• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file ast_to_hir.c
26  * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27  *
28  * During the conversion to HIR, the majority of the symantic checking is
29  * preformed on the program.  This includes:
30  *
31  *    * Symbol table management
32  *    * Type checking
33  *    * Function binding
34  *
35  * The majority of this work could be done during parsing, and the parser could
36  * probably generate HIR directly.  However, this results in frequent changes
37  * to the parser code.  Since we do not assume that every system this complier
38  * is built on will have Flex and Bison installed, we have to store the code
39  * generated by these tools in our version control system.  In other parts of
40  * the system we've seen problems where a parser was changed but the generated
41  * code was not committed, merge conflicts where created because two developers
42  * had slightly different versions of Bison installed, etc.
43  *
44  * I have also noticed that running Bison generated parsers in GDB is very
45  * irritating.  When you get a segfault on '$$ = $1->foo', you can't very
46  * well 'print $1' in GDB.
47  *
48  * As a result, my preference is to put as little C code as possible in the
49  * parser (and lexer) sources.
50  */
51 
52 #include "glsl_symbol_table.h"
53 #include "glsl_parser_extras.h"
54 #include "ast.h"
55 #include "compiler/glsl_types.h"
56 #include "util/hash_table.h"
57 #include "main/mtypes.h"
58 #include "main/macros.h"
59 #include "main/shaderobj.h"
60 #include "ir.h"
61 #include "ir_builder.h"
62 #include "builtin_functions.h"
63 
64 using namespace ir_builder;
65 
66 static void
67 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
68                                exec_list *instructions);
69 static void
70 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state);
71 
72 static void
73 remove_per_vertex_blocks(exec_list *instructions,
74                          _mesa_glsl_parse_state *state, ir_variable_mode mode);
75 
76 /**
77  * Visitor class that finds the first instance of any write-only variable that
78  * is ever read, if any
79  */
80 class read_from_write_only_variable_visitor : public ir_hierarchical_visitor
81 {
82 public:
read_from_write_only_variable_visitor()83    read_from_write_only_variable_visitor() : found(NULL)
84    {
85    }
86 
visit(ir_dereference_variable * ir)87    virtual ir_visitor_status visit(ir_dereference_variable *ir)
88    {
89       if (this->in_assignee)
90          return visit_continue;
91 
92       ir_variable *var = ir->variable_referenced();
93       /* We can have memory_write_only set on both images and buffer variables,
94        * but in the former there is a distinction between reads from
95        * the variable itself (write_only) and from the memory they point to
96        * (memory_write_only), while in the case of buffer variables there is
97        * no such distinction, that is why this check here is limited to
98        * buffer variables alone.
99        */
100       if (!var || var->data.mode != ir_var_shader_storage)
101          return visit_continue;
102 
103       if (var->data.memory_write_only) {
104          found = var;
105          return visit_stop;
106       }
107 
108       return visit_continue;
109    }
110 
get_variable()111    ir_variable *get_variable() {
112       return found;
113    }
114 
visit_enter(ir_expression * ir)115    virtual ir_visitor_status visit_enter(ir_expression *ir)
116    {
117       /* .length() doesn't actually read anything */
118       if (ir->operation == ir_unop_ssbo_unsized_array_length)
119          return visit_continue_with_parent;
120 
121       return visit_continue;
122    }
123 
124 private:
125    ir_variable *found;
126 };
127 
128 void
_mesa_ast_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)129 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
130 {
131    _mesa_glsl_initialize_variables(instructions, state);
132 
133    state->symbols->separate_function_namespace = state->language_version == 110;
134 
135    state->current_function = NULL;
136 
137    state->toplevel_ir = instructions;
138 
139    state->gs_input_prim_type_specified = false;
140    state->tcs_output_vertices_specified = false;
141    state->cs_input_local_size_specified = false;
142 
143    /* Section 4.2 of the GLSL 1.20 specification states:
144     * "The built-in functions are scoped in a scope outside the global scope
145     *  users declare global variables in.  That is, a shader's global scope,
146     *  available for user-defined functions and global variables, is nested
147     *  inside the scope containing the built-in functions."
148     *
149     * Since built-in functions like ftransform() access built-in variables,
150     * it follows that those must be in the outer scope as well.
151     *
152     * We push scope here to create this nesting effect...but don't pop.
153     * This way, a shader's globals are still in the symbol table for use
154     * by the linker.
155     */
156    state->symbols->push_scope();
157 
158    foreach_list_typed (ast_node, ast, link, & state->translation_unit)
159       ast->hir(instructions, state);
160 
161    verify_subroutine_associated_funcs(state);
162    detect_recursion_unlinked(state, instructions);
163    detect_conflicting_assignments(state, instructions);
164 
165    state->toplevel_ir = NULL;
166 
167    /* Move all of the variable declarations to the front of the IR list, and
168     * reverse the order.  This has the (intended!) side effect that vertex
169     * shader inputs and fragment shader outputs will appear in the IR in the
170     * same order that they appeared in the shader code.  This results in the
171     * locations being assigned in the declared order.  Many (arguably buggy)
172     * applications depend on this behavior, and it matches what nearly all
173     * other drivers do.
174     */
175    foreach_in_list_safe(ir_instruction, node, instructions) {
176       ir_variable *const var = node->as_variable();
177 
178       if (var == NULL)
179          continue;
180 
181       var->remove();
182       instructions->push_head(var);
183    }
184 
185    /* Figure out if gl_FragCoord is actually used in fragment shader */
186    ir_variable *const var = state->symbols->get_variable("gl_FragCoord");
187    if (var != NULL)
188       state->fs_uses_gl_fragcoord = var->data.used;
189 
190    /* From section 7.1 (Built-In Language Variables) of the GLSL 4.10 spec:
191     *
192     *     If multiple shaders using members of a built-in block belonging to
193     *     the same interface are linked together in the same program, they
194     *     must all redeclare the built-in block in the same way, as described
195     *     in section 4.3.7 "Interface Blocks" for interface block matching, or
196     *     a link error will result.
197     *
198     * The phrase "using members of a built-in block" implies that if two
199     * shaders are linked together and one of them *does not use* any members
200     * of the built-in block, then that shader does not need to have a matching
201     * redeclaration of the built-in block.
202     *
203     * This appears to be a clarification to the behaviour established for
204     * gl_PerVertex by GLSL 1.50, therefore implement it regardless of GLSL
205     * version.
206     *
207     * The definition of "interface" in section 4.3.7 that applies here is as
208     * follows:
209     *
210     *     The boundary between adjacent programmable pipeline stages: This
211     *     spans all the outputs in all compilation units of the first stage
212     *     and all the inputs in all compilation units of the second stage.
213     *
214     * Therefore this rule applies to both inter- and intra-stage linking.
215     *
216     * The easiest way to implement this is to check whether the shader uses
217     * gl_PerVertex right after ast-to-ir conversion, and if it doesn't, simply
218     * remove all the relevant variable declaration from the IR, so that the
219     * linker won't see them and complain about mismatches.
220     */
221    remove_per_vertex_blocks(instructions, state, ir_var_shader_in);
222    remove_per_vertex_blocks(instructions, state, ir_var_shader_out);
223 
224    /* Check that we don't have reads from write-only variables */
225    read_from_write_only_variable_visitor v;
226    v.run(instructions);
227    ir_variable *error_var = v.get_variable();
228    if (error_var) {
229       /* It would be nice to have proper location information, but for that
230        * we would need to check this as we process each kind of AST node
231        */
232       YYLTYPE loc;
233       memset(&loc, 0, sizeof(loc));
234       _mesa_glsl_error(&loc, state, "Read from write-only variable `%s'",
235                        error_var->name);
236    }
237 }
238 
239 
240 static ir_expression_operation
get_implicit_conversion_operation(const glsl_type * to,const glsl_type * from,struct _mesa_glsl_parse_state * state)241 get_implicit_conversion_operation(const glsl_type *to, const glsl_type *from,
242                                   struct _mesa_glsl_parse_state *state)
243 {
244    switch (to->base_type) {
245    case GLSL_TYPE_FLOAT:
246       switch (from->base_type) {
247       case GLSL_TYPE_INT: return ir_unop_i2f;
248       case GLSL_TYPE_UINT: return ir_unop_u2f;
249       default: return (ir_expression_operation)0;
250       }
251 
252    case GLSL_TYPE_UINT:
253       if (!state->has_implicit_int_to_uint_conversion())
254          return (ir_expression_operation)0;
255       switch (from->base_type) {
256          case GLSL_TYPE_INT: return ir_unop_i2u;
257          default: return (ir_expression_operation)0;
258       }
259 
260    case GLSL_TYPE_DOUBLE:
261       if (!state->has_double())
262          return (ir_expression_operation)0;
263       switch (from->base_type) {
264       case GLSL_TYPE_INT: return ir_unop_i2d;
265       case GLSL_TYPE_UINT: return ir_unop_u2d;
266       case GLSL_TYPE_FLOAT: return ir_unop_f2d;
267       case GLSL_TYPE_INT64: return ir_unop_i642d;
268       case GLSL_TYPE_UINT64: return ir_unop_u642d;
269       default: return (ir_expression_operation)0;
270       }
271 
272    case GLSL_TYPE_UINT64:
273       if (!state->has_int64())
274          return (ir_expression_operation)0;
275       switch (from->base_type) {
276       case GLSL_TYPE_INT: return ir_unop_i2u64;
277       case GLSL_TYPE_UINT: return ir_unop_u2u64;
278       case GLSL_TYPE_INT64: return ir_unop_i642u64;
279       default: return (ir_expression_operation)0;
280       }
281 
282    case GLSL_TYPE_INT64:
283       if (!state->has_int64())
284          return (ir_expression_operation)0;
285       switch (from->base_type) {
286       case GLSL_TYPE_INT: return ir_unop_i2i64;
287       default: return (ir_expression_operation)0;
288       }
289 
290    default: return (ir_expression_operation)0;
291    }
292 }
293 
294 
295 /**
296  * If a conversion is available, convert one operand to a different type
297  *
298  * The \c from \c ir_rvalue is converted "in place".
299  *
300  * \param to     Type that the operand it to be converted to
301  * \param from   Operand that is being converted
302  * \param state  GLSL compiler state
303  *
304  * \return
305  * If a conversion is possible (or unnecessary), \c true is returned.
306  * Otherwise \c false is returned.
307  */
308 static bool
apply_implicit_conversion(const glsl_type * to,ir_rvalue * & from,struct _mesa_glsl_parse_state * state)309 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
310                           struct _mesa_glsl_parse_state *state)
311 {
312    void *ctx = state;
313    if (to->base_type == from->type->base_type)
314       return true;
315 
316    /* Prior to GLSL 1.20, there are no implicit conversions */
317    if (!state->has_implicit_conversions())
318       return false;
319 
320    /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
321     *
322     *    "There are no implicit array or structure conversions. For
323     *    example, an array of int cannot be implicitly converted to an
324     *    array of float.
325     */
326    if (!to->is_numeric() || !from->type->is_numeric())
327       return false;
328 
329    /* We don't actually want the specific type `to`, we want a type
330     * with the same base type as `to`, but the same vector width as
331     * `from`.
332     */
333    to = glsl_type::get_instance(to->base_type, from->type->vector_elements,
334                                 from->type->matrix_columns);
335 
336    ir_expression_operation op = get_implicit_conversion_operation(to, from->type, state);
337    if (op) {
338       from = new(ctx) ir_expression(op, to, from, NULL);
339       return true;
340    } else {
341       return false;
342    }
343 }
344 
345 
346 static const struct glsl_type *
arithmetic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,bool multiply,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)347 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
348                        bool multiply,
349                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
350 {
351    const glsl_type *type_a = value_a->type;
352    const glsl_type *type_b = value_b->type;
353 
354    /* From GLSL 1.50 spec, page 56:
355     *
356     *    "The arithmetic binary operators add (+), subtract (-),
357     *    multiply (*), and divide (/) operate on integer and
358     *    floating-point scalars, vectors, and matrices."
359     */
360    if (!type_a->is_numeric() || !type_b->is_numeric()) {
361       _mesa_glsl_error(loc, state,
362                        "operands to arithmetic operators must be numeric");
363       return glsl_type::error_type;
364    }
365 
366 
367    /*    "If one operand is floating-point based and the other is
368     *    not, then the conversions from Section 4.1.10 "Implicit
369     *    Conversions" are applied to the non-floating-point-based operand."
370     */
371    if (!apply_implicit_conversion(type_a, value_b, state)
372        && !apply_implicit_conversion(type_b, value_a, state)) {
373       _mesa_glsl_error(loc, state,
374                        "could not implicitly convert operands to "
375                        "arithmetic operator");
376       return glsl_type::error_type;
377    }
378    type_a = value_a->type;
379    type_b = value_b->type;
380 
381    /*    "If the operands are integer types, they must both be signed or
382     *    both be unsigned."
383     *
384     * From this rule and the preceeding conversion it can be inferred that
385     * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
386     * The is_numeric check above already filtered out the case where either
387     * type is not one of these, so now the base types need only be tested for
388     * equality.
389     */
390    if (type_a->base_type != type_b->base_type) {
391       _mesa_glsl_error(loc, state,
392                        "base type mismatch for arithmetic operator");
393       return glsl_type::error_type;
394    }
395 
396    /*    "All arithmetic binary operators result in the same fundamental type
397     *    (signed integer, unsigned integer, or floating-point) as the
398     *    operands they operate on, after operand type conversion. After
399     *    conversion, the following cases are valid
400     *
401     *    * The two operands are scalars. In this case the operation is
402     *      applied, resulting in a scalar."
403     */
404    if (type_a->is_scalar() && type_b->is_scalar())
405       return type_a;
406 
407    /*   "* One operand is a scalar, and the other is a vector or matrix.
408     *      In this case, the scalar operation is applied independently to each
409     *      component of the vector or matrix, resulting in the same size
410     *      vector or matrix."
411     */
412    if (type_a->is_scalar()) {
413       if (!type_b->is_scalar())
414          return type_b;
415    } else if (type_b->is_scalar()) {
416       return type_a;
417    }
418 
419    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
420     * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
421     * handled.
422     */
423    assert(!type_a->is_scalar());
424    assert(!type_b->is_scalar());
425 
426    /*   "* The two operands are vectors of the same size. In this case, the
427     *      operation is done component-wise resulting in the same size
428     *      vector."
429     */
430    if (type_a->is_vector() && type_b->is_vector()) {
431       if (type_a == type_b) {
432          return type_a;
433       } else {
434          _mesa_glsl_error(loc, state,
435                           "vector size mismatch for arithmetic operator");
436          return glsl_type::error_type;
437       }
438    }
439 
440    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
441     * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
442     * <vector, vector> have been handled.  At least one of the operands must
443     * be matrix.  Further, since there are no integer matrix types, the base
444     * type of both operands must be float.
445     */
446    assert(type_a->is_matrix() || type_b->is_matrix());
447    assert(type_a->is_float() || type_a->is_double());
448    assert(type_b->is_float() || type_b->is_double());
449 
450    /*   "* The operator is add (+), subtract (-), or divide (/), and the
451     *      operands are matrices with the same number of rows and the same
452     *      number of columns. In this case, the operation is done component-
453     *      wise resulting in the same size matrix."
454     *    * The operator is multiply (*), where both operands are matrices or
455     *      one operand is a vector and the other a matrix. A right vector
456     *      operand is treated as a column vector and a left vector operand as a
457     *      row vector. In all these cases, it is required that the number of
458     *      columns of the left operand is equal to the number of rows of the
459     *      right operand. Then, the multiply (*) operation does a linear
460     *      algebraic multiply, yielding an object that has the same number of
461     *      rows as the left operand and the same number of columns as the right
462     *      operand. Section 5.10 "Vector and Matrix Operations" explains in
463     *      more detail how vectors and matrices are operated on."
464     */
465    if (! multiply) {
466       if (type_a == type_b)
467          return type_a;
468    } else {
469       const glsl_type *type = glsl_type::get_mul_type(type_a, type_b);
470 
471       if (type == glsl_type::error_type) {
472          _mesa_glsl_error(loc, state,
473                           "size mismatch for matrix multiplication");
474       }
475 
476       return type;
477    }
478 
479 
480    /*    "All other cases are illegal."
481     */
482    _mesa_glsl_error(loc, state, "type mismatch");
483    return glsl_type::error_type;
484 }
485 
486 
487 static const struct glsl_type *
unary_arithmetic_result_type(const struct glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)488 unary_arithmetic_result_type(const struct glsl_type *type,
489                              struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
490 {
491    /* From GLSL 1.50 spec, page 57:
492     *
493     *    "The arithmetic unary operators negate (-), post- and pre-increment
494     *     and decrement (-- and ++) operate on integer or floating-point
495     *     values (including vectors and matrices). All unary operators work
496     *     component-wise on their operands. These result with the same type
497     *     they operated on."
498     */
499    if (!type->is_numeric()) {
500       _mesa_glsl_error(loc, state,
501                        "operands to arithmetic operators must be numeric");
502       return glsl_type::error_type;
503    }
504 
505    return type;
506 }
507 
508 /**
509  * \brief Return the result type of a bit-logic operation.
510  *
511  * If the given types to the bit-logic operator are invalid, return
512  * glsl_type::error_type.
513  *
514  * \param value_a LHS of bit-logic op
515  * \param value_b RHS of bit-logic op
516  */
517 static const struct glsl_type *
bit_logic_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)518 bit_logic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
519                       ast_operators op,
520                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
521 {
522    const glsl_type *type_a = value_a->type;
523    const glsl_type *type_b = value_b->type;
524 
525    if (!state->check_bitwise_operations_allowed(loc)) {
526       return glsl_type::error_type;
527    }
528 
529    /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
530     *
531     *     "The bitwise operators and (&), exclusive-or (^), and inclusive-or
532     *     (|). The operands must be of type signed or unsigned integers or
533     *     integer vectors."
534     */
535    if (!type_a->is_integer_32_64()) {
536       _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
537                         ast_expression::operator_string(op));
538       return glsl_type::error_type;
539    }
540    if (!type_b->is_integer_32_64()) {
541       _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
542                        ast_expression::operator_string(op));
543       return glsl_type::error_type;
544    }
545 
546    /* Prior to GLSL 4.0 / GL_ARB_gpu_shader5, implicit conversions didn't
547     * make sense for bitwise operations, as they don't operate on floats.
548     *
549     * GLSL 4.0 added implicit int -> uint conversions, which are relevant
550     * here.  It wasn't clear whether or not we should apply them to bitwise
551     * operations.  However, Khronos has decided that they should in future
552     * language revisions.  Applications also rely on this behavior.  We opt
553     * to apply them in general, but issue a portability warning.
554     *
555     * See https://www.khronos.org/bugzilla/show_bug.cgi?id=1405
556     */
557    if (type_a->base_type != type_b->base_type) {
558       if (!apply_implicit_conversion(type_a, value_b, state)
559           && !apply_implicit_conversion(type_b, value_a, state)) {
560          _mesa_glsl_error(loc, state,
561                           "could not implicitly convert operands to "
562                           "`%s` operator",
563                           ast_expression::operator_string(op));
564          return glsl_type::error_type;
565       } else {
566          _mesa_glsl_warning(loc, state,
567                             "some implementations may not support implicit "
568                             "int -> uint conversions for `%s' operators; "
569                             "consider casting explicitly for portability",
570                             ast_expression::operator_string(op));
571       }
572       type_a = value_a->type;
573       type_b = value_b->type;
574    }
575 
576    /*     "The fundamental types of the operands (signed or unsigned) must
577     *     match,"
578     */
579    if (type_a->base_type != type_b->base_type) {
580       _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
581                        "base type", ast_expression::operator_string(op));
582       return glsl_type::error_type;
583    }
584 
585    /*     "The operands cannot be vectors of differing size." */
586    if (type_a->is_vector() &&
587        type_b->is_vector() &&
588        type_a->vector_elements != type_b->vector_elements) {
589       _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
590                        "different sizes", ast_expression::operator_string(op));
591       return glsl_type::error_type;
592    }
593 
594    /*     "If one operand is a scalar and the other a vector, the scalar is
595     *     applied component-wise to the vector, resulting in the same type as
596     *     the vector. The fundamental types of the operands [...] will be the
597     *     resulting fundamental type."
598     */
599    if (type_a->is_scalar())
600        return type_b;
601    else
602        return type_a;
603 }
604 
605 static const struct glsl_type *
modulus_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)606 modulus_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
607                     struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
608 {
609    const glsl_type *type_a = value_a->type;
610    const glsl_type *type_b = value_b->type;
611 
612    if (!state->EXT_gpu_shader4_enable &&
613        !state->check_version(130, 300, loc, "operator '%%' is reserved")) {
614       return glsl_type::error_type;
615    }
616 
617    /* Section 5.9 (Expressions) of the GLSL 4.00 specification says:
618     *
619     *    "The operator modulus (%) operates on signed or unsigned integers or
620     *    integer vectors."
621     */
622    if (!type_a->is_integer_32_64()) {
623       _mesa_glsl_error(loc, state, "LHS of operator %% must be an integer");
624       return glsl_type::error_type;
625    }
626    if (!type_b->is_integer_32_64()) {
627       _mesa_glsl_error(loc, state, "RHS of operator %% must be an integer");
628       return glsl_type::error_type;
629    }
630 
631    /*    "If the fundamental types in the operands do not match, then the
632     *    conversions from section 4.1.10 "Implicit Conversions" are applied
633     *    to create matching types."
