const AnfNodePtr & node)544 bool ConvertSwitchReplacement::CheckSwitchWrapNode(const AnfNodePtr &node) {
545 // {{prim::kPrimSwitch, X, G1, G2}, Xs}.
546 if (node->isa<CNode>()) {
547 auto inp0 = node->cast<CNodePtr>()->input(0);
548 if (IsPrimitiveCNode(inp0, prim::kPrimSwitch)) {
549 auto switch_node = inp0->cast<CNodePtr>();
550 // for switch replace method, only graphs without graph inside can be replaced
551 if (CheckSwitchBranch(switch_node->input(kTrueBranchIndex)) &&
552 CheckSwitchBranch(switch_node->input(kFalseBranchIndex))) {
553 return true;
554 }
555 }
556 }
557 return false;
558 }
559
TransformSwitchBranchReplace(const AnfNodePtr & node)560 void ConvertSwitchReplacement::TransformSwitchBranchReplace(const AnfNodePtr &node) {
561 auto cnode = node->cast<CNodePtr>();
562 auto switch_cnode = cnode->input(0)->cast<CNodePtr>();
563 auto cond = switch_cnode->input(kCondIndex);
564 auto true_br = switch_cnode->input(kTrueBranchIndex);
565 auto false_br = switch_cnode->input(kFalseBranchIndex);
566
567 auto g1 = GetValueNode<FuncGraphPtr>(true_br);
568 auto g2 = GetValueNode<FuncGraphPtr>(false_br);
569 auto true_output = g1->output()->abstract();
570 auto false_output = g2->output()->abstract();
571 auto trans_g1 = internal::TransformGraphCondTrueBranchNodes(g1, cond);
572 auto trans_g2 = internal::TransformGraphCondFalseBranchNodes(g2, cond);
573
574 std::vector<AnfNodePtr> params;
575 if (cnode && cnode->size() > 1) {
576 // There are arguments for the call of switch result,
577 // usually these are monad states added by auto-monad.
578 for (size_t i = 1; i < cnode->size(); ++i) {
579 params.push_back(cnode->inputs().at(i));
580 }
581 }
582 auto fg = node->func_graph();
583 auto cloned_g1 = InlineClone(trans_g1, fg, params);
584 auto cloned_g2 = InlineClone(trans_g2, fg, params);
585 auto new_node = internal::TransformMergeBranches({cond, cloned_g1, cloned_g2}, {true_output, false_output}, fg);
586 (void)fg->manager()->Replace(node, new_node);
587 }
588 } // namespace irpass
589 } // namespace opt
590 } // namespace mindspore
591