• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "minddata/dataset/kernels/image/sharpness_op.h"
18 #include "minddata/dataset/kernels/image/image_utils.h"
19 #include "minddata/dataset/core/cv_tensor.h"
20 #include "minddata/dataset/util/status.h"
21 
22 namespace mindspore {
23 namespace dataset {
24 
25 const float SharpnessOp::kDefAlpha = 1.0;
26 
Compute(const std::shared_ptr<Tensor> & input,std::shared_ptr<Tensor> * output)27 Status SharpnessOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
28   IO_CHECK(input, output);
29 
30   try {
31     std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(input);
32     cv::Mat input_img = input_cv->mat();
33     if (!input_cv->mat().data) {
34       RETURN_STATUS_UNEXPECTED("[Internal ERROR] Sharpness: load image failed.");
35     }
36 
37     if (input_cv->Rank() == 1 || input_cv->mat().dims > 2) {
38       RETURN_STATUS_UNEXPECTED("Sharpness: shape of input is not <H,W,C> or <H,W>, but got rank: " +
39                                std::to_string(input_cv->Rank()));
40     }
41 
42     /// creating a smoothing filter. 1, 1, 1,
43     ///                              1, 5, 1,
44     ///                              1, 1, 1
45 
46     const float filterMid = 5.0;
47     const float filterSum = 13.0;
48     cv::Mat filter = cv::Mat(3, 3, CV_32F, cv::Scalar::all(1.0 / filterSum));
49     filter.at<float>(1, 1) = filterMid / filterSum;
50 
51     /// applying filter on channels
52     cv::Mat result = cv::Mat();
53     cv::filter2D(input_img, result, -1, filter);
54 
55     int height = input_cv->shape()[0];
56     int width = input_cv->shape()[1];
57 
58     /// restoring the edges
59     input_img.row(0).copyTo(result.row(0));
60     input_img.row(height - 1).copyTo(result.row(height - 1));
61     input_img.col(0).copyTo(result.col(0));
62     input_img.col(width - 1).copyTo(result.col(width - 1));
63 
64     /// blend based on alpha : (alpha_ *input_img) +  ((1.0-alpha_) * result);
65     cv::addWeighted(input_img, alpha_, result, 1.0 - alpha_, 0.0, result);
66 
67     std::shared_ptr<CVTensor> output_cv;
68     RETURN_IF_NOT_OK(CVTensor::CreateFromMat(result, input_cv->Rank(), &output_cv));
69     RETURN_UNEXPECTED_IF_NULL(output_cv);
70 
71     *output = std::static_pointer_cast<Tensor>(output_cv);
72   }
73 
74   catch (const cv::Exception &e) {
75     RETURN_STATUS_UNEXPECTED("Sharpness: " + std::string(e.what()));
76   }
77   return Status::OK();
78 }
79 }  // namespace dataset
80 }  // namespace mindspore
81