634     *
635     * Note that GLSL 4.00 (and GL_ARB_gpu_shader5) introduced implicit
636     * int -> uint conversion rules.  Prior to that, there were no implicit
637     * conversions.  So it's harmless to apply them universally - no implicit
638     * conversions will exist.  If the types don't match, we'll receive false,
639     * and raise an error, satisfying the GLSL 1.50 spec, page 56:
640     *
641     *    "The operand types must both be signed or unsigned."
642     */
643    if (!apply_implicit_conversion(type_a, value_b, state) &&
644        !apply_implicit_conversion(type_b, value_a, state)) {
645       _mesa_glsl_error(loc, state,
646                        "could not implicitly convert operands to "
647                        "modulus (%%) operator");
648       return glsl_type::error_type;
649    }
650    type_a = value_a->type;
651    type_b = value_b->type;
652 
653    /*    "The operands cannot be vectors of differing size. If one operand is
654     *    a scalar and the other vector, then the scalar is applied component-
655     *    wise to the vector, resulting in the same type as the vector. If both
656     *    are vectors of the same size, the result is computed component-wise."
657     */
658    if (type_a->is_vector()) {
659       if (!type_b->is_vector()
660           || (type_a->vector_elements == type_b->vector_elements))
661       return type_a;
662    } else
663       return type_b;
664 
665    /*    "The operator modulus (%) is not defined for any other data types
666     *    (non-integer types)."
667     */
668    _mesa_glsl_error(loc, state, "type mismatch");
669    return glsl_type::error_type;
670 }
671 
672 
673 static const struct glsl_type *
relational_result_type(ir_rvalue * & value_a,ir_rvalue * & value_b,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)674 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
675                        struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
676 {
677    const glsl_type *type_a = value_a->type;
678    const glsl_type *type_b = value_b->type;
679 
680    /* From GLSL 1.50 spec, page 56:
681     *    "The relational operators greater than (>), less than (<), greater
682     *    than or equal (>=), and less than or equal (<=) operate only on
683     *    scalar integer and scalar floating-point expressions."
684     */
685    if (!type_a->is_numeric()
686        || !type_b->is_numeric()
687        || !type_a->is_scalar()
688        || !type_b->is_scalar()) {
689       _mesa_glsl_error(loc, state,
690                        "operands to relational operators must be scalar and "
691                        "numeric");
692       return glsl_type::error_type;
693    }
694 
695    /*    "Either the operands' types must match, or the conversions from
696     *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
697     *    operand, after which the types must match."
698     */
699    if (!apply_implicit_conversion(type_a, value_b, state)
700        && !apply_implicit_conversion(type_b, value_a, state)) {
701       _mesa_glsl_error(loc, state,
702                        "could not implicitly convert operands to "
703                        "relational operator");
704       return glsl_type::error_type;
705    }
706    type_a = value_a->type;
707    type_b = value_b->type;
708 
709    if (type_a->base_type != type_b->base_type) {
710       _mesa_glsl_error(loc, state, "base type mismatch");
711       return glsl_type::error_type;
712    }
713 
714    /*    "The result is scalar Boolean."
715     */
716    return glsl_type::bool_type;
717 }
718 
719 /**
720  * \brief Return the result type of a bit-shift operation.
721  *
722  * If the given types to the bit-shift operator are invalid, return
723  * glsl_type::error_type.
724  *
725  * \param type_a Type of LHS of bit-shift op
726  * \param type_b Type of RHS of bit-shift op
727  */
728 static const struct glsl_type *
shift_result_type(const struct glsl_type * type_a,const struct glsl_type * type_b,ast_operators op,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)729 shift_result_type(const struct glsl_type *type_a,
730                   const struct glsl_type *type_b,
731                   ast_operators op,
732                   struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
733 {
734    if (!state->check_bitwise_operations_allowed(loc)) {
735       return glsl_type::error_type;
736    }
737 
738    /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
739     *
740     *     "The shift operators (<<) and (>>). For both operators, the operands
741     *     must be signed or unsigned integers or integer vectors. One operand
742     *     can be signed while the other is unsigned."
743     */
744    if (!type_a->is_integer_32_64()) {
745       _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
746                        "integer vector", ast_expression::operator_string(op));
747      return glsl_type::error_type;
748 
749    }
750    if (!type_b->is_integer_32()) {
751       _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
752                        "integer vector", ast_expression::operator_string(op));
753      return glsl_type::error_type;
754    }
755 
756    /*     "If the first operand is a scalar, the second operand has to be
757     *     a scalar as well."
758     */
759    if (type_a->is_scalar() && !type_b->is_scalar()) {
760       _mesa_glsl_error(loc, state, "if the first operand of %s is scalar, the "
761                        "second must be scalar as well",
762                        ast_expression::operator_string(op));
763      return glsl_type::error_type;
764    }
765 
766    /* If both operands are vectors, check that they have same number of
767     * elements.
768     */
769    if (type_a->is_vector() &&
770       type_b->is_vector() &&
771       type_a->vector_elements != type_b->vector_elements) {
772       _mesa_glsl_error(loc, state, "vector operands to operator %s must "
773                        "have same number of elements",
774                        ast_expression::operator_string(op));
775      return glsl_type::error_type;
776    }
777 
778    /*     "In all cases, the resulting type will be the same type as the left
779     *     operand."
780     */
781    return type_a;
782 }
783 
784 /**
785  * Returns the innermost array index expression in an rvalue tree.
786  * This is the largest indexing level -- if an array of blocks, then
787  * it is the block index rather than an indexing expression for an
788  * array-typed member of an array of blocks.
789  */
790 static ir_rvalue *
find_innermost_array_index(ir_rvalue * rv)791 find_innermost_array_index(ir_rvalue *rv)
792 {
793    ir_dereference_array *last = NULL;
794    while (rv) {
795       if (rv->as_dereference_array()) {
796          last = rv->as_dereference_array();
797          rv = last->array;
798       } else if (rv->as_dereference_record())
799          rv = rv->as_dereference_record()->record;
800       else if (rv->as_swizzle())
801          rv = rv->as_swizzle()->val;
802       else
803          rv = NULL;
804    }
805 
806    if (last)
807       return last->array_index;
808 
809    return NULL;
810 }
811 
812 /**
813  * Validates that a value can be assigned to a location with a specified type
814  *
815  * Validates that \c rhs can be assigned to some location.  If the types are
816  * not an exact match but an automatic conversion is possible, \c rhs will be
817  * converted.
818  *
819  * \return
820  * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
821  * Otherwise the actual RHS to be assigned will be returned.  This may be
822  * \c rhs, or it may be \c rhs after some type conversion.
823  *
824  * \note
825  * In addition to being used for assignments, this function is used to
826  * type-check return values.
827  */
828 static ir_rvalue *
validate_assignment(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_rvalue * lhs,ir_rvalue * rhs,bool is_initializer)829 validate_assignment(struct _mesa_glsl_parse_state *state,
830                     YYLTYPE loc, ir_rvalue *lhs,
831                     ir_rvalue *rhs, bool is_initializer)
832 {
833    /* If there is already some error in the RHS, just return it.  Anything
834     * else will lead to an avalanche of error message back to the user.
835     */
836    if (rhs->type->is_error())
837       return rhs;
838 
839    /* In the Tessellation Control Shader:
840     * If a per-vertex output variable is used as an l-value, it is an error
841     * if the expression indicating the vertex number is not the identifier
842     * `gl_InvocationID`.
843     */
844    if (state->stage == MESA_SHADER_TESS_CTRL && !lhs->type->is_error()) {
845       ir_variable *var = lhs->variable_referenced();
846       if (var && var->data.mode == ir_var_shader_out && !var->data.patch) {
847          ir_rvalue *index = find_innermost_array_index(lhs);
848          ir_variable *index_var = index ? index->variable_referenced() : NULL;
849          if (!index_var || strcmp(index_var->name, "gl_InvocationID") != 0) {
850             _mesa_glsl_error(&loc, state,
851                              "Tessellation control shader outputs can only "
852                              "be indexed by gl_InvocationID");
853             return NULL;
854          }
855       }
856    }
857 
858    /* If the types are identical, the assignment can trivially proceed.
859     */
860    if (rhs->type == lhs->type)
861       return rhs;
862 
863    /* If the array element types are the same and the LHS is unsized,
864     * the assignment is okay for initializers embedded in variable
865     * declarations.
866     *
867     * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
868     * is handled by ir_dereference::is_lvalue.
869     */
870    const glsl_type *lhs_t = lhs->type;
871    const glsl_type *rhs_t = rhs->type;
872    bool unsized_array = false;
873    while(lhs_t->is_array()) {
874       if (rhs_t == lhs_t)
875          break; /* the rest of the inner arrays match so break out early */
876       if (!rhs_t->is_array()) {
877          unsized_array = false;
878          break; /* number of dimensions mismatch */
879       }
880       if (lhs_t->length == rhs_t->length) {
881          lhs_t = lhs_t->fields.array;
882          rhs_t = rhs_t->fields.array;
883          continue;
884       } else if (lhs_t->is_unsized_array()) {
885          unsized_array = true;
886       } else {
887          unsized_array = false;
888          break; /* sized array mismatch */
889       }
890       lhs_t = lhs_t->fields.array;
891       rhs_t = rhs_t->fields.array;
892    }
893    if (unsized_array) {
894       if (is_initializer) {
895          if (rhs->type->get_scalar_type() == lhs->type->get_scalar_type())
896             return rhs;
897       } else {
898          _mesa_glsl_error(&loc, state,
899                           "implicitly sized arrays cannot be assigned");
900          return NULL;
901       }
902    }
903 
904    /* Check for implicit conversion in GLSL 1.20 */
905    if (apply_implicit_conversion(lhs->type, rhs, state)) {
906       if (rhs->type == lhs->type)
907          return rhs;
908    }
909 
910    _mesa_glsl_error(&loc, state,
911                     "%s of type %s cannot be assigned to "
912                     "variable of type %s",
913                     is_initializer ? "initializer" : "value",
914                     rhs->type->name, lhs->type->name);
915 
916    return NULL;
917 }
918 
919 static void
mark_whole_array_access(ir_rvalue * access)920 mark_whole_array_access(ir_rvalue *access)
921 {
922    ir_dereference_variable *deref = access->as_dereference_variable();
923 
924    if (deref && deref->var) {
925       deref->var->data.max_array_access = deref->type->length - 1;
926    }
927 }
928 
929 static bool
do_assignment(exec_list * instructions,struct _mesa_glsl_parse_state * state,const char * non_lvalue_description,ir_rvalue * lhs,ir_rvalue * rhs,ir_rvalue ** out_rvalue,bool needs_rvalue,bool is_initializer,YYLTYPE lhs_loc)930 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
931               const char *non_lvalue_description,
932               ir_rvalue *lhs, ir_rvalue *rhs,
933               ir_rvalue **out_rvalue, bool needs_rvalue,
934               bool is_initializer,
935               YYLTYPE lhs_loc)
936 {
937    void *ctx = state;
938    bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
939 
940    ir_variable *lhs_var = lhs->variable_referenced();
941    if (lhs_var)
942       lhs_var->data.assigned = true;
943 
944    bool omit_assignment = false;
945    if (!error_emitted) {
946       if (non_lvalue_description != NULL) {
947          _mesa_glsl_error(&lhs_loc, state,
948                           "assignment to %s",
949                           non_lvalue_description);
950          error_emitted = true;
951       } else if (lhs_var != NULL && (lhs_var->data.read_only ||
952                  (lhs_var->data.mode == ir_var_shader_storage &&
953                   lhs_var->data.memory_read_only))) {
954          /* We can have memory_read_only set on both images and buffer variables,
955           * but in the former there is a distinction between assignments to
956           * the variable itself (read_only) and to the memory they point to
957           * (memory_read_only), while in the case of buffer variables there is
958           * no such distinction, that is why this check here is limited to
959           * buffer variables alone.
960           */
961 
962          if (state->ignore_write_to_readonly_var)
963             omit_assignment = true;
964          else {
965             _mesa_glsl_error(&lhs_loc, state,
966                              "assignment to read-only variable '%s'",
967                              lhs_var->name);
968             error_emitted = true;
969          }
970       } else if (lhs->type->is_array() &&
971                  !state->check_version(state->allow_glsl_120_subset_in_110 ? 110 : 120,
972                                        300, &lhs_loc,
973                                        "whole array assignment forbidden")) {
974          /* From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
975           *
976           *    "Other binary or unary expressions, non-dereferenced
977           *     arrays, function names, swizzles with repeated fields,
978           *     and constants cannot be l-values."
979           *
980           * The restriction on arrays is lifted in GLSL 1.20 and GLSL ES 3.00.
981           */
982          error_emitted = true;
983       } else if (!lhs->is_lvalue(state)) {
984          _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
985          error_emitted = true;
986       }
987    }
988 
989    ir_rvalue *new_rhs =
990       validate_assignment(state, lhs_loc, lhs, rhs, is_initializer);
991    if (new_rhs != NULL) {
992       rhs = new_rhs;
993 
994       /* If the LHS array was not declared with a size, it takes it size from
995        * the RHS.  If the LHS is an l-value and a whole array, it must be a
996        * dereference of a variable.  Any other case would require that the LHS
997        * is either not an l-value or not a whole array.
998        */
999       if (lhs->type->is_unsized_array()) {
1000          ir_dereference *const d = lhs->as_dereference();
1001 
1002          assert(d != NULL);
1003 
1004          ir_variable *const var = d->variable_referenced();
1005 
1006          assert(var != NULL);
1007 
1008          if (var->data.max_array_access >= rhs->type->array_size()) {
1009             /* FINISHME: This should actually log the location of the RHS. */
1010             _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
1011                              "previous access",
1012                              var->data.max_array_access);
1013          }
1014 
1015          var->type = glsl_type::get_array_instance(lhs->type->fields.array,
1016                                                    rhs->type->array_size());
1017          d->type = var->type;
1018       }
1019       if (lhs->type->is_array()) {
1020          mark_whole_array_access(rhs);
1021          mark_whole_array_access(lhs);
1022       }
1023    } else {
1024      error_emitted = true;
1025    }
1026 
1027    if (omit_assignment) {
1028       *out_rvalue = needs_rvalue ? ir_rvalue::error_value(ctx) : NULL;
1029       return error_emitted;
1030    }
1031 
1032    /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
1033     * but not post_inc) need the converted assigned value as an rvalue
1034     * to handle things like:
1035     *
1036     * i = j += 1;
1037     */
1038    if (needs_rvalue) {
1039       ir_rvalue *rvalue;
1040       if (!error_emitted) {
1041          ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
1042                                                  ir_var_temporary);
1043          instructions->push_tail(var);
1044          instructions->push_tail(assign(var, rhs));
1045 
1046          ir_dereference_variable *deref_var =
1047             new(ctx) ir_dereference_variable(var);
1048          instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var));
1049          rvalue = new(ctx) ir_dereference_variable(var);
1050       } else {
1051          rvalue = ir_rvalue::error_value(ctx);
1052       }
1053       *out_rvalue = rvalue;
1054    } else {
1055       if (!error_emitted)
1056          instructions->push_tail(new(ctx) ir_assignment(lhs, rhs));
1057       *out_rvalue = NULL;
1058    }
1059 
1060    return error_emitted;
1061 }
1062 
1063 static ir_rvalue *
get_lvalue_copy(exec_list * instructions,ir_rvalue * lvalue)1064 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
1065 {
1066    void *ctx = ralloc_parent(lvalue);
1067    ir_variable *var;
1068 
1069    var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
1070                               ir_var_temporary);
1071    instructions->push_tail(var);
1072 
1073    instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
1074                                                   lvalue));
1075 
1076    return new(ctx) ir_dereference_variable(var);
1077 }
1078 
1079 
1080 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1081 ast_node::hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
1082 {
1083    (void) instructions;
1084    (void) state;
1085 
1086    return NULL;
1087 }
1088 
1089 bool
has_sequence_subexpression() const1090 ast_node::has_sequence_subexpression() const
1091 {
1092    return false;
1093 }
1094 
1095 void
set_is_lhs(bool)1096 ast_node::set_is_lhs(bool /* new_value */)
1097 {
1098 }
1099 
1100 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1101 ast_function_expression::hir_no_rvalue(exec_list *instructions,
1102                                        struct _mesa_glsl_parse_state *state)
1103 {
1104    (void)hir(instructions, state);
1105 }
1106 
1107 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1108 ast_aggregate_initializer::hir_no_rvalue(exec_list *instructions,
1109                                          struct _mesa_glsl_parse_state *state)
1110 {
1111    (void)hir(instructions, state);
1112 }
1113 
1114 static ir_rvalue *
do_comparison(void * mem_ctx,int operation,ir_rvalue * op0,ir_rvalue * op1)1115 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
1116 {
1117    int join_op;
1118    ir_rvalue *cmp = NULL;
1119 
1120    if (operation == ir_binop_all_equal)
1121       join_op = ir_binop_logic_and;
1122    else
1123       join_op = ir_binop_logic_or;
1124 
1125    switch (op0->type->base_type) {
1126    case GLSL_TYPE_FLOAT:
1127    case GLSL_TYPE_FLOAT16:
1128    case GLSL_TYPE_UINT:
1129    case GLSL_TYPE_INT:
1130    case GLSL_TYPE_BOOL:
1131    case GLSL_TYPE_DOUBLE:
1132    case GLSL_TYPE_UINT64:
1133    case GLSL_TYPE_INT64:
1134    case GLSL_TYPE_UINT16:
1135    case GLSL_TYPE_INT16:
1136    case GLSL_TYPE_UINT8:
1137    case GLSL_TYPE_INT8:
1138       return new(mem_ctx) ir_expression(operation, op0, op1);
1139 
1140    case GLSL_TYPE_ARRAY: {
1141       for (unsigned int i = 0; i < op0->type->length; i++) {
1142          ir_rvalue *e0, *e1, *result;
1143 
1144          e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
1145                                                 new(mem_ctx) ir_constant(i));
1146          e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
1147                                                 new(mem_ctx) ir_constant(i));
1148          result = do_comparison(mem_ctx, operation, e0, e1);
1149 
1150          if (cmp) {
1151             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1152          } else {
1153             cmp = result;
1154          }
1155       }
1156 
1157       mark_whole_array_access(op0);
1158       mark_whole_array_access(op1);
1159       break;
1160    }
1161 
1162    case GLSL_TYPE_STRUCT: {
1163       for (unsigned int i = 0; i < op0->type->length; i++) {
1164          ir_rvalue *e0, *e1, *result;
1165          const char *field_name = op0->type->fields.structure[i].name;
1166 
1167          e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
1168                                                  field_name);
1169          e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
1170                                                  field_name);
1171          result = do_comparison(mem_ctx, operation, e0, e1);
1172 
1173          if (cmp) {
1174             cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
1175          } else {
1176             cmp = result;
1177          }
1178       }
1179       break;
1180    }
1181 
1182    case GLSL_TYPE_ERROR:
1183    case GLSL_TYPE_VOID:
1184    case GLSL_TYPE_SAMPLER:
1185    case GLSL_TYPE_IMAGE:
1186    case GLSL_TYPE_INTERFACE:
1187    case GLSL_TYPE_ATOMIC_UINT:
1188    case GLSL_TYPE_SUBROUTINE:
1189    case GLSL_TYPE_FUNCTION:
1190       /* I assume a comparison of a struct containing a sampler just
1191        * ignores the sampler present in the type.
1192        */
1193       break;
1194    }
1195 
1196    if (cmp == NULL)
1197       cmp = new(mem_ctx) ir_constant(true);
1198 
1199    return cmp;
1200 }
1201 
1202 /* For logical operations, we want to ensure that the operands are
1203  * scalar booleans.  If it isn't, emit an error and return a constant
1204  * boolean to avoid triggering cascading error messages.
1205  */
1206 static ir_rvalue *
get_scalar_boolean_operand(exec_list * instructions,struct _mesa_glsl_parse_state * state,ast_expression * parent_expr,int operand,const char * operand_name,bool * error_emitted)1207 get_scalar_boolean_operand(exec_list *instructions,
1208                            struct _mesa_glsl_parse_state *state,
1209                            ast_expression *parent_expr,
1210                            int operand,
1211                            const char *operand_name,
1212                            bool *error_emitted)
1213 {
1214    ast_expression *expr = parent_expr->subexpressions[operand];
1215    void *ctx = state;
1216    ir_rvalue *val = expr->hir(instructions, state);
1217 
1218    if (val->type->is_boolean() && val->type->is_scalar())
1219       return val;
1220 
1221    if (!*error_emitted) {
1222       YYLTYPE loc = expr->get_location();
1223       _mesa_glsl_error(&loc, state, "%s of `%s' must be scalar boolean",
1224                        operand_name,
1225                        parent_expr->operator_string(parent_expr->oper));
1226       *error_emitted = true;
1227    }
1228 
1229    return new(ctx) ir_constant(true);
1230 }
1231 
1232 /**
1233  * If name refers to a builtin array whose maximum allowed size is less than
1234  * size, report an error and return true.  Otherwise return false.
1235  */
1236 void
check_builtin_array_max_size(const char * name,unsigned size,YYLTYPE loc,struct _mesa_glsl_parse_state * state)1237 check_builtin_array_max_size(const char *name, unsigned size,
1238                              YYLTYPE loc, struct _mesa_glsl_parse_state *state)
1239 {
1240    if ((strcmp("gl_TexCoord", name) == 0)
1241        && (size > state->Const.MaxTextureCoords)) {
1242       /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
1243        *
1244        *     "The size [of gl_TexCoord] can be at most
1245        *     gl_MaxTextureCoords."
1246        */
1247       _mesa_glsl_error(&loc, state, "`gl_TexCoord' array size cannot "
1248                        "be larger than gl_MaxTextureCoords (%u)",
1249                        state->Const.MaxTextureCoords);
1250    } else if (strcmp("gl_ClipDistance", name) == 0) {
1251       state->clip_dist_size = size;
1252       if (size + state->cull_dist_size > state->Const.MaxClipPlanes) {
1253          /* From section 7.1 (Vertex Shader Special Variables) of the
1254           * GLSL 1.30 spec:
1255           *
1256           *   "The gl_ClipDistance array is predeclared as unsized and
1257           *   must be sized by the shader either redeclaring it with a
1258           *   size or indexing it only with integral constant
1259           *   expressions. ... The size can be at most
1260           *   gl_MaxClipDistances."
1261           */
1262          _mesa_glsl_error(&loc, state, "`gl_ClipDistance' array size cannot "
1263                           "be larger than gl_MaxClipDistances (%u)",
1264                           state->Const.MaxClipPlanes);
1265       }
1266    } else if (strcmp("gl_CullDistance", name) == 0) {
1267       state->cull_dist_size = size;
1268       if (size + state->clip_dist_size > state->Const.MaxClipPlanes) {
1269          /* From the ARB_cull_distance spec:
1270           *
1271           *   "The gl_CullDistance array is predeclared as unsized and
1272           *    must be sized by the shader either redeclaring it with
1273           *    a size or indexing it only with integral constant
1274           *    expressions. The size determines the number and set of
1275           *    enabled cull distances and can be at most
1276           *    gl_MaxCullDistances."
1277           */
1278          _mesa_glsl_error(&loc, state, "`gl_CullDistance' array size cannot "
1279                           "be larger than gl_MaxCullDistances (%u)",
1280                           state->Const.MaxClipPlanes);
1281       }
1282    }
1283 }
1284 
1285 /**
1286  * Create the constant 1, of a which is appropriate for incrementing and
1287  * decrementing values of the given GLSL type.  For example, if type is vec4,
1288  * this creates a constant value of 1.0 having type float.
1289  *
1290  * If the given type is invalid for increment and decrement operators, return
1291  * a floating point 1--the error will be detected later.
1292  */
1293 static ir_rvalue *
constant_one_for_inc_dec(void * ctx,const glsl_type * type)1294 constant_one_for_inc_dec(void *ctx, const glsl_type *type)
1295 {
1296    switch (type->base_type) {
1297    case GLSL_TYPE_UINT:
1298       return new(ctx) ir_constant((unsigned) 1);
1299    case GLSL_TYPE_INT:
1300       return new(ctx) ir_constant(1);
1301    case GLSL_TYPE_UINT64:
1302       return new(ctx) ir_constant((uint64_t) 1);
1303    case GLSL_TYPE_INT64:
1304       return new(ctx) ir_constant((int64_t) 1);
1305    default:
1306    case GLSL_TYPE_FLOAT:
1307       return new(ctx) ir_constant(1.0f);
1308    }
1309 }
1310 
1311 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1312 ast_expression::hir(exec_list *instructions,
1313                     struct _mesa_glsl_parse_state *state)
1314 {
1315    return do_hir(instructions, state, true);
1316 }
1317 
1318 void
hir_no_rvalue(exec_list * instructions,struct _mesa_glsl_parse_state * state)1319 ast_expression::hir_no_rvalue(exec_list *instructions,
1320                               struct _mesa_glsl_parse_state *state)
1321 {
1322    do_hir(instructions, state, false);
1323 }
1324 
1325 void
set_is_lhs(bool new_value)1326 ast_expression::set_is_lhs(bool new_value)
1327 {
1328    /* is_lhs is tracked only to print "variable used uninitialized" warnings,
1329     * if we lack an identifier we can just skip it.
1330     */
1331    if (this->primary_expression.identifier == NULL)
1332       return;
1333 
1334    this->is_lhs = new_value;
1335 
1336    /* We need to go through the subexpressions tree to cover cases like
1337     * ast_field_selection
1338     */
1339    if (this->subexpressions[0] != NULL)
1340       this->subexpressions[0]->set_is_lhs(new_value);
1341 }
1342 
1343 ir_rvalue *
do_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state,bool needs_rvalue)1344 ast_expression::do_hir(exec_list *instructions,
1345                        struct _mesa_glsl_parse_state *state,
1346                        bool needs_rvalue)
1347 {
1348    void *ctx = state;
1349    static const int operations[AST_NUM_OPERATORS] = {
1350       -1,               /* ast_assign doesn't convert to ir_expression. */
1351       -1,               /* ast_plus doesn't convert to ir_expression. */
1352       ir_unop_neg,
1353       ir_binop_add,
1354       ir_binop_sub,
1355       ir_binop_mul,
1356       ir_binop_div,
1357       ir_binop_mod,
1358       ir_binop_lshift,
1359       ir_binop_rshift,
1360       ir_binop_less,
1361       ir_binop_less,    /* This is correct.  See the ast_greater case below. */
1362       ir_binop_gequal,  /* This is correct.  See the ast_lequal case below. */
1363       ir_binop_gequal,
1364       ir_binop_all_equal,
1365       ir_binop_any_nequal,
1366       ir_binop_bit_and,
1367       ir_binop_bit_xor,
1368       ir_binop_bit_or,
1369       ir_unop_bit_not,
1370       ir_binop_logic_and,
1371       ir_binop_logic_xor,
1372       ir_binop_logic_or,
1373       ir_unop_logic_not,
1374 
1375       /* Note: The following block of expression types actually convert
1376        * to multiple IR instructions.
1377        */
1378       ir_binop_mul,     /* ast_mul_assign */
1379       ir_binop_div,     /* ast_div_assign */
1380       ir_binop_mod,     /* ast_mod_assign */
1381       ir_binop_add,     /* ast_add_assign */
1382       ir_binop_sub,     /* ast_sub_assign */
1383       ir_binop_lshift,  /* ast_ls_assign */
1384       ir_binop_rshift,  /* ast_rs_assign */
1385       ir_binop_bit_and, /* ast_and_assign */
1386       ir_binop_bit_xor, /* ast_xor_assign */
1387       ir_binop_bit_or,  /* ast_or_assign */
1388 
1389       -1,               /* ast_conditional doesn't convert to ir_expression. */
1390       ir_binop_add,     /* ast_pre_inc. */
1391       ir_binop_sub,     /* ast_pre_dec. */
1392       ir_binop_add,     /* ast_post_inc. */
1393       ir_binop_sub,     /* ast_post_dec. */
1394       -1,               /* ast_field_selection doesn't conv to ir_expression. */
1395       -1,               /* ast_array_index doesn't convert to ir_expression. */
1396       -1,               /* ast_function_call doesn't conv to ir_expression. */
1397       -1,               /* ast_identifier doesn't convert to ir_expression. */
1398       -1,               /* ast_int_constant doesn't convert to ir_expression. */
1399       -1,               /* ast_uint_constant doesn't conv to ir_expression. */
1400       -1,               /* ast_float_constant doesn't conv to ir_expression. */
1401       -1,               /* ast_bool_constant doesn't conv to ir_expression. */
1402       -1,               /* ast_sequence doesn't convert to ir_expression. */
1403       -1,               /* ast_aggregate shouldn't ever even get here. */
1404    };
1405    ir_rvalue *result = NULL;
1406    ir_rvalue *op[3];
1407    const struct glsl_type *type, *orig_type;
1408    bool error_emitted = false;
1409    YYLTYPE loc;
1410 
1411    loc = this->get_location();
1412 
1413    switch (this->oper) {
1414    case ast_aggregate:
1415       unreachable("ast_aggregate: Should never get here.");
1416 
1417    case ast_assign: {
1418       this->subexpressions[0]->set_is_lhs(true);
1419       op[0] = this->subexpressions[0]->hir(instructions, state);
1420       op[1] = this->subexpressions[1]->hir(instructions, state);
1421 
1422       error_emitted =
1423          do_assignment(instructions, state,
1424                        this->subexpressions[0]->non_lvalue_description,
1425                        op[0], op[1], &result, needs_rvalue, false,
1426                        this->subexpressions[0]->get_location());
1427       break;
1428    }
1429 
1430    case ast_plus:
1431       op[0] = this->subexpressions[0]->hir(instructions, state);
1432 
1433       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1434 
1435       error_emitted = type->is_error();
1436 
1437       result = op[0];
1438       break;
1439 
1440    case ast_neg:
1441       op[0] = this->subexpressions[0]->hir(instructions, state);
1442 
1443       type = unary_arithmetic_result_type(op[0]->type, state, & loc);
1444 
1445       error_emitted = type->is_error();
1446 
1447       result = new(ctx) ir_expression(operations[this->oper], type,
1448                                       op[0], NULL);
1449       break;
1450 
1451    case ast_add:
1452    case ast_sub:
1453    case ast_mul:
1454    case ast_div:
1455       op[0] = this->subexpressions[0]->hir(instructions, state);
1456       op[1] = this->subexpressions[1]->hir(instructions, state);
1457 
1458       type = arithmetic_result_type(op[0], op[1],
1459                                     (this->oper == ast_mul),
1460                                     state, & loc);
1461       error_emitted = type->is_error();
1462 
1463       result = new(ctx) ir_expression(operations[this->oper], type,
1464                                       op[0], op[1]);
1465       break;
1466 
1467    case ast_mod:
1468       op[0] = this->subexpressions[0]->hir(instructions, state);
1469       op[1] = this->subexpressions[1]->hir(instructions, state);
1470 
1471       type = modulus_result_type(op[0], op[1], state, &loc);
1472 
1473       assert(operations[this->oper] == ir_binop_mod);
1474 
1475       result = new(ctx) ir_expression(operations[this->oper], type,
1476                                       op[0], op[1]);
1477       error_emitted = type->is_error();
1478       break;
1479 
1480    case ast_lshift:
1481    case ast_rshift:
1482        if (!state->check_bitwise_operations_allowed(&loc)) {
1483           error_emitted = true;
1484        }
1485 
1486        op[0] = this->subexpressions[0]->hir(instructions, state);
1487        op[1] = this->subexpressions[1]->hir(instructions, state);
1488        type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1489                                 &loc);
1490        result = new(ctx) ir_expression(operations[this->oper], type,
1491                                        op[0], op[1]);
1492        error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1493        break;
1494 
1495    case ast_less:
1496    case ast_greater:
1497    case ast_lequal:
1498    case ast_gequal:
1499       op[0] = this->subexpressions[0]->hir(instructions, state);
1500       op[1] = this->subexpressions[1]->hir(instructions, state);
1501 
1502       type = relational_result_type(op[0], op[1], state, & loc);
1503 
1504       /* The relational operators must either generate an error or result
1505        * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
1506        */
1507       assert(type->is_error()
1508              || (type->is_boolean() && type->is_scalar()));
1509 
1510       /* Like NIR, GLSL IR does not have opcodes for > or <=.  Instead, swap
1511        * the arguments and use < or >=.
1512        */
1513       if (this->oper == ast_greater || this->oper == ast_lequal) {
1514          ir_rvalue *const tmp = op[0];
1515          op[0] = op[1];
1516          op[1] = tmp;
1517       }
1518 
1519       result = new(ctx) ir_expression(operations[this->oper], type,
1520                                       op[0], op[1]);
1521       error_emitted = type->is_error();
1522       break;
1523 
1524    case ast_nequal:
1525    case ast_equal:
1526       op[0] = this->subexpressions[0]->hir(instructions, state);
1527       op[1] = this->subexpressions[1]->hir(instructions, state);
1528 
1529       /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1530        *
1531        *    "The equality operators equal (==), and not equal (!=)
1532        *    operate on all types. They result in a scalar Boolean. If
1533        *    the operand types do not match, then there must be a
1534        *    conversion from Section 4.1.10 "Implicit Conversions"
1535        *    applied to one operand that can make them match, in which
1536        *    case this conversion is done."
1537        */
1538 
1539       if (op[0]->type == glsl_type::void_type || op[1]->type == glsl_type::void_type) {
1540          _mesa_glsl_error(& loc, state, "`%s':  wrong operand types: "
1541                          "no operation `%1$s' exists that takes a left-hand "
1542                          "operand of type 'void' or a right operand of type "
1543                          "'void'", (this->oper == ast_equal) ? "==" : "!=");
1544          error_emitted = true;
1545       } else if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1546            && !apply_implicit_conversion(op[1]->type, op[0], state))
1547           || (op[0]->type != op[1]->type)) {
1548          _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1549                           "type", (this->oper == ast_equal) ? "==" : "!=");
1550          error_emitted = true;
1551       } else if ((op[0]->type->is_array() || op[1]->type->is_array()) &&
1552                  !state->check_version(120, 300, &loc,
1553                                        "array comparisons forbidden")) {
1554          error_emitted = true;
1555       } else if ((op[0]->type->contains_subroutine() ||
1556                   op[1]->type->contains_subroutine())) {
1557          _mesa_glsl_error(&loc, state, "subroutine comparisons forbidden");
1558          error_emitted = true;
1559       } else if ((op[0]->type->contains_opaque() ||
1560                   op[1]->type->contains_opaque())) {
1561          _mesa_glsl_error(&loc, state, "opaque type comparisons forbidden");
1562          error_emitted = true;
1563       }
1564 
1565       if (error_emitted) {
1566          result = new(ctx) ir_constant(false);
1567       } else {
1568          result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1569          assert(result->type == glsl_type::bool_type);
1570       }
1571       break;
1572 
1573    case ast_bit_and:
1574    case ast_bit_xor:
1575    case ast_bit_or:
1576       op[0] = this->subexpressions[0]->hir(instructions, state);
1577       op[1] = this->subexpressions[1]->hir(instructions, state);
1578       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1579       result = new(ctx) ir_expression(operations[this->oper], type,
1580                                       op[0], op[1]);
1581       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1582       break;
1583 
1584    case ast_bit_not:
1585       op[0] = this->subexpressions[0]->hir(instructions, state);
1586 
1587       if (!state->check_bitwise_operations_allowed(&loc)) {
1588          error_emitted = true;
1589       }
1590 
1591       if (!op[0]->type->is_integer_32_64()) {
1592          _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1593          error_emitted = true;
1594       }
1595 
1596       type = error_emitted ? glsl_type::error_type : op[0]->type;
1597       result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1598       break;
1599 
1600    case ast_logic_and: {
1601       exec_list rhs_instructions;
1602       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1603                                          "LHS", &error_emitted);
1604       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1605                                          "RHS", &error_emitted);
1606 
1607       if (rhs_instructions.is_empty()) {
1608          result = new(ctx) ir_expression(ir_binop_logic_and, op[0], op[1]);
1609       } else {
1610          ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1611                                                        "and_tmp",
1612                                                        ir_var_temporary);
1613          instructions->push_tail(tmp);
1614 
1615          ir_if *const stmt = new(ctx) ir_if(op[0]);
1616          instructions->push_tail(stmt);
1617 
1618          stmt->then_instructions.append_list(&rhs_instructions);
1619          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1620          ir_assignment *const then_assign =
1621             new(ctx) ir_assignment(then_deref, op[1]);
1622          stmt->then_instructions.push_tail(then_assign);
1623 
1624          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1625          ir_assignment *const else_assign =
1626             new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false));
1627          stmt->else_instructions.push_tail(else_assign);
1628 
1629          result = new(ctx) ir_dereference_variable(tmp);
1630       }
1631       break;
1632    }
1633 
1634    case ast_logic_or: {
1635       exec_list rhs_instructions;
1636       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1637                                          "LHS", &error_emitted);
1638       op[1] = get_scalar_boolean_operand(&rhs_instructions, state, this, 1,
1639                                          "RHS", &error_emitted);
1640 
1641       if (rhs_instructions.is_empty()) {
1642          result = new(ctx) ir_expression(ir_binop_logic_or, op[0], op[1]);
1643       } else {
1644          ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1645                                                        "or_tmp",
1646                                                        ir_var_temporary);
1647          instructions->push_tail(tmp);
1648 
1649          ir_if *const stmt = new(ctx) ir_if(op[0]);
1650          instructions->push_tail(stmt);
1651 
1652          ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1653          ir_assignment *const then_assign =
1654             new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true));
1655          stmt->then_instructions.push_tail(then_assign);
1656 
1657          stmt->else_instructions.append_list(&rhs_instructions);
1658          ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1659          ir_assignment *const else_assign =
1660             new(ctx) ir_assignment(else_deref, op[1]);
1661          stmt->else_instructions.push_tail(else_assign);
1662 
1663          result = new(ctx) ir_dereference_variable(tmp);
1664       }
1665       break;
1666    }
1667 
1668    case ast_logic_xor:
1669       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1670        *
1671        *    "The logical binary operators and (&&), or ( | | ), and
1672        *     exclusive or (^^). They operate only on two Boolean
1673        *     expressions and result in a Boolean expression."
1674        */
1675       op[0] = get_scalar_boolean_operand(instructions, state, this, 0, "LHS",
1676                                          &error_emitted);
1677       op[1] = get_scalar_boolean_operand(instructions, state, this, 1, "RHS",
1678                                          &error_emitted);
1679 
1680       result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1681                                       op[0], op[1]);
1682       break;
1683 
1684    case ast_logic_not:
1685       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1686                                          "operand", &error_emitted);
1687 
1688       result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1689                                       op[0], NULL);
1690       break;
1691 
1692    case ast_mul_assign:
1693    case ast_div_assign:
1694    case ast_add_assign:
1695    case ast_sub_assign: {
1696       this->subexpressions[0]->set_is_lhs(true);
1697       op[0] = this->subexpressions[0]->hir(instructions, state);
1698       op[1] = this->subexpressions[1]->hir(instructions, state);
1699 
1700       orig_type = op[0]->type;
1701 
1702       /* Break out if operand types were not parsed successfully. */
1703       if ((op[0]->type == glsl_type::error_type ||
1704            op[1]->type == glsl_type::error_type)) {
1705          error_emitted = true;
1706          result = ir_rvalue::error_value(ctx);
1707          break;
1708       }
1709 
1710       type = arithmetic_result_type(op[0], op[1],
1711                                     (this->oper == ast_mul_assign),
1712                                     state, & loc);
1713 
1714       if (type != orig_type) {
1715          _mesa_glsl_error(& loc, state,
1716                           "could not implicitly convert "
1717                           "%s to %s", type->name, orig_type->name);
1718          type = glsl_type::error_type;
1719       }
1720 
1721       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1722                                                    op[0], op[1]);
1723 
1724       error_emitted =
1725          do_assignment(instructions, state,
1726                        this->subexpressions[0]->non_lvalue_description,
1727                        op[0]->clone(ctx, NULL), temp_rhs,
1728                        &result, needs_rvalue, false,
1729                        this->subexpressions[0]->get_location());
1730 
1731       /* GLSL 1.10 does not allow array assignment.  However, we don't have to
1732        * explicitly test for this because none of the binary expression
1733        * operators allow array operands either.
1734        */
1735 
1736       break;
1737    }
1738 
1739    case ast_mod_assign: {
1740       this->subexpressions[0]->set_is_lhs(true);
1741       op[0] = this->subexpressions[0]->hir(instructions, state);
1742       op[1] = this->subexpressions[1]->hir(instructions, state);
1743 
1744       /* Break out if operand types were not parsed successfully. */
1745       if ((op[0]->type == glsl_type::error_type ||
1746            op[1]->type == glsl_type::error_type)) {
1747          error_emitted = true;
1748          result = ir_rvalue::error_value(ctx);
1749          break;
1750       }
1751 
1752       orig_type = op[0]->type;
1753       type = modulus_result_type(op[0], op[1], state, &loc);
1754 
1755       if (type != orig_type) {
1756          _mesa_glsl_error(& loc, state,
1757                           "could not implicitly convert "
1758                           "%s to %s", type->name, orig_type->name);
1759          type = glsl_type::error_type;
1760       }
1761 
1762       assert(operations[this->oper] == ir_binop_mod);
1763 
1764       ir_rvalue *temp_rhs;
1765       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1766                                         op[0], op[1]);
1767 
1768       error_emitted =
1769          do_assignment(instructions, state,
1770                        this->subexpressions[0]->non_lvalue_description,
1771                        op[0]->clone(ctx, NULL), temp_rhs,
1772                        &result, needs_rvalue, false,
1773                        this->subexpressions[0]->get_location());
1774       break;
1775    }
1776 
1777    case ast_ls_assign:
1778    case ast_rs_assign: {
1779       this->subexpressions[0]->set_is_lhs(true);
1780       op[0] = this->subexpressions[0]->hir(instructions, state);
1781       op[1] = this->subexpressions[1]->hir(instructions, state);
1782 
1783       /* Break out if operand types were not parsed successfully. */
1784       if ((op[0]->type == glsl_type::error_type ||
1785            op[1]->type == glsl_type::error_type)) {
1786          error_emitted = true;
1787          result = ir_rvalue::error_value(ctx);
1788          break;
1789       }
1790 
1791       type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1792                                &loc);
1793       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1794                                                    type, op[0], op[1]);
1795       error_emitted =
1796          do_assignment(instructions, state,
1797                        this->subexpressions[0]->non_lvalue_description,
1798                        op[0]->clone(ctx, NULL), temp_rhs,
1799                        &result, needs_rvalue, false,
1800                        this->subexpressions[0]->get_location());
1801       break;
1802    }
1803 
1804    case ast_and_assign:
1805    case ast_xor_assign:
1806    case ast_or_assign: {
1807       this->subexpressions[0]->set_is_lhs(true);
1808       op[0] = this->subexpressions[0]->hir(instructions, state);
1809       op[1] = this->subexpressions[1]->hir(instructions, state);
1810 
1811       /* Break out if operand types were not parsed successfully. */
1812       if ((op[0]->type == glsl_type::error_type ||
1813            op[1]->type == glsl_type::error_type)) {
1814          error_emitted = true;
1815          result = ir_rvalue::error_value(ctx);
1816          break;
1817       }
1818 
1819       orig_type = op[0]->type;
1820       type = bit_logic_result_type(op[0], op[1], this->oper, state, &loc);
1821 
1822       if (type != orig_type) {
1823          _mesa_glsl_error(& loc, state,
1824                           "could not implicitly convert "
1825                           "%s to %s", type->name, orig_type->name);
1826          type = glsl_type::error_type;
1827       }
1828 
1829       ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1830                                                    type, op[0], op[1]);
1831       error_emitted =
1832          do_assignment(instructions, state,
1833                        this->subexpressions[0]->non_lvalue_description,
1834                        op[0]->clone(ctx, NULL), temp_rhs,
1835                        &result, needs_rvalue, false,
1836                        this->subexpressions[0]->get_location());
1837       break;
1838    }
1839 
1840    case ast_conditional: {
1841       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1842        *
1843        *    "The ternary selection operator (?:). It operates on three
1844        *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
1845        *    first expression, which must result in a scalar Boolean."
1846        */
1847       op[0] = get_scalar_boolean_operand(instructions, state, this, 0,
1848                                          "condition", &error_emitted);
1849 
1850       /* The :? operator is implemented by generating an anonymous temporary
1851        * followed by an if-statement.  The last instruction in each branch of
1852        * the if-statement assigns a value to the anonymous temporary.  This
1853        * temporary is the r-value of the expression.
1854        */
1855       exec_list then_instructions;
1856       exec_list else_instructions;
1857 
1858       op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1859       op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1860 
1861       /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1862        *
1863        *     "The second and third expressions can be any type, as
1864        *     long their types match, or there is a conversion in
1865        *     Section 4.1.10 "Implicit Conversions" that can be applied
1866        *     to one of the expressions to make their types match. This
1867        *     resulting matching type is the type of the entire
1868        *     expression."
1869        */
1870       if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1871           && !apply_implicit_conversion(op[2]->type, op[1], state))
1872           || (op[1]->type != op[2]->type)) {
1873          YYLTYPE loc = this->subexpressions[1]->get_location();
1874 
1875          _mesa_glsl_error(& loc, state, "second and third operands of ?: "
1876                           "operator must have matching types");
1877          error_emitted = true;
1878          type = glsl_type::error_type;
1879       } else {
1880          type = op[1]->type;
1881       }
1882 
1883       /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1884        *
1885        *    "The second and third expressions must be the same type, but can
1886        *    be of any type other than an array."
1887        */
1888       if (type->is_array() &&
1889           !state->check_version(120, 300, &loc,
1890                                 "second and third operands of ?: operator "
1891                                 "cannot be arrays")) {
1892          error_emitted = true;
1893       }
1894 
1895       /* From section 4.1.7 of the GLSL 4.50 spec (Opaque Types):
1896        *
1897        *  "Except for array indexing, structure member selection, and
1898        *   parentheses, opaque variables are not allowed to be operands in
1899        *   expressions; such use results in a compile-time error."
1900        */
1901       if (type->contains_opaque()) {
1902          if (!(state->has_bindless() && (type->is_image() || type->is_sampler()))) {
1903             _mesa_glsl_error(&loc, state, "variables of type %s cannot be "
1904                              "operands of the ?: operator", type->name);
1905             error_emitted = true;
1906          }
1907       }
1908 
1909       ir_constant *cond_val = op[0]->constant_expression_value(ctx);
1910 
1911       if (then_instructions.is_empty()
1912           && else_instructions.is_empty()
1913           && cond_val != NULL) {
1914          result = cond_val->value.b[0] ? op[1] : op[2];
1915       } else {
1916          /* The copy to conditional_tmp reads the whole array. */
1917          if (type->is_array()) {
1918             mark_whole_array_access(op[1]);
1919             mark_whole_array_access(op[2]);
1920          }
1921 
1922          ir_variable *const tmp =
1923             new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1924          instructions->push_tail(tmp);
1925 
1926          ir_if *const stmt = new(ctx) ir_if(op[0]);
1927          instructions->push_tail(stmt);
1928 
1929          then_instructions.move_nodes_to(& stmt->then_instructions);
1930          ir_dereference *const then_deref =
1931             new(ctx) ir_dereference_variable(tmp);
1932          ir_assignment *const then_assign =
1933             new(ctx) ir_assignment(then_deref, op[1]);
1934          stmt->then_instructions.push_tail(then_assign);
1935 
1936          else_instructions.move_nodes_to(& stmt->else_instructions);
1937          ir_dereference *const else_deref =
1938             new(ctx) ir_dereference_variable(tmp);
1939          ir_assignment *const else_assign =
1940             new(ctx) ir_assignment(else_deref, op[2]);
1941          stmt->else_instructions.push_tail(else_assign);
1942 
1943          result = new(ctx) ir_dereference_variable(tmp);
1944       }
1945       break;
1946    }
1947 
1948    case ast_pre_inc:
1949    case ast_pre_dec: {
1950       this->non_lvalue_description = (this->oper == ast_pre_inc)
1951          ? "pre-increment operation" : "pre-decrement operation";
1952 
1953       op[0] = this->subexpressions[0]->hir(instructions, state);
1954       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1955 
1956       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1957 
1958       ir_rvalue *temp_rhs;
1959       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1960                                         op[0], op[1]);
1961 
1962       error_emitted =
1963          do_assignment(instructions, state,
1964                        this->subexpressions[0]->non_lvalue_description,
1965                        op[0]->clone(ctx, NULL), temp_rhs,
1966                        &result, needs_rvalue, false,
1967                        this->subexpressions[0]->get_location());
1968       break;
1969    }
1970 
1971    case ast_post_inc:
1972    case ast_post_dec: {
1973       this->non_lvalue_description = (this->oper == ast_post_inc)
1974          ? "post-increment operation" : "post-decrement operation";
1975       op[0] = this->subexpressions[0]->hir(instructions, state);
1976       op[1] = constant_one_for_inc_dec(ctx, op[0]->type);
1977 
1978       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1979 
1980       if (error_emitted) {
1981          result = ir_rvalue::error_value(ctx);
1982          break;
1983       }
1984 
1985       type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1986 
1987       ir_rvalue *temp_rhs;
1988       temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1989                                         op[0], op[1]);
1990 
1991       /* Get a temporary of a copy of the lvalue before it's modified.
1992        * This may get thrown away later.
1993        */
1994       result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1995 
1996       ir_rvalue *junk_rvalue;
1997       error_emitted =
1998          do_assignment(instructions, state,
1999                        this->subexpressions[0]->non_lvalue_description,
2000                        op[0]->clone(ctx, NULL), temp_rhs,
2001                        &junk_rvalue, false, false,
2002                        this->subexpressions[0]->get_location());
2003 
2004       break;
2005    }
2006 
2007    case ast_field_selection:
2008       result = _mesa_ast_field_selection_to_hir(this, instructions, state);
2009       break;
2010 
2011    case ast_array_index: {
2012       YYLTYPE index_loc = subexpressions[1]->get_location();
2013 
2014       /* Getting if an array is being used uninitialized is beyond what we get
2015        * from ir_value.data.assigned. Setting is_lhs as true would force to
2016        * not raise a uninitialized warning when using an array
2017        */
2018       subexpressions[0]->set_is_lhs(true);
2019       op[0] = subexpressions[0]->hir(instructions, state);
2020       op[1] = subexpressions[1]->hir(instructions, state);
2021 
2022       result = _mesa_ast_array_index_to_hir(ctx, state, op[0], op[1],
2023                                             loc, index_loc);
2024 
2025       if (result->type->is_error())
2026          error_emitted = true;
2027 
2028       break;
2029    }
2030 
2031    case ast_unsized_array_dim:
2032       unreachable("ast_unsized_array_dim: Should never get here.");
2033 
2034    case ast_function_call:
2035       /* Should *NEVER* get here.  ast_function_call should always be handled
2036        * by ast_function_expression::hir.
2037        */
2038       unreachable("ast_function_call: handled elsewhere ");
2039 
2040    case ast_identifier: {
2041       /* ast_identifier can appear several places in a full abstract syntax
2042        * tree.  This particular use must be at location specified in the grammar
2043        * as 'variable_identifier'.
2044        */
2045       ir_variable *var =
2046          state->symbols->get_variable(this->primary_expression.identifier);
2047 
2048       if (var == NULL) {
2049          /* the identifier might be a subroutine name */
2050          char *sub_name;
2051          sub_name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), this->primary_expression.identifier);
2052          var = state->symbols->get_variable(sub_name);
2053          ralloc_free(sub_name);
2054       }
2055 
2056       if (var != NULL) {
2057          var->data.used = true;
2058          result = new(ctx) ir_dereference_variable(var);
2059 
2060          if ((var->data.mode == ir_var_auto || var->data.mode == ir_var_shader_out)
2061              && !this->is_lhs
2062              && result->variable_referenced()->data.assigned != true
2063              && !is_gl_identifier(var->name)) {
2064             _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
2065                                this->primary_expression.identifier);
2066          }
2067 
2068          /* From the EXT_shader_framebuffer_fetch spec:
2069           *
2070           *   "Unless the GL_EXT_shader_framebuffer_fetch extension has been
2071           *    enabled in addition, it's an error to use gl_LastFragData if it
2072           *    hasn't been explicitly redeclared with layout(noncoherent)."
2073           */
2074          if (var->data.fb_fetch_output && var->data.memory_coherent &&
2075              !state->EXT_shader_framebuffer_fetch_enable) {
2076             _mesa_glsl_error(&loc, state,
2077                              "invalid use of framebuffer fetch output not "
2078                              "qualified with layout(noncoherent)");
2079          }
2080 
2081       } else {
2082          _mesa_glsl_error(& loc, state, "`%s' undeclared",
2083                           this->primary_expression.identifier);
2084 
2085          result = ir_rvalue::error_value(ctx);
2086          error_emitted = true;
2087       }
2088       break;
2089    }
2090 
2091    case ast_int_constant:
2092       result = new(ctx) ir_constant(this->primary_expression.int_constant);
2093       break;
2094 
2095    case ast_uint_constant:
2096       result = new(ctx) ir_constant(this->primary_expression.uint_constant);
2097       break;
2098 
2099    case ast_float_constant:
2100       result = new(ctx) ir_constant(this->primary_expression.float_constant);
2101       break;
2102 
2103    case ast_bool_constant:
2104       result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
2105       break;
2106 
2107    case ast_double_constant:
2108       result = new(ctx) ir_constant(this->primary_expression.double_constant);
2109       break;
2110 
2111    case ast_uint64_constant:
2112       result = new(ctx) ir_constant(this->primary_expression.uint64_constant);
2113       break;
2114 
2115    case ast_int64_constant:
2116       result = new(ctx) ir_constant(this->primary_expression.int64_constant);
2117       break;
2118 
2119    case ast_sequence: {
2120       /* It should not be possible to generate a sequence in the AST without
2121        * any expressions in it.
2122        */
2123       assert(!this->expressions.is_empty());
2124 
2125       /* The r-value of a sequence is the last expression in the sequence.  If
2126        * the other expressions in the sequence do not have side-effects (and
2127        * therefore add instructions to the instruction list), they get dropped
2128        * on the floor.
2129        */
2130       exec_node *previous_tail = NULL;
2131       YYLTYPE previous_operand_loc = loc;
2132 
2133       foreach_list_typed (ast_node, ast, link, &this->expressions) {
2134          /* If one of the operands of comma operator does not generate any
2135           * code, we want to emit a warning.  At each pass through the loop
2136           * previous_tail will point to the last instruction in the stream
2137           * *before* processing the previous operand.  Naturally,
2138           * instructions->get_tail_raw() will point to the last instruction in
2139           * the stream *after* processing the previous operand.  If the two
2140           * pointers match, then the previous operand had no effect.
2141           *
2142           * The warning behavior here differs slightly from GCC.  GCC will
2143           * only emit a warning if none of the left-hand operands have an
2144           * effect.  However, it will emit a warning for each.  I believe that
2145           * there are some cases in C (especially with GCC extensions) where
2146           * it is useful to have an intermediate step in a sequence have no
2147           * effect, but I don't think these cases exist in GLSL.  Either way,
2148           * it would be a giant hassle to replicate that behavior.
2149           */
2150          if (previous_tail == instructions->get_tail_raw()) {
2151             _mesa_glsl_warning(&previous_operand_loc, state,
2152                                "left-hand operand of comma expression has "
2153                                "no effect");
2154          }
2155 
2156          /* The tail is directly accessed instead of using the get_tail()
2157           * method for performance reasons.  get_tail() has extra code to
2158           * return NULL when the list is empty.  We don't care about that
2159           * here, so using get_tail_raw() is fine.
2160           */
2161          previous_tail = instructions->get_tail_raw();
2162          previous_operand_loc = ast->get_location();
2163 
2164          result = ast->hir(instructions, state);
2165       }
2166 
2167       /* Any errors should have already been emitted in the loop above.
2168        */
2169       error_emitted = true;
2170       break;
2171    }
2172    }
2173    type = NULL; /* use result->type, not type. */
2174    assert(error_emitted || (result != NULL || !needs_rvalue));
2175 
2176    if (result && result->type->is_error() && !error_emitted)
2177       _mesa_glsl_error(& loc, state, "type mismatch");
2178 
2179    return result;
2180 }
2181 
2182 bool
has_sequence_subexpression() const2183 ast_expression::has_sequence_subexpression() const
2184 {
2185    switch (this->oper) {
2186    case ast_plus:
2187    case ast_neg:
2188    case ast_bit_not:
2189    case ast_logic_not:
2190    case ast_pre_inc:
2191    case ast_pre_dec:
2192    case ast_post_inc:
2193    case ast_post_dec:
2194       return this->subexpressions[0]->has_sequence_subexpression();
2195 
2196    case ast_assign:
2197    case ast_add:
2198    case ast_sub:
2199    case ast_mul:
2200    case ast_div:
2201    case ast_mod:
2202    case ast_lshift:
2203    case ast_rshift:
2204    case ast_less:
2205    case ast_greater:
2206    case ast_lequal:
2207    case ast_gequal:
2208    case ast_nequal:
2209    case ast_equal:
2210    case ast_bit_and:
2211    case ast_bit_xor:
2212    case ast_bit_or:
2213    case ast_logic_and:
2214    case ast_logic_or:
2215    case ast_logic_xor:
2216    case ast_array_index:
2217    case ast_mul_assign:
2218    case ast_div_assign:
2219    case ast_add_assign:
2220    case ast_sub_assign:
2221    case ast_mod_assign:
2222    case ast_ls_assign:
2223    case ast_rs_assign:
2224    case ast_and_assign:
2225    case ast_xor_assign:
2226    case ast_or_assign:
2227       return this->subexpressions[0]->has_sequence_subexpression() ||
2228              this->subexpressions[1]->has_sequence_subexpression();
2229 
2230    case ast_conditional:
2231       return this->subexpressions[0]->has_sequence_subexpression() ||
2232              this->subexpressions[1]->has_sequence_subexpression() ||
2233              this->subexpressions[2]->has_sequence_subexpression();
2234 
2235    case ast_sequence:
2236       return true;
2237 
2238    case ast_field_selection:
2239    case ast_identifier:
2240    case ast_int_constant:
2241    case ast_uint_constant:
2242    case ast_float_constant:
2243    case ast_bool_constant:
2244    case ast_double_constant:
2245    case ast_int64_constant:
2246    case ast_uint64_constant:
2247       return false;
2248 
2249    case ast_aggregate:
2250       return false;
2251 
2252    case ast_function_call:
2253       unreachable("should be handled by ast_function_expression::hir");
2254 
2255    case ast_unsized_array_dim:
2256       unreachable("ast_unsized_array_dim: Should never get here.");
2257    }
2258 
2259    return false;
2260 }
2261 
2262 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2263 ast_expression_statement::hir(exec_list *instructions,
2264                               struct _mesa_glsl_parse_state *state)
2265 {
2266    /* It is possible to have expression statements that don't have an
2267     * expression.  This is the solitary semicolon:
2268     *
2269     * for (i = 0; i < 5; i++)
2270     *     ;
2271     *
2272     * In this case the expression will be NULL.  Test for NULL and don't do
2273     * anything in that case.
2274     */
2275    if (expression != NULL)
2276       expression->hir_no_rvalue(instructions, state);
2277 
2278    /* Statements do not have r-values.
2279     */
2280    return NULL;
2281 }
2282 
2283 
2284 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2285 ast_compound_statement::hir(exec_list *instructions,
2286                             struct _mesa_glsl_parse_state *state)
2287 {
2288    if (new_scope)
2289       state->symbols->push_scope();
2290 
2291    foreach_list_typed (ast_node, ast, link, &this->statements)
2292       ast->hir(instructions, state);
2293 
2294    if (new_scope)
2295       state->symbols->pop_scope();
2296 
2297    /* Compound statements do not have r-values.
2298     */
2299    return NULL;
2300 }
2301 
2302 /**
2303  * Evaluate the given exec_node (which should be an ast_node representing
2304  * a single array dimension) and return its integer value.
2305  */
2306 static unsigned
process_array_size(exec_node * node,struct _mesa_glsl_parse_state * state)2307 process_array_size(exec_node *node,
2308                    struct _mesa_glsl_parse_state *state)
2309 {
2310    void *mem_ctx = state;
2311 
2312    exec_list dummy_instructions;
2313 
2314    ast_node *array_size = exec_node_data(ast_node, node, link);
2315 
2316    /**
2317     * Dimensions other than the outermost dimension can by unsized if they
2318     * are immediately sized by a constructor or initializer.
2319     */
2320    if (((ast_expression*)array_size)->oper == ast_unsized_array_dim)
2321       return 0;
2322 
2323    ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
2324    YYLTYPE loc = array_size->get_location();
2325 
2326    if (ir == NULL) {
2327       _mesa_glsl_error(& loc, state,
2328                        "array size could not be resolved");
2329       return 0;
2330    }
2331 
2332    if (!ir->type->is_integer_32()) {
2333       _mesa_glsl_error(& loc, state,
2334                        "array size must be integer type");
2335       return 0;
2336    }
2337 
2338    if (!ir->type->is_scalar()) {
2339       _mesa_glsl_error(& loc, state,
2340                        "array size must be scalar type");
2341       return 0;
2342    }
2343 
2344    ir_constant *const size = ir->constant_expression_value(mem_ctx);
2345    if (size == NULL ||
2346        (state->is_version(120, 300) &&
2347         array_size->has_sequence_subexpression())) {
2348       _mesa_glsl_error(& loc, state, "array size must be a "
2349                        "constant valued expression");
2350       return 0;
2351    }
2352 
2353    if (size->value.i[0] <= 0) {
2354       _mesa_glsl_error(& loc, state, "array size must be > 0");
2355       return 0;
2356    }
2357 
2358    assert(size->type == ir->type);
2359 
2360    /* If the array size is const (and we've verified that
2361     * it is) then no instructions should have been emitted
2362     * when we converted it to HIR. If they were emitted,
2363     * then either the array size isn't const after all, or
2364     * we are emitting unnecessary instructions.
2365     */
2366    assert(dummy_instructions.is_empty());
2367 
2368    return size->value.u[0];
2369 }
2370 
2371 static const glsl_type *
process_array_type(YYLTYPE * loc,const glsl_type * base,ast_array_specifier * array_specifier,struct _mesa_glsl_parse_state * state)2372 process_array_type(YYLTYPE *loc, const glsl_type *base,
2373                    ast_array_specifier *array_specifier,
2374                    struct _mesa_glsl_parse_state *state)
2375 {
2376    const glsl_type *array_type = base;
2377 
2378    if (array_specifier != NULL) {
2379       if (base->is_array()) {
2380 
2381          /* From page 19 (page 25) of the GLSL 1.20 spec:
2382           *
2383           * "Only one-dimensional arrays may be declared."
2384           */
2385          if (!state->check_arrays_of_arrays_allowed(loc)) {
2386             return glsl_type::error_type;
2387          }
2388       }
2389 
2390       for (exec_node *node = array_specifier->array_dimensions.get_tail_raw();
2391            !node->is_head_sentinel(); node = node->prev) {
2392          unsigned array_size = process_array_size(node, state);
2393          array_type = glsl_type::get_array_instance(array_type, array_size);
2394       }
2395    }
2396 
2397    return array_type;
2398 }
2399 
2400 static bool
precision_qualifier_allowed(const glsl_type * type)2401 precision_qualifier_allowed(const glsl_type *type)
2402 {
2403    /* Precision qualifiers apply to floating point, integer and opaque
2404     * types.
2405     *
2406     * Section 4.5.2 (Precision Qualifiers) of the GLSL 1.30 spec says:
2407     *    "Any floating point or any integer declaration can have the type
2408     *    preceded by one of these precision qualifiers [...] Literal
2409     *    constants do not have precision qualifiers. Neither do Boolean
2410     *    variables.
2411     *
2412     * Section 4.5 (Precision and Precision Qualifiers) of the GLSL 1.30
2413     * spec also says:
2414     *
2415     *     "Precision qualifiers are added for code portability with OpenGL
2416     *     ES, not for functionality. They have the same syntax as in OpenGL
2417     *     ES."
2418     *
2419     * Section 8 (Built-In Functions) of the GLSL ES 1.00 spec says:
2420     *
2421     *     "uniform lowp sampler2D sampler;
2422     *     highp vec2 coord;
2423     *     ...
2424     *     lowp vec4 col = texture2D (sampler, coord);
2425     *                                            // texture2D returns lowp"
2426     *
2427     * From this, we infer that GLSL 1.30 (and later) should allow precision
2428     * qualifiers on sampler types just like float and integer types.
2429     */
2430    const glsl_type *const t = type->without_array();
2431 
2432    return (t->is_float() || t->is_integer_32() || t->contains_opaque()) &&
2433           !t->is_struct();
2434 }
2435 
2436 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2437 ast_type_specifier::glsl_type(const char **name,
2438                               struct _mesa_glsl_parse_state *state) const
2439 {
2440    const struct glsl_type *type;
2441 
2442    if (this->type != NULL)
2443       type = this->type;
2444    else if (structure)
2445       type = structure->type;
2446    else
2447       type = state->symbols->get_type(this->type_name);
2448    *name = this->type_name;
2449 
2450    YYLTYPE loc = this->get_location();
2451    type = process_array_type(&loc, type, this->array_specifier, state);
2452 
2453    return type;
2454 }
2455 
2456 /**
2457  * From the OpenGL ES 3.0 spec, 4.5.4 Default Precision Qualifiers:
2458  *
2459  * "The precision statement
2460  *
2461  *    precision precision-qualifier type;
2462  *
2463  *  can be used to establish a default precision qualifier. The type field can
2464  *  be either int or float or any of the sampler types, (...) If type is float,
2465  *  the directive applies to non-precision-qualified floating point type
2466  *  (scalar, vector, and matrix) declarations. If type is int, the directive
2467  *  applies to all non-precision-qualified integer type (scalar, vector, signed,
2468  *  and unsigned) declarations."
2469  *
2470  * We use the symbol table to keep the values of the default precisions for
2471  * each 'type' in each scope and we use the 'type' string from the precision
2472  * statement as key in the symbol table. When we want to retrieve the default
2473  * precision associated with a given glsl_type we need to know the type string
2474  * associated with it. This is what this function returns.
2475  */
2476 static const char *
get_type_name_for_precision_qualifier(const glsl_type * type)2477 get_type_name_for_precision_qualifier(const glsl_type *type)
2478 {
2479    switch (type->base_type) {
2480    case GLSL_TYPE_FLOAT:
2481       return "float";
2482    case GLSL_TYPE_UINT:
2483    case GLSL_TYPE_INT:
2484       return "int";
2485    case GLSL_TYPE_ATOMIC_UINT:
2486       return "atomic_uint";
2487    case GLSL_TYPE_IMAGE:
2488    FALLTHROUGH;
2489    case GLSL_TYPE_SAMPLER: {
2490       const unsigned type_idx =
2491          type->sampler_array + 2 * type->sampler_shadow;
2492       const unsigned offset = type->is_sampler() ? 0 : 4;
2493       assert(type_idx < 4);
2494       switch (type->sampled_type) {
2495       case GLSL_TYPE_FLOAT:
2496          switch (type->sampler_dimensionality) {
2497          case GLSL_SAMPLER_DIM_1D: {
2498             assert(type->is_sampler());
2499             static const char *const names[4] = {
2500               "sampler1D", "sampler1DArray",
2501               "sampler1DShadow", "sampler1DArrayShadow"
2502             };
2503             return names[type_idx];
2504          }
2505          case GLSL_SAMPLER_DIM_2D: {
2506             static const char *const names[8] = {
2507               "sampler2D", "sampler2DArray",
2508               "sampler2DShadow", "sampler2DArrayShadow",
2509               "image2D", "image2DArray", NULL, NULL
2510             };
2511             return names[offset + type_idx];
2512          }
2513          case GLSL_SAMPLER_DIM_3D: {
2514             static const char *const names[8] = {
2515               "sampler3D", NULL, NULL, NULL,
2516               "image3D", NULL, NULL, NULL
2517             };
2518             return names[offset + type_idx];
2519          }
2520          case GLSL_SAMPLER_DIM_CUBE: {
2521             static const char *const names[8] = {
2522               "samplerCube", "samplerCubeArray",
2523               "samplerCubeShadow", "samplerCubeArrayShadow",
2524               "imageCube", NULL, NULL, NULL
2525             };
2526             return names[offset + type_idx];
2527          }
2528          case GLSL_SAMPLER_DIM_MS: {
2529             assert(type->is_sampler());
2530             static const char *const names[4] = {
2531               "sampler2DMS", "sampler2DMSArray", NULL, NULL
2532             };
2533             return names[type_idx];
2534          }
2535          case GLSL_SAMPLER_DIM_RECT: {
2536             assert(type->is_sampler());
2537             static const char *const names[4] = {
2538               "samplerRect", NULL, "samplerRectShadow", NULL
2539             };
2540             return names[type_idx];
2541          }
2542          case GLSL_SAMPLER_DIM_BUF: {
2543             static const char *const names[8] = {
2544               "samplerBuffer", NULL, NULL, NULL,
2545               "imageBuffer", NULL, NULL, NULL
2546             };
2547             return names[offset + type_idx];
2548          }
2549          case GLSL_SAMPLER_DIM_EXTERNAL: {
2550             assert(type->is_sampler());
2551             static const char *const names[4] = {
2552               "samplerExternalOES", NULL, NULL, NULL
2553             };
2554             return names[type_idx];
2555          }
2556          default:
2557             unreachable("Unsupported sampler/image dimensionality");
2558          } /* sampler/image float dimensionality */
2559          break;
2560       case GLSL_TYPE_INT:
2561          switch (type->sampler_dimensionality) {
2562          case GLSL_SAMPLER_DIM_1D: {
2563             assert(type->is_sampler());
2564             static const char *const names[4] = {
2565               "isampler1D", "isampler1DArray", NULL, NULL
2566             };
2567             return names[type_idx];
2568          }
2569          case GLSL_SAMPLER_DIM_2D: {
2570             static const char *const names[8] = {
2571               "isampler2D", "isampler2DArray", NULL, NULL,
2572               "iimage2D", "iimage2DArray", NULL, NULL
2573             };
2574             return names[offset + type_idx];
2575          }
2576          case GLSL_SAMPLER_DIM_3D: {
2577             static const char *const names[8] = {
2578               "isampler3D", NULL, NULL, NULL,
2579               "iimage3D", NULL, NULL, NULL
2580             };
2581             return names[offset + type_idx];
2582          }
2583          case GLSL_SAMPLER_DIM_CUBE: {
2584             static const char *const names[8] = {
2585               "isamplerCube", "isamplerCubeArray", NULL, NULL,
2586               "iimageCube", NULL, NULL, NULL
2587             };
2588             return names[offset + type_idx];
2589          }
2590          case GLSL_SAMPLER_DIM_MS: {
2591             assert(type->is_sampler());
2592             static const char *const names[4] = {
2593               "isampler2DMS", "isampler2DMSArray", NULL, NULL
2594             };
2595             return names[type_idx];
2596          }
2597          case GLSL_SAMPLER_DIM_RECT: {
2598             assert(type->is_sampler());
2599             static const char *const names[4] = {
2600               "isamplerRect", NULL, "isamplerRectShadow", NULL
2601             };
2602             return names[type_idx];
2603          }
2604          case GLSL_SAMPLER_DIM_BUF: {
2605             static const char *const names[8] = {
2606               "isamplerBuffer", NULL, NULL, NULL,
2607               "iimageBuffer", NULL, NULL, NULL
2608             };
2609             return names[offset + type_idx];
2610          }
2611          default:
2612             unreachable("Unsupported isampler/iimage dimensionality");
2613          } /* sampler/image int dimensionality */
2614          break;
2615       case GLSL_TYPE_UINT:
2616          switch (type->sampler_dimensionality) {
2617          case GLSL_SAMPLER_DIM_1D: {
2618             assert(type->is_sampler());
2619             static const char *const names[4] = {
2620               "usampler1D", "usampler1DArray", NULL, NULL
2621             };
2622             return names[type_idx];
2623          }
2624          case GLSL_SAMPLER_DIM_2D: {
2625             static const char *const names[8] = {
2626               "usampler2D", "usampler2DArray", NULL, NULL,
2627               "uimage2D", "uimage2DArray", NULL, NULL
2628             };
2629             return names[offset + type_idx];
2630          }
2631          case GLSL_SAMPLER_DIM_3D: {
2632             static const char *const names[8] = {
2633               "usampler3D", NULL, NULL, NULL,
2634               "uimage3D", NULL, NULL, NULL
2635             };
2636             return names[offset + type_idx];
2637          }
2638          case GLSL_SAMPLER_DIM_CUBE: {
2639             static const char *const names[8] = {
2640               "usamplerCube", "usamplerCubeArray", NULL, NULL,
2641               "uimageCube", NULL, NULL, NULL
2642             };
2643             return names[offset + type_idx];
2644          }
2645          case GLSL_SAMPLER_DIM_MS: {
2646             assert(type->is_sampler());
2647             static const char *const names[4] = {
2648               "usampler2DMS", "usampler2DMSArray", NULL, NULL
2649             };
2650             return names[type_idx];
2651          }
2652          case GLSL_SAMPLER_DIM_RECT: {
2653             assert(type->is_sampler());
2654             static const char *const names[4] = {
2655               "usamplerRect", NULL, "usamplerRectShadow", NULL
2656             };
2657             return names[type_idx];
2658          }
2659          case GLSL_SAMPLER_DIM_BUF: {
2660             static const char *const names[8] = {
2661               "usamplerBuffer", NULL, NULL, NULL,
2662               "uimageBuffer", NULL, NULL, NULL
2663             };
2664             return names[offset + type_idx];
2665          }
2666          default:
2667             unreachable("Unsupported usampler/uimage dimensionality");
2668          } /* sampler/image uint dimensionality */
2669          break;
2670       default:
2671          unreachable("Unsupported sampler/image type");
2672       } /* sampler/image type */
2673       break;
2674    } /* GLSL_TYPE_SAMPLER/GLSL_TYPE_IMAGE */
2675    break;
2676    default:
2677       unreachable("Unsupported type");
2678    } /* base type */
2679 }
2680 
2681 static unsigned
select_gles_precision(unsigned qual_precision,const glsl_type * type,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)2682 select_gles_precision(unsigned qual_precision,
2683                       const glsl_type *type,
2684                       struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
2685 {
2686    /* Precision qualifiers do not have any meaning in Desktop GLSL.
2687     * In GLES we take the precision from the type qualifier if present,
2688     * otherwise, if the type of the variable allows precision qualifiers at
2689     * all, we look for the default precision qualifier for that type in the
2690     * current scope.
2691     */
2692    assert(state->es_shader);
2693 
2694    unsigned precision = GLSL_PRECISION_NONE;
2695    if (qual_precision) {
2696       precision = qual_precision;
2697    } else if (precision_qualifier_allowed(type)) {
2698       const char *type_name =
2699          get_type_name_for_precision_qualifier(type->without_array());
2700       assert(type_name != NULL);
2701 
2702       precision =
2703          state->symbols->get_default_precision_qualifier(type_name);
2704       if (precision == ast_precision_none) {
2705          _mesa_glsl_error(loc, state,
2706                           "No precision specified in this scope for type `%s'",
2707                           type->name);
2708       }
2709    }
2710 
2711 
2712    /* Section 4.1.7.3 (Atomic Counters) of the GLSL ES 3.10 spec says:
2713     *
2714     *    "The default precision of all atomic types is highp. It is an error to
2715     *    declare an atomic type with a different precision or to specify the
2716     *    default precision for an atomic type to be lowp or mediump."
2717     */
2718    if (type->is_atomic_uint() && precision != ast_precision_high) {
2719       _mesa_glsl_error(loc, state,
2720                        "atomic_uint can only have highp precision qualifier");
2721    }
2722 
2723    return precision;
2724 }
2725 
2726 const glsl_type *
glsl_type(const char ** name,struct _mesa_glsl_parse_state * state) const2727 ast_fully_specified_type::glsl_type(const char **name,
2728                                     struct _mesa_glsl_parse_state *state) const
2729 {
2730    return this->specifier->glsl_type(name, state);
2731 }
2732 
2733 /**
2734  * Determine whether a toplevel variable declaration declares a varying.  This
2735  * function operates by examining the variable's mode and the shader target,
2736  * so it correctly identifies linkage variables regardless of whether they are
2737  * declared using the deprecated "varying" syntax or the new "in/out" syntax.
2738  *
2739  * Passing a non-toplevel variable declaration (e.g. a function parameter) to
2740  * this function will produce undefined results.
2741  */
2742 static bool
is_varying_var(ir_variable * var,gl_shader_stage target)2743 is_varying_var(ir_variable *var, gl_shader_stage target)
2744 {
2745    switch (target) {
2746    case MESA_SHADER_VERTEX:
2747       return var->data.mode == ir_var_shader_out;
2748    case MESA_SHADER_FRAGMENT:
2749       return var->data.mode == ir_var_shader_in ||
2750              (var->data.mode == ir_var_system_value &&
2751               var->data.location == SYSTEM_VALUE_FRAG_COORD);
2752    default:
2753       return var->data.mode == ir_var_shader_out || var->data.mode == ir_var_shader_in;
2754    }
2755 }
2756 
2757 static bool
is_allowed_invariant(ir_variable * var,struct _mesa_glsl_parse_state * state)2758 is_allowed_invariant(ir_variable *var, struct _mesa_glsl_parse_state *state)
2759 {
2760    if (is_varying_var(var, state->stage))
2761       return true;
2762 
2763    /* From Section 4.6.1 ("The Invariant Qualifier") GLSL 1.20 spec:
2764     * "Only variables output from a vertex shader can be candidates
2765     * for invariance".
2766     */
2767    if (!state->is_version(130, 100))
2768       return false;
2769 
2770    /*
2771     * Later specs remove this language - so allowed invariant
2772     * on fragment shader outputs as well.
2773     */
2774    if (state->stage == MESA_SHADER_FRAGMENT &&
2775        var->data.mode == ir_var_shader_out)
2776       return true;
2777    return false;
2778 }
2779 
2780 static void
validate_component_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,unsigned qual_component)2781 validate_component_layout_for_type(struct _mesa_glsl_parse_state *state,
2782                                    YYLTYPE *loc, const glsl_type *type,
2783                                    unsigned qual_component)
2784 {
2785    type = type->without_array();
2786    unsigned components = type->component_slots();
2787 
2788    if (type->is_matrix() || type->is_struct()) {
2789        _mesa_glsl_error(loc, state, "component layout qualifier "
2790                         "cannot be applied to a matrix, a structure, "
2791                         "a block, or an array containing any of these.");
2792    } else if (components > 4 && type->is_64bit()) {
2793       _mesa_glsl_error(loc, state, "component layout qualifier "
2794                        "cannot be applied to dvec%u.",
2795                         components / 2);
2796    } else if (qual_component != 0 && (qual_component + components - 1) > 3) {
2797       _mesa_glsl_error(loc, state, "component overflow (%u > 3)",
2798                        (qual_component + components - 1));
2799    } else if (qual_component == 1 && type->is_64bit()) {
2800       /* We don't bother checking for 3 as it should be caught by the
2801        * overflow check above.
2802        */
2803       _mesa_glsl_error(loc, state, "doubles cannot begin at component 1 or 3");
2804    }
2805 }
2806 
2807 /**
2808  * Matrix layout qualifiers are only allowed on certain types
2809  */
2810 static void
validate_matrix_layout_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_type * type,ir_variable * var)2811 validate_matrix_layout_for_type(struct _mesa_glsl_parse_state *state,
2812                                 YYLTYPE *loc,
2813                                 const glsl_type *type,
2814                                 ir_variable *var)
2815 {
2816    if (var && !var->is_in_buffer_block()) {
2817       /* Layout qualifiers may only apply to interface blocks and fields in
2818        * them.
2819        */
2820       _mesa_glsl_error(loc, state,
2821                        "uniform block layout qualifiers row_major and "
2822                        "column_major may not be applied to variables "
2823                        "outside of uniform blocks");
2824    } else if (!type->without_array()->is_matrix()) {
2825       /* The OpenGL ES 3.0 conformance tests did not originally allow
2826        * matrix layout qualifiers on non-matrices.  However, the OpenGL
2827        * 4.4 and OpenGL ES 3.0 (revision TBD) specifications were
2828        * amended to specifically allow these layouts on all types.  Emit
2829        * a warning so that people know their code may not be portable.
2830        */
2831       _mesa_glsl_warning(loc, state,
2832                          "uniform block layout qualifiers row_major and "
2833                          "column_major applied to non-matrix types may "
2834                          "be rejected by older compilers");
2835    }
2836 }
2837 
2838 static bool
validate_xfb_buffer_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned xfb_buffer)2839 validate_xfb_buffer_qualifier(YYLTYPE *loc,
2840                               struct _mesa_glsl_parse_state *state,
2841                               unsigned xfb_buffer) {
2842    if (xfb_buffer >= state->Const.MaxTransformFeedbackBuffers) {
2843       _mesa_glsl_error(loc, state,
2844                        "invalid xfb_buffer specified %d is larger than "
2845                        "MAX_TRANSFORM_FEEDBACK_BUFFERS - 1 (%d).",
2846                        xfb_buffer,
2847                        state->Const.MaxTransformFeedbackBuffers - 1);
2848       return false;
2849    }
2850 
2851    return true;
2852 }
2853 
2854 /* From the ARB_enhanced_layouts spec:
2855  *
2856  *    "Variables and block members qualified with *xfb_offset* can be
2857  *    scalars, vectors, matrices, structures, and (sized) arrays of these.
2858  *    The offset must be a multiple of the size of the first component of
2859  *    the first qualified variable or block member, or a compile-time error
2860  *    results.  Further, if applied to an aggregate containing a double,
2861  *    the offset must also be a multiple of 8, and the space taken in the
2862  *    buffer will be a multiple of 8.
2863  */
2864 static bool
validate_xfb_offset_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,int xfb_offset,const glsl_type * type,unsigned component_size)2865 validate_xfb_offset_qualifier(YYLTYPE *loc,
2866                               struct _mesa_glsl_parse_state *state,
2867                               int xfb_offset, const glsl_type *type,
2868                               unsigned component_size) {
2869   const glsl_type *t_without_array = type->without_array();
2870 
2871    if (xfb_offset != -1 && type->is_unsized_array()) {
2872       _mesa_glsl_error(loc, state,
2873                        "xfb_offset can't be used with unsized arrays.");
2874       return false;
2875    }
2876 
2877    /* Make sure nested structs don't contain unsized arrays, and validate
2878     * any xfb_offsets on interface members.
2879     */
2880    if (t_without_array->is_struct() || t_without_array->is_interface())
2881       for (unsigned int i = 0; i < t_without_array->length; i++) {
2882          const glsl_type *member_t = t_without_array->fields.structure[i].type;
2883 
2884          /* When the interface block doesn't have an xfb_offset qualifier then
2885           * we apply the component size rules at the member level.
2886           */
2887          if (xfb_offset == -1)
2888             component_size = member_t->contains_double() ? 8 : 4;
2889 
2890          int xfb_offset = t_without_array->fields.structure[i].offset;
2891          validate_xfb_offset_qualifier(loc, state, xfb_offset, member_t,
2892                                        component_size);
2893       }
2894 
2895   /* Nested structs or interface block without offset may not have had an
2896    * offset applied yet so return.
2897    */
2898    if (xfb_offset == -1) {
2899      return true;
2900    }
2901 
2902    if (xfb_offset % component_size) {
2903       _mesa_glsl_error(loc, state,
2904                        "invalid qualifier xfb_offset=%d must be a multiple "
2905                        "of the first component size of the first qualified "
2906                        "variable or block member. Or double if an aggregate "
2907                        "that contains a double (%d).",
2908                        xfb_offset, component_size);
2909       return false;
2910    }
2911 
2912    return true;
2913 }
2914 
2915 static bool
validate_stream_qualifier(YYLTYPE * loc,struct _mesa_glsl_parse_state * state,unsigned stream)2916 validate_stream_qualifier(YYLTYPE *loc, struct _mesa_glsl_parse_state *state,
2917                           unsigned stream)
2918 {
2919    if (stream >= state->ctx->Const.MaxVertexStreams) {
2920       _mesa_glsl_error(loc, state,
2921                        "invalid stream specified %d is larger than "
2922                        "MAX_VERTEX_STREAMS - 1 (%d).",
2923                        stream, state->ctx->Const.MaxVertexStreams - 1);
2924       return false;
2925    }
2926 
2927    return true;
2928 }
2929 
2930 static void
apply_explicit_binding(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,ir_variable * var,const glsl_type * type,const ast_type_qualifier * qual)2931 apply_explicit_binding(struct _mesa_glsl_parse_state *state,
2932                        YYLTYPE *loc,
2933                        ir_variable *var,
2934                        const glsl_type *type,
2935                        const ast_type_qualifier *qual)
2936 {
2937    if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
2938       _mesa_glsl_error(loc, state,
2939                        "the \"binding\" qualifier only applies to uniforms and "
2940                        "shader storage buffer objects");
2941       return;
2942    }
2943 
2944    unsigned qual_binding;
2945    if (!process_qualifier_constant(state, loc, "binding", qual->binding,
2946                                    &qual_binding)) {
2947       return;
2948    }
2949 
2950    const struct gl_context *const ctx = state->ctx;
2951    unsigned elements = type->is_array() ? type->arrays_of_arrays_size() : 1;
2952    unsigned max_index = qual_binding + elements - 1;
2953    const glsl_type *base_type = type->without_array();
2954 
2955    if (base_type->is_interface()) {
2956       /* UBOs.  From page 60 of the GLSL 4.20 specification:
2957        * "If the binding point for any uniform block instance is less than zero,
2958        *  or greater than or equal to the implementation-dependent maximum
2959        *  number of uniform buffer bindings, a compilation error will occur.
2960        *  When the binding identifier is used with a uniform block instanced as
2961        *  an array of size N, all elements of the array from binding through
2962        *  binding + N – 1 must be within this range."
2963        *
2964        * The implementation-dependent maximum is GL_MAX_UNIFORM_BUFFER_BINDINGS.
2965        */
2966       if (qual->flags.q.uniform &&
2967          max_index >= ctx->Const.MaxUniformBufferBindings) {
2968          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d UBOs exceeds "
2969                           "the maximum number of UBO binding points (%d)",
2970                           qual_binding, elements,
2971                           ctx->Const.MaxUniformBufferBindings);
2972          return;
2973       }
2974 
2975       /* SSBOs. From page 67 of the GLSL 4.30 specification:
2976        * "If the binding point for any uniform or shader storage block instance
2977        *  is less than zero, or greater than or equal to the
2978        *  implementation-dependent maximum number of uniform buffer bindings, a
2979        *  compile-time error will occur. When the binding identifier is used
2980        *  with a uniform or shader storage block instanced as an array of size
2981        *  N, all elements of the array from binding through binding + N – 1 must
2982        *  be within this range."
2983        */
2984       if (qual->flags.q.buffer &&
2985          max_index >= ctx->Const.MaxShaderStorageBufferBindings) {
2986          _mesa_glsl_error(loc, state, "layout(binding = %u) for %d SSBOs exceeds "
2987                           "the maximum number of SSBO binding points (%d)",
2988                           qual_binding, elements,
2989                           ctx->Const.MaxShaderStorageBufferBindings);
2990          return;
2991       }
2992    } else if (base_type->is_sampler()) {
2993       /* Samplers.  From page 63 of the GLSL 4.20 specification:
2994        * "If the binding is less than zero, or greater than or equal to the
2995        *  implementation-dependent maximum supported number of units, a
2996        *  compilation error will occur. When the binding identifier is used
2997        *  with an array of size N, all elements of the array from binding
2998        *  through binding + N - 1 must be within this range."
2999        */
3000       unsigned limit = ctx->Const.MaxCombinedTextureImageUnits;
3001 
3002       if (max_index >= limit) {
3003          _mesa_glsl_error(loc, state, "layout(binding = %d) for %d samplers "
3004                           "exceeds the maximum number of texture image units "
3005                           "(%u)", qual_binding, elements, limit);
3006 
3007          return;
3008       }
3009    } else if (base_type->contains_atomic()) {
3010       assert(ctx->Const.MaxAtomicBufferBindings <= MAX_COMBINED_ATOMIC_BUFFERS);
3011       if (qual_binding >= ctx->Const.MaxAtomicBufferBindings) {
3012          _mesa_glsl_error(loc, state, "layout(binding = %d) exceeds the "
3013                           "maximum number of atomic counter buffer bindings "
3014                           "(%u)", qual_binding,
3015                           ctx->Const.MaxAtomicBufferBindings);
3016 
3017          return;
3018       }
3019    } else if ((state->is_version(420, 310) ||
3020                state->ARB_shading_language_420pack_enable) &&
3021               base_type->is_image()) {
3022       assert(ctx->Const.MaxImageUnits <= MAX_IMAGE_UNITS);
3023       if (max_index >= ctx->Const.MaxImageUnits) {
3024          _mesa_glsl_error(loc, state, "Image binding %d exceeds the "
3025                           "maximum number of image units (%d)", max_index,
3026                           ctx->Const.MaxImageUnits);
3027          return;
3028       }
3029 
3030    } else {
3031       _mesa_glsl_error(loc, state,
3032                        "the \"binding\" qualifier only applies to uniform "
3033                        "blocks, storage blocks, opaque variables, or arrays "
3034                        "thereof");
3035       return;
3036    }
3037 
3038    var->data.explicit_binding = true;
3039    var->data.binding = qual_binding;
3040 
3041    return;
3042 }
3043 
3044 static void
validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct glsl_type * var_type,ir_variable_mode mode)3045 validate_fragment_flat_interpolation_input(struct _mesa_glsl_parse_state *state,
3046                                            YYLTYPE *loc,
3047                                            const glsl_interp_mode interpolation,
3048                                            const struct glsl_type *var_type,
3049                                            ir_variable_mode mode)
3050 {
3051    if (state->stage != MESA_SHADER_FRAGMENT ||
3052        interpolation == INTERP_MODE_FLAT ||
3053        mode != ir_var_shader_in)
3054       return;
3055 
3056    /* Integer fragment inputs must be qualified with 'flat'.  In GLSL ES,
3057     * so must integer vertex outputs.
3058     *
3059     * From section 4.3.4 ("Inputs") of the GLSL 1.50 spec:
3060     *    "Fragment shader inputs that are signed or unsigned integers or
3061     *    integer vectors must be qualified with the interpolation qualifier
3062     *    flat."
3063     *
3064     * From section 4.3.4 ("Input Variables") of the GLSL 3.00 ES spec:
3065     *    "Fragment shader inputs that are, or contain, signed or unsigned
3066     *    integers or integer vectors must be qualified with the
3067     *    interpolation qualifier flat."
3068     *
3069     * From section 4.3.6 ("Output Variables") of the GLSL 3.00 ES spec:
3070     *    "Vertex shader outputs that are, or contain, signed or unsigned
3071     *    integers or integer vectors must be qualified with the
3072     *    interpolation qualifier flat."
3073     *
3074     * Note that prior to GLSL 1.50, this requirement applied to vertex
3075     * outputs rather than fragment inputs.  That creates problems in the
3076     * presence of geometry shaders, so we adopt the GLSL 1.50 rule for all
3077     * desktop GL shaders.  For GLSL ES shaders, we follow the spec and
3078     * apply the restriction to both vertex outputs and fragment inputs.
3079     *
3080     * Note also that the desktop GLSL specs are missing the text "or
3081     * contain"; this is presumably an oversight, since there is no
3082     * reasonable way to interpolate a fragment shader input that contains
3083     * an integer. See Khronos bug #15671.
3084     */
3085    if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3086        && var_type->contains_integer()) {
3087       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3088                        "an integer, then it must be qualified with 'flat'");
3089    }
3090 
3091    /* Double fragment inputs must be qualified with 'flat'.
3092     *
3093     * From the "Overview" of the ARB_gpu_shader_fp64 extension spec:
3094     *    "This extension does not support interpolation of double-precision
3095     *    values; doubles used as fragment shader inputs must be qualified as
3096     *    "flat"."
3097     *
3098     * From section 4.3.4 ("Inputs") of the GLSL 4.00 spec:
3099     *    "Fragment shader inputs that are signed or unsigned integers, integer
3100     *    vectors, or any double-precision floating-point type must be
3101     *    qualified with the interpolation qualifier flat."
3102     *
3103     * Note that the GLSL specs are missing the text "or contain"; this is
3104     * presumably an oversight. See Khronos bug #15671.
3105     *
3106     * The 'double' type does not exist in GLSL ES so far.
3107     */
3108    if (state->has_double()
3109        && var_type->contains_double()) {
3110       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3111                        "a double, then it must be qualified with 'flat'");
3112    }
3113 
3114    /* Bindless sampler/image fragment inputs must be qualified with 'flat'.
3115     *
3116     * From section 4.3.4 of the ARB_bindless_texture spec:
3117     *
3118     *    "(modify last paragraph, p. 35, allowing samplers and images as
3119     *     fragment shader inputs) ... Fragment inputs can only be signed and
3120     *     unsigned integers and integer vectors, floating point scalars,
3121     *     floating-point vectors, matrices, sampler and image types, or arrays
3122     *     or structures of these.  Fragment shader inputs that are signed or
3123     *     unsigned integers, integer vectors, or any double-precision floating-
3124     *     point type, or any sampler or image type must be qualified with the
3125     *     interpolation qualifier "flat"."
3126     */
3127    if (state->has_bindless()
3128        && (var_type->contains_sampler() || var_type->contains_image())) {
3129       _mesa_glsl_error(loc, state, "if a fragment input is (or contains) "
3130                        "a bindless sampler (or image), then it must be "
3131                        "qualified with 'flat'");
3132    }
3133 }
3134 
3135 static void
validate_interpolation_qualifier(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const glsl_interp_mode interpolation,const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode)3136 validate_interpolation_qualifier(struct _mesa_glsl_parse_state *state,
3137                                  YYLTYPE *loc,
3138                                  const glsl_interp_mode interpolation,
3139                                  const struct ast_type_qualifier *qual,
3140                                  const struct glsl_type *var_type,
3141                                  ir_variable_mode mode)
3142 {
3143    /* Interpolation qualifiers can only apply to shader inputs or outputs, but
3144     * not to vertex shader inputs nor fragment shader outputs.
3145     *
3146     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3147     *    "Outputs from a vertex shader (out) and inputs to a fragment
3148     *    shader (in) can be further qualified with one or more of these
3149     *    interpolation qualifiers"
3150     *    ...
3151     *    "These interpolation qualifiers may only precede the qualifiers in,
3152     *    centroid in, out, or centroid out in a declaration. They do not apply
3153     *    to the deprecated storage qualifiers varying or centroid
3154     *    varying. They also do not apply to inputs into a vertex shader or
3155     *    outputs from a fragment shader."
3156     *
3157     * From section 4.3 ("Storage Qualifiers") of the GLSL ES 3.00 spec:
3158     *    "Outputs from a shader (out) and inputs to a shader (in) can be
3159     *    further qualified with one of these interpolation qualifiers."
3160     *    ...
3161     *    "These interpolation qualifiers may only precede the qualifiers
3162     *    in, centroid in, out, or centroid out in a declaration. They do
3163     *    not apply to inputs into a vertex shader or outputs from a
3164     *    fragment shader."
3165     */
3166    if ((state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
3167        && interpolation != INTERP_MODE_NONE) {
3168       const char *i = interpolation_string(interpolation);
3169       if (mode != ir_var_shader_in && mode != ir_var_shader_out)
3170          _mesa_glsl_error(loc, state,
3171                           "interpolation qualifier `%s' can only be applied to "
3172                           "shader inputs or outputs.", i);
3173 
3174       switch (state->stage) {
3175       case MESA_SHADER_VERTEX:
3176          if (mode == ir_var_shader_in) {
3177             _mesa_glsl_error(loc, state,
3178                              "interpolation qualifier '%s' cannot be applied to "
3179                              "vertex shader inputs", i);
3180          }
3181          break;
3182       case MESA_SHADER_FRAGMENT:
3183          if (mode == ir_var_shader_out) {
3184             _mesa_glsl_error(loc, state,
3185                              "interpolation qualifier '%s' cannot be applied to "
3186                              "fragment shader outputs", i);
3187          }
3188          break;
3189       default:
3190          break;
3191       }
3192    }
3193 
3194    /* Interpolation qualifiers cannot be applied to 'centroid' and
3195     * 'centroid varying'.
3196     *
3197     * From section 4.3 ("Storage Qualifiers") of the GLSL 1.30 spec:
3198     *    "interpolation qualifiers may only precede the qualifiers in,
3199     *    centroid in, out, or centroid out in a declaration. They do not apply
3200     *    to the deprecated storage qualifiers varying or centroid varying."
3201     *
3202     * These deprecated storage qualifiers do not exist in GLSL ES 3.00.
3203     *
3204     * GL_EXT_gpu_shader4 allows this.
3205     */
3206    if (state->is_version(130, 0) && !state->EXT_gpu_shader4_enable
3207        && interpolation != INTERP_MODE_NONE
3208        && qual->flags.q.varying) {
3209 
3210       const char *i = interpolation_string(interpolation);
3211       const char *s;
3212       if (qual->flags.q.centroid)
3213          s = "centroid varying";
3214       else
3215          s = "varying";
3216 
3217       _mesa_glsl_error(loc, state,
3218                        "qualifier '%s' cannot be applied to the "
3219                        "deprecated storage qualifier '%s'", i, s);
3220    }
3221 
3222    validate_fragment_flat_interpolation_input(state, loc, interpolation,
3223                                               var_type, mode);
3224 }
3225 
3226 static glsl_interp_mode
interpret_interpolation_qualifier(const struct ast_type_qualifier * qual,const struct glsl_type * var_type,ir_variable_mode mode,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3227 interpret_interpolation_qualifier(const struct ast_type_qualifier *qual,
3228                                   const struct glsl_type *var_type,
3229                                   ir_variable_mode mode,
3230                                   struct _mesa_glsl_parse_state *state,
3231                                   YYLTYPE *loc)
3232 {
3233    glsl_interp_mode interpolation;
3234    if (qual->flags.q.flat)
3235       interpolation = INTERP_MODE_FLAT;
3236    else if (qual->flags.q.noperspective)
3237       interpolation = INTERP_MODE_NOPERSPECTIVE;
3238    else if (qual->flags.q.smooth)
3239       interpolation = INTERP_MODE_SMOOTH;
3240    else
3241       interpolation = INTERP_MODE_NONE;
3242 
3243    validate_interpolation_qualifier(state, loc,
3244                                     interpolation,
3245                                     qual, var_type, mode);
3246 
3247    return interpolation;
3248 }
3249 
3250 
3251 static void
apply_explicit_location(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3252 apply_explicit_location(const struct ast_type_qualifier *qual,
3253                         ir_variable *var,
3254                         struct _mesa_glsl_parse_state *state,
3255                         YYLTYPE *loc)
3256 {
3257    bool fail = false;
3258 
3259    unsigned qual_location;
3260    if (!process_qualifier_constant(state, loc, "location", qual->location,
3261                                    &qual_location)) {
3262       return;
3263    }
3264 
3265    /* Checks for GL_ARB_explicit_uniform_location. */
3266    if (qual->flags.q.uniform) {
3267       if (!state->check_explicit_uniform_location_allowed(loc, var))
3268          return;
3269 
3270       const struct gl_context *const ctx = state->ctx;
3271       unsigned max_loc = qual_location + var->type->uniform_locations() - 1;
3272 
3273       if (max_loc >= ctx->Const.MaxUserAssignableUniformLocations) {
3274          _mesa_glsl_error(loc, state, "location(s) consumed by uniform %s "
3275                           ">= MAX_UNIFORM_LOCATIONS (%u)", var->name,
3276                           ctx->Const.MaxUserAssignableUniformLocations);
3277          return;
3278       }
3279 
3280       var->data.explicit_location = true;
3281       var->data.location = qual_location;
3282       return;
3283    }
3284 
3285    /* Between GL_ARB_explicit_attrib_location an
3286     * GL_ARB_separate_shader_objects, the inputs and outputs of any shader
3287     * stage can be assigned explicit locations.  The checking here associates
3288     * the correct extension with the correct stage's input / output:
3289     *
3290     *                     input            output
3291     *                     -----            ------
3292     * vertex              explicit_loc     sso
3293     * tess control        sso              sso
3294     * tess eval           sso              sso
3295     * geometry            sso              sso
3296     * fragment            sso              explicit_loc
3297     */
3298    switch (state->stage) {
3299    case MESA_SHADER_VERTEX:
3300       if (var->data.mode == ir_var_shader_in) {
3301          if (!state->check_explicit_attrib_location_allowed(loc, var))
3302             return;
3303 
3304          break;
3305       }
3306 
3307       if (var->data.mode == ir_var_shader_out) {
3308          if (!state->check_separate_shader_objects_allowed(loc, var))
3309             return;
3310 
3311          break;
3312       }
3313 
3314       fail = true;
3315       break;
3316 
3317    case MESA_SHADER_TESS_CTRL:
3318    case MESA_SHADER_TESS_EVAL:
3319    case MESA_SHADER_GEOMETRY:
3320       if (var->data.mode == ir_var_shader_in || var->data.mode == ir_var_shader_out) {
3321          if (!state->check_separate_shader_objects_allowed(loc, var))
3322             return;
3323 
3324          break;
3325       }
3326 
3327       fail = true;
3328       break;
3329 
3330    case MESA_SHADER_FRAGMENT:
3331       if (var->data.mode == ir_var_shader_in) {
3332          if (!state->check_separate_shader_objects_allowed(loc, var))
3333             return;
3334 
3335          break;
3336       }
3337 
3338       if (var->data.mode == ir_var_shader_out) {
3339          if (!state->check_explicit_attrib_location_allowed(loc, var))
3340             return;
3341 
3342          break;
3343       }
3344 
3345       fail = true;
3346       break;
3347 
3348    case MESA_SHADER_COMPUTE:
3349       _mesa_glsl_error(loc, state,
3350                        "compute shader variables cannot be given "
3351                        "explicit locations");
3352       return;
3353    default:
3354       fail = true;
3355       break;
3356    };
3357 
3358    if (fail) {
3359       _mesa_glsl_error(loc, state,
3360                        "%s cannot be given an explicit location in %s shader",
3361                        mode_string(var),
3362       _mesa_shader_stage_to_string(state->stage));
3363    } else {
3364       var->data.explicit_location = true;
3365 
3366       switch (state->stage) {
3367       case MESA_SHADER_VERTEX:
3368          var->data.location = (var->data.mode == ir_var_shader_in)
3369             ? (qual_location + VERT_ATTRIB_GENERIC0)
3370             : (qual_location + VARYING_SLOT_VAR0);
3371          break;
3372 
3373       case MESA_SHADER_TESS_CTRL:
3374       case MESA_SHADER_TESS_EVAL:
3375       case MESA_SHADER_GEOMETRY:
3376          if (var->data.patch)
3377             var->data.location = qual_location + VARYING_SLOT_PATCH0;
3378          else
3379             var->data.location = qual_location + VARYING_SLOT_VAR0;
3380          break;
3381 
3382       case MESA_SHADER_FRAGMENT:
3383          var->data.location = (var->data.mode == ir_var_shader_out)
3384             ? (qual_location + FRAG_RESULT_DATA0)
3385             : (qual_location + VARYING_SLOT_VAR0);
3386          break;
3387       default:
3388          assert(!"Unexpected shader type");
3389          break;
3390       }
3391 
3392       /* Check if index was set for the uniform instead of the function */
3393       if (qual->flags.q.explicit_index && qual->is_subroutine_decl()) {
3394          _mesa_glsl_error(loc, state, "an index qualifier can only be "
3395                           "used with subroutine functions");
3396          return;
3397       }
3398 
3399       unsigned qual_index;
3400       if (qual->flags.q.explicit_index &&
3401           process_qualifier_constant(state, loc, "index", qual->index,
3402                                      &qual_index)) {
3403          /* From the GLSL 4.30 specification, section 4.4.2 (Output
3404           * Layout Qualifiers):
3405           *
3406           * "It is also a compile-time error if a fragment shader
3407           *  sets a layout index to less than 0 or greater than 1."
3408           *
3409           * Older specifications don't mandate a behavior; we take
3410           * this as a clarification and always generate the error.
3411           */
3412          if (qual_index > 1) {
3413             _mesa_glsl_error(loc, state,
3414                              "explicit index may only be 0 or 1");
3415          } else {
3416             var->data.explicit_index = true;
3417             var->data.index = qual_index;
3418          }
3419       }
3420    }
3421 }
3422 
3423 static bool
validate_storage_for_sampler_image_types(ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3424 validate_storage_for_sampler_image_types(ir_variable *var,
3425                                          struct _mesa_glsl_parse_state *state,
3426                                          YYLTYPE *loc)
3427 {
3428    /* From section 4.1.7 of the GLSL 4.40 spec:
3429     *
3430     *    "[Opaque types] can only be declared as function
3431     *     parameters or uniform-qualified variables."
3432     *
3433     * From section 4.1.7 of the ARB_bindless_texture spec:
3434     *
3435     *    "Samplers may be declared as shader inputs and outputs, as uniform
3436     *     variables, as temporary variables, and as function parameters."
3437     *
3438     * From section 4.1.X of the ARB_bindless_texture spec:
3439     *
3440     *    "Images may be declared as shader inputs and outputs, as uniform
3441     *     variables, as temporary variables, and as function parameters."
3442     */
3443    if (state->has_bindless()) {
3444       if (var->data.mode != ir_var_auto &&
3445           var->data.mode != ir_var_uniform &&
3446           var->data.mode != ir_var_shader_in &&
3447           var->data.mode != ir_var_shader_out &&
3448           var->data.mode != ir_var_function_in &&
3449           var->data.mode != ir_var_function_out &&
3450           var->data.mode != ir_var_function_inout) {
3451          _mesa_glsl_error(loc, state, "bindless image/sampler variables may "
3452                          "only be declared as shader inputs and outputs, as "
3453                          "uniform variables, as temporary variables and as "
3454                          "function parameters");
3455          return false;
3456       }
3457    } else {
3458       if (var->data.mode != ir_var_uniform &&
3459           var->data.mode != ir_var_function_in) {
3460          _mesa_glsl_error(loc, state, "image/sampler variables may only be "
3461                           "declared as function parameters or "
3462                           "uniform-qualified global variables");
3463          return false;
3464       }
3465    }
3466    return true;
3467 }
3468 
3469 static bool
validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3470 validate_memory_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3471                                    YYLTYPE *loc,
3472                                    const struct ast_type_qualifier *qual,
3473                                    const glsl_type *type)
3474 {
3475    /* From Section 4.10 (Memory Qualifiers) of the GLSL 4.50 spec:
3476     *
3477     * "Memory qualifiers are only supported in the declarations of image
3478     *  variables, buffer variables, and shader storage blocks; it is an error
3479     *  to use such qualifiers in any other declarations.
3480     */
3481    if (!type->is_image() && !qual->flags.q.buffer) {
3482       if (qual->flags.q.read_only ||
3483           qual->flags.q.write_only ||
3484           qual->flags.q.coherent ||
3485           qual->flags.q._volatile ||
3486           qual->flags.q.restrict_flag) {
3487          _mesa_glsl_error(loc, state, "memory qualifiers may only be applied "
3488                           "in the declarations of image variables, buffer "
3489                           "variables, and shader storage blocks");
3490          return false;
3491       }
3492    }
3493    return true;
3494 }
3495 
3496 static bool
validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state * state,YYLTYPE * loc,const struct ast_type_qualifier * qual,const glsl_type * type)3497 validate_image_format_qualifier_for_type(struct _mesa_glsl_parse_state *state,
3498                                          YYLTYPE *loc,
3499                                          const struct ast_type_qualifier *qual,
3500                                          const glsl_type *type)
3501 {
3502    /* From section 4.4.6.2 (Format Layout Qualifiers) of the GLSL 4.50 spec:
3503     *
3504     * "Format layout qualifiers can be used on image variable declarations
3505     *  (those declared with a basic type  having “image ” in its keyword)."
3506     */
3507    if (!type->is_image() && qual->flags.q.explicit_image_format) {
3508       _mesa_glsl_error(loc, state, "format layout qualifiers may only be "
3509                        "applied to images");
3510       return false;
3511    }
3512    return true;
3513 }
3514 
3515 static void
apply_image_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3516 apply_image_qualifier_to_variable(const struct ast_type_qualifier *qual,
3517                                   ir_variable *var,
3518                                   struct _mesa_glsl_parse_state *state,
3519                                   YYLTYPE *loc)
3520 {
3521    const glsl_type *base_type = var->type->without_array();
3522 
3523    if (!validate_image_format_qualifier_for_type(state, loc, qual, base_type) ||
3524        !validate_memory_qualifier_for_type(state, loc, qual, base_type))
3525       return;
3526 
3527    if (!base_type->is_image())
3528       return;
3529 
3530    if (!validate_storage_for_sampler_image_types(var, state, loc))
3531       return;
3532 
3533    var->data.memory_read_only |= qual->flags.q.read_only;
3534    var->data.memory_write_only |= qual->flags.q.write_only;
3535    var->data.memory_coherent |= qual->flags.q.coherent;
3536    var->data.memory_volatile |= qual->flags.q._volatile;
3537    var->data.memory_restrict |= qual->flags.q.restrict_flag;
3538 
3539    if (qual->flags.q.explicit_image_format) {
3540       if (var->data.mode == ir_var_function_in) {
3541          _mesa_glsl_error(loc, state, "format qualifiers cannot be used on "
3542                           "image function parameters");
3543       }
3544 
3545       if (qual->image_base_type != base_type->sampled_type) {
3546          _mesa_glsl_error(loc, state, "format qualifier doesn't match the base "
3547                           "data type of the image");
3548       }
3549 
3550       var->data.image_format = qual->image_format;
3551    } else if (state->has_image_load_formatted()) {
3552       if (var->data.mode == ir_var_uniform &&
3553           state->EXT_shader_image_load_formatted_warn) {
3554          _mesa_glsl_warning(loc, state, "GL_EXT_image_load_formatted used");
3555       }
3556    } else {
3557       if (var->data.mode == ir_var_uniform) {
3558          if (state->es_shader ||
3559              !(state->is_version(420, 310) || state->ARB_shader_image_load_store_enable)) {
3560             _mesa_glsl_error(loc, state, "all image uniforms must have a "
3561                              "format layout qualifier");
3562          } else if (!qual->flags.q.write_only) {
3563             _mesa_glsl_error(loc, state, "image uniforms not qualified with "
3564                              "`writeonly' must have a format layout qualifier");
3565          }
3566       }
3567       var->data.image_format = PIPE_FORMAT_NONE;
3568    }
3569 
3570    /* From page 70 of the GLSL ES 3.1 specification:
3571     *
3572     * "Except for image variables qualified with the format qualifiers r32f,
3573     *  r32i, and r32ui, image variables must specify either memory qualifier
3574     *  readonly or the memory qualifier writeonly."
3575     */
3576    if (state->es_shader &&
3577        var->data.image_format != PIPE_FORMAT_R32_FLOAT &&
3578        var->data.image_format != PIPE_FORMAT_R32_SINT &&
3579        var->data.image_format != PIPE_FORMAT_R32_UINT &&
3580        !var->data.memory_read_only &&
3581        !var->data.memory_write_only) {
3582       _mesa_glsl_error(loc, state, "image variables of format other than r32f, "
3583                        "r32i or r32ui must be qualified `readonly' or "
3584                        "`writeonly'");
3585    }
3586 }
3587 
3588 static inline const char*
get_layout_qualifier_string(bool origin_upper_left,bool pixel_center_integer)3589 get_layout_qualifier_string(bool origin_upper_left, bool pixel_center_integer)
3590 {
3591    if (origin_upper_left && pixel_center_integer)
3592       return "origin_upper_left, pixel_center_integer";
3593    else if (origin_upper_left)
3594       return "origin_upper_left";
3595    else if (pixel_center_integer)
3596       return "pixel_center_integer";
3597    else
3598       return " ";
3599 }
3600 
3601 static inline bool
is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3602 is_conflicting_fragcoord_redeclaration(struct _mesa_glsl_parse_state *state,
3603                                        const struct ast_type_qualifier *qual)
3604 {
3605    /* If gl_FragCoord was previously declared, and the qualifiers were
3606     * different in any way, return true.
3607     */
3608    if (state->fs_redeclares_gl_fragcoord) {
3609       return (state->fs_pixel_center_integer != qual->flags.q.pixel_center_integer
3610          || state->fs_origin_upper_left != qual->flags.q.origin_upper_left);
3611    }
3612 
3613    return false;
3614 }
3615 
3616 static inline bool
is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state * state,const struct ast_type_qualifier * qual)3617 is_conflicting_layer_redeclaration(struct _mesa_glsl_parse_state *state,
3618                                    const struct ast_type_qualifier *qual)
3619 {
3620    if (state->redeclares_gl_layer) {
3621       return state->layer_viewport_relative != qual->flags.q.viewport_relative;
3622    }
3623    return false;
3624 }
3625 
3626 static inline void
validate_array_dimensions(const glsl_type * t,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3627 validate_array_dimensions(const glsl_type *t,
3628                           struct _mesa_glsl_parse_state *state,
3629                           YYLTYPE *loc) {
3630    if (t->is_array()) {
3631       t = t->fields.array;
3632       while (t->is_array()) {
3633          if (t->is_unsized_array()) {
3634             _mesa_glsl_error(loc, state,
3635                              "only the outermost array dimension can "
3636                              "be unsized",
3637                              t->name);
3638             break;
3639          }
3640          t = t->fields.array;
3641       }
3642    }
3643 }
3644 
3645 static void
apply_bindless_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3646 apply_bindless_qualifier_to_variable(const struct ast_type_qualifier *qual,
3647                                      ir_variable *var,
3648                                      struct _mesa_glsl_parse_state *state,
3649                                      YYLTYPE *loc)
3650 {
3651    bool has_local_qualifiers = qual->flags.q.bindless_sampler ||
3652                                qual->flags.q.bindless_image ||
3653                                qual->flags.q.bound_sampler ||
3654                                qual->flags.q.bound_image;
3655 
3656    /* The ARB_bindless_texture spec says:
3657     *
3658     * "Modify Section 4.4.6 Opaque-Uniform Layout Qualifiers of the GLSL 4.30
3659     *  spec"
3660     *
3661     * "If these layout qualifiers are applied to other types of default block
3662     *  uniforms, or variables with non-uniform storage, a compile-time error
3663     *  will be generated."
3664     */
3665    if (has_local_qualifiers && !qual->flags.q.uniform) {
3666       _mesa_glsl_error(loc, state, "ARB_bindless_texture layout qualifiers "
3667                        "can only be applied to default block uniforms or "
3668                        "variables with uniform storage");
3669       return;
3670    }
3671 
3672    /* The ARB_bindless_texture spec doesn't state anything in this situation,
3673     * but it makes sense to only allow bindless_sampler/bound_sampler for
3674     * sampler types, and respectively bindless_image/bound_image for image
3675     * types.
3676     */
3677    if ((qual->flags.q.bindless_sampler || qual->flags.q.bound_sampler) &&
3678        !var->type->contains_sampler()) {
3679       _mesa_glsl_error(loc, state, "bindless_sampler or bound_sampler can only "
3680                        "be applied to sampler types");
3681       return;
3682    }
3683 
3684    if ((qual->flags.q.bindless_image || qual->flags.q.bound_image) &&
3685        !var->type->contains_image()) {
3686       _mesa_glsl_error(loc, state, "bindless_image or bound_image can only be "
3687                        "applied to image types");
3688       return;
3689    }
3690 
3691    /* The bindless_sampler/bindless_image (and respectively
3692     * bound_sampler/bound_image) layout qualifiers can be set at global and at
3693     * local scope.
3694     */
3695    if (var->type->contains_sampler() || var->type->contains_image()) {
3696       var->data.bindless = qual->flags.q.bindless_sampler ||
3697                            qual->flags.q.bindless_image ||
3698                            state->bindless_sampler_specified ||
3699                            state->bindless_image_specified;
3700 
3701       var->data.bound = qual->flags.q.bound_sampler ||
3702                         qual->flags.q.bound_image ||
3703                         state->bound_sampler_specified ||
3704                         state->bound_image_specified;
3705    }
3706 }
3707 
3708 static void
apply_layout_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc)3709 apply_layout_qualifier_to_variable(const struct ast_type_qualifier *qual,
3710                                    ir_variable *var,
3711                                    struct _mesa_glsl_parse_state *state,
3712                                    YYLTYPE *loc)
3713 {
3714    if (var->name != NULL && strcmp(var->name, "gl_FragCoord") == 0) {
3715 
3716       /* Section 4.3.8.1, page 39 of GLSL 1.50 spec says:
3717        *
3718        *    "Within any shader, the first redeclarations of gl_FragCoord
3719        *     must appear before any use of gl_FragCoord."
3720        *
3721        * Generate a compiler error if above condition is not met by the
3722        * fragment shader.
3723        */
3724       ir_variable *earlier = state->symbols->get_variable("gl_FragCoord");
3725       if (earlier != NULL &&
3726           earlier->data.used &&
3727           !state->fs_redeclares_gl_fragcoord) {
3728          _mesa_glsl_error(loc, state,
3729                           "gl_FragCoord used before its first redeclaration "
3730                           "in fragment shader");
3731       }
3732 
3733       /* Make sure all gl_FragCoord redeclarations specify the same layout
3734        * qualifiers.
3735        */
3736       if (is_conflicting_fragcoord_redeclaration(state, qual)) {
3737          const char *const qual_string =
3738             get_layout_qualifier_string(qual->flags.q.origin_upper_left,
3739                                         qual->flags.q.pixel_center_integer);
3740 
3741          const char *const state_string =
3742             get_layout_qualifier_string(state->fs_origin_upper_left,
3743                                         state->fs_pixel_center_integer);
3744 
3745          _mesa_glsl_error(loc, state,
3746                           "gl_FragCoord redeclared with different layout "
3747                           "qualifiers (%s) and (%s) ",
3748                           state_string,
3749                           qual_string);
3750       }
3751       state->fs_origin_upper_left = qual->flags.q.origin_upper_left;
3752       state->fs_pixel_center_integer = qual->flags.q.pixel_center_integer;
3753       state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers =
3754          !qual->flags.q.origin_upper_left && !qual->flags.q.pixel_center_integer;
3755       state->fs_redeclares_gl_fragcoord =
3756          state->fs_origin_upper_left ||
3757          state->fs_pixel_center_integer ||
3758          state->fs_redeclares_gl_fragcoord_with_no_layout_qualifiers;
3759    }
3760 
3761    if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
3762        && (strcmp(var->name, "gl_FragCoord") != 0)) {
3763       const char *const qual_string = (qual->flags.q.origin_upper_left)
3764          ? "origin_upper_left" : "pixel_center_integer";
3765 
3766       _mesa_glsl_error(loc, state,
3767                        "layout qualifier `%s' can only be applied to "
3768                        "fragment shader input `gl_FragCoord'",
3769                        qual_string);
3770    }
3771 
3772    if (qual->flags.q.explicit_location) {
3773       apply_explicit_location(qual, var, state, loc);
3774 
3775       if (qual->flags.q.explicit_component) {
3776          unsigned qual_component;
3777          if (process_qualifier_constant(state, loc, "component",
3778                                         qual->component, &qual_component)) {
3779             validate_component_layout_for_type(state, loc, var->type,
3780                                                qual_component);
3781             var->data.explicit_component = true;
3782             var->data.location_frac = qual_component;
3783          }
3784       }
3785    } else if (qual->flags.q.explicit_index) {
3786       if (!qual->subroutine_list)
3787          _mesa_glsl_error(loc, state,
3788                           "explicit index requires explicit location");
3789    } else if (qual->flags.q.explicit_component) {
3790       _mesa_glsl_error(loc, state,
3791                        "explicit component requires explicit location");
3792    }
3793 
3794    if (qual->flags.q.explicit_binding) {
3795       apply_explicit_binding(state, loc, var, var->type, qual);
3796    }
3797 
3798    if (state->stage == MESA_SHADER_GEOMETRY &&
3799        qual->flags.q.out && qual->flags.q.stream) {
3800       unsigned qual_stream;
3801       if (process_qualifier_constant(state, loc, "stream", qual->stream,
3802                                      &qual_stream) &&
3803           validate_stream_qualifier(loc, state, qual_stream)) {
3804          var->data.stream = qual_stream;
3805       }
3806    }
3807 
3808    if (qual->flags.q.out && qual->flags.q.xfb_buffer) {
3809       unsigned qual_xfb_buffer;
3810       if (process_qualifier_constant(state, loc, "xfb_buffer",
3811                                      qual->xfb_buffer, &qual_xfb_buffer) &&
3812           validate_xfb_buffer_qualifier(loc, state, qual_xfb_buffer)) {
3813          var->data.xfb_buffer = qual_xfb_buffer;
3814          if (qual->flags.q.explicit_xfb_buffer)
3815             var->data.explicit_xfb_buffer = true;
3816       }
3817    }
3818 
3819    if (qual->flags.q.explicit_xfb_offset) {
3820       unsigned qual_xfb_offset;
3821       unsigned component_size = var->type->contains_double() ? 8 : 4;
3822 
3823       if (process_qualifier_constant(state, loc, "xfb_offset",
3824                                      qual->offset, &qual_xfb_offset) &&
3825           validate_xfb_offset_qualifier(loc, state, (int) qual_xfb_offset,
3826                                         var->type, component_size)) {
3827          var->data.offset = qual_xfb_offset;
3828          var->data.explicit_xfb_offset = true;
3829       }
3830    }
3831 
3832    if (qual->flags.q.explicit_xfb_stride) {
3833       unsigned qual_xfb_stride;
3834       if (process_qualifier_constant(state, loc, "xfb_stride",
3835                                      qual->xfb_stride, &qual_xfb_stride)) {
3836          var->data.xfb_stride = qual_xfb_stride;
3837          var->data.explicit_xfb_stride = true;
3838       }
3839    }
3840 
3841    if (var->type->contains_atomic()) {
3842       if (var->data.mode == ir_var_uniform) {
3843          if (var->data.explicit_binding) {
3844             unsigned *offset =
3845                &state->atomic_counter_offsets[var->data.binding];
3846 
3847             if (*offset % ATOMIC_COUNTER_SIZE)
3848                _mesa_glsl_error(loc, state,
3849                                 "misaligned atomic counter offset");
3850 
3851             var->data.offset = *offset;
3852             *offset += var->type->atomic_size();
3853 
3854          } else {
3855             _mesa_glsl_error(loc, state,
3856                              "atomic counters require explicit binding point");
3857          }
3858       } else if (var->data.mode != ir_var_function_in) {
3859          _mesa_glsl_error(loc, state, "atomic counters may only be declared as "
3860                           "function parameters or uniform-qualified "
3861                           "global variables");
3862       }
3863    }
3864 
3865    if (var->type->contains_sampler() &&
3866        !validate_storage_for_sampler_image_types(var, state, loc))
3867       return;
3868 
3869    /* Is the 'layout' keyword used with parameters that allow relaxed checking.
3870     * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
3871     * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
3872     * allowed the layout qualifier to be used with 'varying' and 'attribute'.
3873     * These extensions and all following extensions that add the 'layout'
3874     * keyword have been modified to require the use of 'in' or 'out'.
3875     *
3876     * The following extension do not allow the deprecated keywords:
3877     *
3878     *    GL_AMD_conservative_depth
3879     *    GL_ARB_conservative_depth
3880     *    GL_ARB_gpu_shader5
3881     *    GL_ARB_separate_shader_objects
3882     *    GL_ARB_tessellation_shader
3883     *    GL_ARB_transform_feedback3
3884     *    GL_ARB_uniform_buffer_object
3885     *
3886     * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
3887     * allow layout with the deprecated keywords.
3888     */
3889    const bool relaxed_layout_qualifier_checking =
3890       state->ARB_fragment_coord_conventions_enable;
3891 
3892    const bool uses_deprecated_qualifier = qual->flags.q.attribute
3893       || qual->flags.q.varying;
3894    if (qual->has_layout() && uses_deprecated_qualifier) {
3895       if (relaxed_layout_qualifier_checking) {
3896          _mesa_glsl_warning(loc, state,
3897                             "`layout' qualifier may not be used with "
3898                             "`attribute' or `varying'");
3899       } else {
3900          _mesa_glsl_error(loc, state,
3901                           "`layout' qualifier may not be used with "
3902                           "`attribute' or `varying'");
3903       }
3904    }
3905 
3906    /* Layout qualifiers for gl_FragDepth, which are enabled by extension
3907     * AMD_conservative_depth.
3908     */
3909    if (qual->flags.q.depth_type
3910        && !state->is_version(420, 0)
3911        && !state->AMD_conservative_depth_enable
3912        && !state->ARB_conservative_depth_enable) {
3913        _mesa_glsl_error(loc, state,
3914                         "extension GL_AMD_conservative_depth or "
3915                         "GL_ARB_conservative_depth must be enabled "
3916                         "to use depth layout qualifiers");
3917    } else if (qual->flags.q.depth_type
3918               && strcmp(var->name, "gl_FragDepth") != 0) {
3919        _mesa_glsl_error(loc, state,
3920                         "depth layout qualifiers can be applied only to "
3921                         "gl_FragDepth");
3922    }
3923 
3924    switch (qual->depth_type) {
3925    case ast_depth_any:
3926       var->data.depth_layout = ir_depth_layout_any;
3927       break;
3928    case ast_depth_greater:
3929       var->data.depth_layout = ir_depth_layout_greater;
3930       break;
3931    case ast_depth_less:
3932       var->data.depth_layout = ir_depth_layout_less;
3933       break;
3934    case ast_depth_unchanged:
3935       var->data.depth_layout = ir_depth_layout_unchanged;
3936       break;
3937    default:
3938       var->data.depth_layout = ir_depth_layout_none;
3939       break;
3940    }
3941 
3942    if (qual->flags.q.std140 ||
3943        qual->flags.q.std430 ||
3944        qual->flags.q.packed ||
3945        qual->flags.q.shared) {
3946       _mesa_glsl_error(loc, state,
3947                        "uniform and shader storage block layout qualifiers "
3948                        "std140, std430, packed, and shared can only be "
3949                        "applied to uniform or shader storage blocks, not "
3950                        "members");
3951    }
3952 
3953    if (qual->flags.q.row_major || qual->flags.q.column_major) {
3954       validate_matrix_layout_for_type(state, loc, var->type, var);
3955    }
3956 
3957    /* From section 4.4.1.3 of the GLSL 4.50 specification (Fragment Shader
3958     * Inputs):
3959     *
3960     *  "Fragment shaders also allow the following layout qualifier on in only
3961     *   (not with variable declarations)
3962     *     layout-qualifier-id
3963     *        early_fragment_tests
3964     *   [...]"
3965     */
3966    if (qual->flags.q.early_fragment_tests) {
3967       _mesa_glsl_error(loc, state, "early_fragment_tests layout qualifier only "
3968                        "valid in fragment shader input layout declaration.");
3969    }
3970 
3971    if (qual->flags.q.inner_coverage) {
3972       _mesa_glsl_error(loc, state, "inner_coverage layout qualifier only "
3973                        "valid in fragment shader input layout declaration.");
3974    }
3975 
3976    if (qual->flags.q.post_depth_coverage) {
3977       _mesa_glsl_error(loc, state, "post_depth_coverage layout qualifier only "
3978                        "valid in fragment shader input layout declaration.");
3979    }
3980 
3981    if (state->has_bindless())
3982       apply_bindless_qualifier_to_variable(qual, var, state, loc);
3983 
3984    if (qual->flags.q.pixel_interlock_ordered ||
3985        qual->flags.q.pixel_interlock_unordered ||
3986        qual->flags.q.sample_interlock_ordered ||
3987        qual->flags.q.sample_interlock_unordered) {
3988       _mesa_glsl_error(loc, state, "interlock layout qualifiers: "
3989                        "pixel_interlock_ordered, pixel_interlock_unordered, "
3990                        "sample_interlock_ordered and sample_interlock_unordered, "
3991                        "only valid in fragment shader input layout declaration.");
3992    }
3993 
3994    if (var->name != NULL && strcmp(var->name, "gl_Layer") == 0) {
3995       if (is_conflicting_layer_redeclaration(state, qual)) {
3996          _mesa_glsl_error(loc, state, "gl_Layer redeclaration with "
3997                           "different viewport_relative setting than earlier");
3998       }
3999       state->redeclares_gl_layer = true;
4000       if (qual->flags.q.viewport_relative) {
4001          state->layer_viewport_relative = true;
4002       }
4003    } else if (qual->flags.q.viewport_relative) {
4004       _mesa_glsl_error(loc, state,
4005                        "viewport_relative qualifier "
4006                        "can only be applied to gl_Layer.");
4007    }
4008 }
4009 
4010 static void
apply_type_qualifier_to_variable(const struct ast_type_qualifier * qual,ir_variable * var,struct _mesa_glsl_parse_state * state,YYLTYPE * loc,bool is_parameter)4011 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
4012                                  ir_variable *var,
4013                                  struct _mesa_glsl_parse_state *state,
4014                                  YYLTYPE *loc,
4015                                  bool is_parameter)
4016 {
4017    STATIC_ASSERT(sizeof(qual->flags.q) <= sizeof(qual->flags.i));
4018 
4019    if (qual->flags.q.invariant) {
4020       if (var->data.used) {
4021          _mesa_glsl_error(loc, state,
4022                           "variable `%s' may not be redeclared "
4023                           "`invariant' after being used",
4024                           var->name);
4025       } else {
4026          var->data.explicit_invariant = true;
4027          var->data.invariant = true;
4028       }
4029    }
4030 
4031    if (qual->flags.q.precise) {
4032       if (var->data.used) {
4033          _mesa_glsl_error(loc, state,
4034                           "variable `%s' may not be redeclared "
4035                           "`precise' after being used",
4036                           var->name);
4037       } else {
4038          var->data.precise = 1;
4039       }
4040    }
4041 
4042    if (qual->is_subroutine_decl() && !qual->flags.q.uniform) {
4043       _mesa_glsl_error(loc, state,
4044                        "`subroutine' may only be applied to uniforms, "
4045                        "subroutine type declarations, or function definitions");
4046    }
4047 
4048    if (qual->flags.q.constant || qual->flags.q.attribute
4049        || qual->flags.q.uniform
4050        || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4051       var->data.read_only = 1;
4052 
4053    if (qual->flags.q.centroid)
4054       var->data.centroid = 1;
4055 
4056    if (qual->flags.q.sample)
4057       var->data.sample = 1;
4058 
4059    /* Precision qualifiers do not hold any meaning in Desktop GLSL */
4060    if (state->es_shader) {
4061       var->data.precision =
4062          select_gles_precision(qual->precision, var->type, state, loc);
4063    }
4064 
4065    if (qual->flags.q.patch)
4066       var->data.patch = 1;
4067 
4068    if (qual->flags.q.attribute && state->stage != MESA_SHADER_VERTEX) {
4069       var->type = glsl_type::error_type;
4070       _mesa_glsl_error(loc, state,
4071                        "`attribute' variables may not be declared in the "
4072                        "%s shader",
4073                        _mesa_shader_stage_to_string(state->stage));
4074    }
4075 
4076    /* Disallow layout qualifiers which may only appear on layout declarations. */
4077    if (qual->flags.q.prim_type) {
4078       _mesa_glsl_error(loc, state,
4079                        "Primitive type may only be specified on GS input or output "
4080                        "layout declaration, not on variables.");
4081    }
4082 
4083    /* Section 6.1.1 (Function Calling Conventions) of the GLSL 1.10 spec says:
4084     *
4085     *     "However, the const qualifier cannot be used with out or inout."
4086     *
4087     * The same section of the GLSL 4.40 spec further clarifies this saying:
4088     *
4089     *     "The const qualifier cannot be used with out or inout, or a
4090     *     compile-time error results."
4091     */
4092    if (is_parameter && qual->flags.q.constant && qual->flags.q.out) {
4093       _mesa_glsl_error(loc, state,
4094                        "`const' may not be applied to `out' or `inout' "
4095                        "function parameters");
4096    }
4097 
4098    /* If there is no qualifier that changes the mode of the variable, leave
4099     * the setting alone.
4100     */
4101    assert(var->data.mode != ir_var_temporary);
4102    if (qual->flags.q.in && qual->flags.q.out)
4103       var->data.mode = is_parameter ? ir_var_function_inout : ir_var_shader_out;
4104    else if (qual->flags.q.in)
4105       var->data.mode = is_parameter ? ir_var_function_in : ir_var_shader_in;
4106    else if (qual->flags.q.attribute
4107             || (qual->flags.q.varying && (state->stage == MESA_SHADER_FRAGMENT)))
4108       var->data.mode = ir_var_shader_in;
4109    else if (qual->flags.q.out)
4110       var->data.mode = is_parameter ? ir_var_function_out : ir_var_shader_out;
4111    else if (qual->flags.q.varying && (state->stage == MESA_SHADER_VERTEX))
4112       var->data.mode = ir_var_shader_out;
4113    else if (qual->flags.q.uniform)
4114       var->data.mode = ir_var_uniform;
4115    else if (qual->flags.q.buffer)
4116       var->data.mode = ir_var_shader_storage;
4117    else if (qual->flags.q.shared_storage)
4118       var->data.mode = ir_var_shader_shared;
4119 
4120    if (!is_parameter && state->has_framebuffer_fetch() &&
4121        state->stage == MESA_SHADER_FRAGMENT) {
4122       if (state->is_version(130, 300))
4123          var->data.fb_fetch_output = qual->flags.q.in && qual->flags.q.out;
4124       else
4125          var->data.fb_fetch_output = (strcmp(var->name, "gl_LastFragData") == 0);
4126    }
4127 
4128    if (var->data.fb_fetch_output) {
4129       var->data.assigned = true;
4130       var->data.memory_coherent = !qual->flags.q.non_coherent;
4131 
4132       /* From the EXT_shader_framebuffer_fetch spec:
4133        *
4134        *   "It is an error to declare an inout fragment output not qualified
4135        *    with layout(noncoherent) if the GL_EXT_shader_framebuffer_fetch
4136        *    extension hasn't been enabled."
4137        */
4138       if (var->data.memory_coherent &&
4139           !state->EXT_shader_framebuffer_fetch_enable)
4140          _mesa_glsl_error(loc, state,
4141                           "invalid declaration of framebuffer fetch output not "
4142                           "qualified with layout(noncoherent)");
4143 
4144    } else {
4145       /* From the EXT_shader_framebuffer_fetch spec:
4146        *
4147        *   "Fragment outputs declared inout may specify the following layout
4148        *    qualifier: [...] noncoherent"
4149        */
4150       if (qual->flags.q.non_coherent)
4151          _mesa_glsl_error(loc, state,
4152                           "invalid layout(noncoherent) qualifier not part of "
4153                           "framebuffer fetch output declaration");
4154    }
4155 
4156    if (!is_parameter && is_varying_var(var, state->stage)) {
4157       /* User-defined ins/outs are not permitted in compute shaders. */
4158       if (state->stage == MESA_SHADER_COMPUTE) {
4159          _mesa_glsl_error(loc, state,
4160                           "user-defined input and output variables are not "
4161                           "permitted in compute shaders");
4162       }
4163 
4164       /* This variable is being used to link data between shader stages (in
4165        * pre-glsl-1.30 parlance, it's a "varying").  Check that it has a type
4166        * that is allowed for such purposes.
4167        *
4168        * From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
4169        *
4170        *     "The varying qualifier can be used only with the data types
4171        *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
4172        *     these."
4173        *
4174        * This was relaxed in GLSL version 1.30 and GLSL ES version 3.00.  From
4175        * page 31 (page 37 of the PDF) of the GLSL 1.30 spec:
4176        *
4177        *     "Fragment inputs can only be signed and unsigned integers and
4178        *     integer vectors, float, floating-point vectors, matrices, or
4179        *     arrays of these. Structures cannot be input.
4180        *
4181        * Similar text exists in the section on vertex shader outputs.
4182        *
4183        * Similar text exists in the GLSL ES 3.00 spec, except that the GLSL ES
4184        * 3.00 spec allows structs as well.  Varying structs are also allowed
4185        * in GLSL 1.50.
4186        *
4187        * From section 4.3.4 of the ARB_bindless_texture spec:
4188        *
4189        *     "(modify third paragraph of the section to allow sampler and image
4190        *     types) ...  Vertex shader inputs can only be float,
4191        *     single-precision floating-point scalars, single-precision
4192        *     floating-point vectors, matrices, signed and unsigned integers
4193        *     and integer vectors, sampler and image types."
4194        *
4195        * From section 4.3.6 of the ARB_bindless_texture spec:
4196        *
4197        *     "Output variables can only be floating-point scalars,
4198        *     floating-point vectors, matrices, signed or unsigned integers or
4199        *     integer vectors, sampler or image types, or arrays or structures
4200        *     of any these."
4201        */
4202       switch (var->type->without_array()->base_type) {
4203       case GLSL_TYPE_FLOAT:
4204          /* Ok in all GLSL versions */
4205          break;
4206       case GLSL_TYPE_UINT:
4207       case GLSL_TYPE_INT:
4208          if (state->is_version(130, 300) || state->EXT_gpu_shader4_enable)
4209             break;
4210          _mesa_glsl_error(loc, state,
4211                           "varying variables must be of base type float in %s",
4212                           state->get_version_string());
4213          break;
4214       case GLSL_TYPE_STRUCT:
4215          if (state->is_version(150, 300))
4216             break;
4217          _mesa_glsl_error(loc, state,
4218                           "varying variables may not be of type struct");
4219          break;
4220       case GLSL_TYPE_DOUBLE:
4221       case GLSL_TYPE_UINT64:
4222       case GLSL_TYPE_INT64:
4223          break;
4224       case GLSL_TYPE_SAMPLER:
4225       case GLSL_TYPE_IMAGE:
4226          if (state->has_bindless())
4227             break;
4228          FALLTHROUGH;
4229       default:
4230          _mesa_glsl_error(loc, state, "illegal type for a varying variable");
4231          break;
4232       }
4233    }
4234 
4235    if (state->all_invariant && var->data.mode == ir_var_shader_out) {
4236       var->data.explicit_invariant = true;
4237       var->data.invariant = true;
4238    }
4239 
4240    var->data.interpolation =
4241       interpret_interpolation_qualifier(qual, var->type,
4242                                         (ir_variable_mode) var->data.mode,
4243                                         state, loc);
4244 
4245    /* Does the declaration use the deprecated 'attribute' or 'varying'
4246     * keywords?
4247     */
4248    const bool uses_deprecated_qualifier = qual->flags.q.attribute
4249       || qual->flags.q.varying;
4250 
4251 
4252    /* Validate auxiliary storage qualifiers */
4253 
4254    /* From section 4.3.4 of the GLSL 1.30 spec:
4255     *    "It is an error to use centroid in in a vertex shader."
4256     *
4257     * From section 4.3.4 of the GLSL ES 3.00 spec:
4258     *    "It is an error to use centroid in or interpolation qualifiers in
4259     *    a vertex shader input."
4260     */
4261 
4262    /* Section 4.3.6 of the GLSL 1.30 specification states:
4263     * "It is an error to use centroid out in a fragment shader."
4264     *
4265     * The GL_ARB_shading_language_420pack extension specification states:
4266     * "It is an error to use auxiliary storage qualifiers or interpolation
4267     *  qualifiers on an output in a fragment shader."
4268     */
4269    if (qual->flags.q.sample && (!is_varying_var(var, state->stage) || uses_deprecated_qualifier)) {
4270       _mesa_glsl_error(loc, state,
4271                        "sample qualifier may only be used on `in` or `out` "
4272                        "variables between shader stages");
4273    }
4274    if (qual->flags.q.centroid && !is_varying_var(var, state->stage)) {
4275       _mesa_glsl_error(loc, state,
4276                        "centroid qualifier may only be used with `in', "
4277                        "`out' or `varying' variables between shader stages");
4278    }
4279 
4280    if (qual->flags.q.shared_storage && state->stage != MESA_SHADER_COMPUTE) {
4281       _mesa_glsl_error(loc, state,
4282                        "the shared storage qualifiers can only be used with "
4283                        "compute shaders");
4284    }
4285 
4286    apply_image_qualifier_to_variable(qual, var, state, loc);
4287 }
4288 
4289 /**
4290  * Get the variable that is being redeclared by this declaration or if it
4291  * does not exist, the current declared variable.
4292  *
4293  * Semantic checks to verify the validity of the redeclaration are also
4294  * performed.  If semantic checks fail, compilation error will be emitted via
4295  * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
4296  *
4297  * \returns
4298  * A pointer to an existing variable in the current scope if the declaration
4299  * is a redeclaration, current variable otherwise. \c is_declared boolean
4300  * will return \c true if the declaration is a redeclaration, \c false
4301  * otherwise.
4302  */
4303 static ir_variable *
get_variable_being_redeclared(ir_variable ** var_ptr,YYLTYPE loc,struct _mesa_glsl_parse_state * state,bool allow_all_redeclarations,bool * is_redeclaration)4304 get_variable_being_redeclared(ir_variable **var_ptr, YYLTYPE loc,
4305                               struct _mesa_glsl_parse_state *state,
4306                               bool allow_all_redeclarations,
4307                               bool *is_redeclaration)
4308 {
4309    ir_variable *var = *var_ptr;
4310 
4311    /* Check if this declaration is actually a re-declaration, either to
4312     * resize an array or add qualifiers to an existing variable.
4313     *
4314     * This is allowed for variables in the current scope, or when at
4315     * global scope (for built-ins in the implicit outer scope).
4316     */
4317    ir_variable *earlier = state->symbols->get_variable(var->name);
4318    if (earlier == NULL ||
4319        (state->current_function != NULL &&
4320        !state->symbols->name_declared_this_scope(var->name))) {
4321       *is_redeclaration = false;
4322       return var;
4323    }
4324 
4325    *is_redeclaration = true;
4326 
4327    if (earlier->data.how_declared == ir_var_declared_implicitly) {
4328       /* Verify that the redeclaration of a built-in does not change the
4329        * storage qualifier.  There are a couple special cases.
4330        *
4331        * 1. Some built-in variables that are defined as 'in' in the
4332        *    specification are implemented as system values.  Allow
4333        *    ir_var_system_value -> ir_var_shader_in.
4334        *
4335        * 2. gl_LastFragData is implemented as a ir_var_shader_out, but the
4336        *    specification requires that redeclarations omit any qualifier.
4337        *    Allow ir_var_shader_out -> ir_var_auto for this one variable.
4338        */
4339       if (earlier->data.mode != var->data.mode &&
4340           !(earlier->data.mode == ir_var_system_value &&
4341             var->data.mode == ir_var_shader_in) &&
4342           !(strcmp(var->name, "gl_LastFragData") == 0 &&
4343             var->data.mode == ir_var_auto)) {
4344          _mesa_glsl_error(&loc, state,
4345                           "redeclaration cannot change qualification of `%s'",
4346                           var->name);
4347       }
4348    }
4349 
4350    /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
4351     *
4352     * "It is legal to declare an array without a size and then
4353     *  later re-declare the same name as an array of the same
4354     *  type and specify a size."
4355     */
4356    if (earlier->type->is_unsized_array() && var->type->is_array()
4357        && (var->type->fields.array == earlier->type->fields.array)) {
4358       const int size = var->type->array_size();
4359       check_builtin_array_max_size(var->name, size, loc, state);
4360       if ((size > 0) && (size <= earlier->data.max_array_access)) {
4361          _mesa_glsl_error(& loc, state, "array size must be > %u due to "
4362                           "previous access",
4363                           earlier->data.max_array_access);
4364       }
4365 
4366       earlier->type = var->type;
4367       delete var;
4368       var = NULL;
4369       *var_ptr = NULL;
4370    } else if (earlier->type != var->type) {
4371       _mesa_glsl_error(&loc, state,
4372                        "redeclaration of `%s' has incorrect type",
4373                        var->name);
4374    } else if ((state->ARB_fragment_coord_conventions_enable ||
4375               state->is_version(150, 0))
4376               && strcmp(var->name, "gl_FragCoord") == 0) {
4377       /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
4378        * qualifiers.
4379        *
4380        * We don't really need to do anything here, just allow the
4381        * redeclaration. Any error on the gl_FragCoord is handled on the ast
4382        * level at apply_layout_qualifier_to_variable using the
4383        * ast_type_qualifier and _mesa_glsl_parse_state, or later at
4384        * linker.cpp.
4385        */
4386       /* According to section 4.3.7 of the GLSL 1.30 spec,
4387        * the following built-in varaibles can be redeclared with an
4388        * interpolation qualifier:
4389        *    * gl_FrontColor
4390        *    * gl_BackColor
4391        *    * gl_FrontSecondaryColor
4392        *    * gl_BackSecondaryColor
4393        *    * gl_Color
4394        *    * gl_SecondaryColor
4395        */
4396    } else if (state->is_version(130, 0)
4397               && (strcmp(var->name, "gl_FrontColor") == 0
4398                   || strcmp(var->name, "gl_BackColor") == 0
4399                   || strcmp(var->name, "gl_FrontSecondaryColor") == 0
4400                   || strcmp(var->name, "gl_BackSecondaryColor") == 0
4401                   || strcmp(var->name, "gl_Color") == 0
4402                   || strcmp(var->name, "gl_SecondaryColor") == 0)) {
4403       earlier->data.interpolation = var->data.interpolation;
4404 
4405       /* Layout qualifiers for gl_FragDepth. */
4406    } else if ((state->is_version(420, 0) ||
4407                state->AMD_conservative_depth_enable ||
4408                state->ARB_conservative_depth_enable)
4409               && strcmp(var->name, "gl_FragDepth") == 0) {
4410 
4411       /** From the AMD_conservative_depth spec:
4412        *     Within any shader, the first redeclarations of gl_FragDepth
4413        *     must appear before any use of gl_FragDepth.
4414        */
4415       if (earlier->data.used) {
4416          _mesa_glsl_error(&loc, state,
4417                           "the first redeclaration of gl_FragDepth "
4418                           "must appear before any use of gl_FragDepth");
4419       }
4420 
4421       /* Prevent inconsistent redeclaration of depth layout qualifier. */
4422       if (earlier->data.depth_layout != ir_depth_layout_none
4423           && earlier->data.depth_layout != var->data.depth_layout) {
4424             _mesa_glsl_error(&loc, state,
4425                              "gl_FragDepth: depth layout is declared here "
4426                              "as '%s, but it was previously declared as "
4427                              "'%s'",
4428                              depth_layout_string(var->data.depth_layout),
4429                              depth_layout_string(earlier->data.depth_layout));
4430       }
4431 
4432       earlier->data.depth_layout = var->data.depth_layout;
4433 
4434    } else if (state->has_framebuffer_fetch() &&
4435               strcmp(var->name, "gl_LastFragData") == 0 &&
4436               var->data.mode == ir_var_auto) {
4437       /* According to the EXT_shader_framebuffer_fetch spec:
4438        *
4439        *   "By default, gl_LastFragData is declared with the mediump precision
4440        *    qualifier. This can be changed by redeclaring the corresponding
4441        *    variables with the desired precision qualifier."
4442        *
4443        *   "Fragment shaders may specify the following layout qualifier only for
4444        *    redeclaring the built-in gl_LastFragData array [...]: noncoherent"
4445        */
4446       earlier->data.precision = var->data.precision;
4447       earlier->data.memory_coherent = var->data.memory_coherent;
4448 
4449    } else if (state->NV_viewport_array2_enable &&
4450               strcmp(var->name, "gl_Layer") == 0 &&
4451               earlier->data.how_declared == ir_var_declared_implicitly) {
4452       /* No need to do anything, just allow it. Qualifier is stored in state */
4453 
4454    } else if (state->is_version(0, 300) &&
4455               state->has_separate_shader_objects() &&
4456               (strcmp(var->name, "gl_Position") == 0 ||
4457               strcmp(var->name, "gl_PointSize") == 0)) {
4458 
4459        /*  EXT_separate_shader_objects spec says:
4460        *
4461        *  "The following vertex shader outputs may be redeclared
4462        *   at global scope to specify a built-in output interface,
4463        *   with or without special qualifiers:
4464        *
4465        *    gl_Position
4466        *    gl_PointSize
4467        *
4468        *    When compiling shaders using either of the above variables,
4469        *    both such variables must be redeclared prior to use."
4470        */
4471       if (earlier->data.used) {
4472          _mesa_glsl_error(&loc, state, "the first redeclaration of "
4473                          "%s must appear before any use", var->name);
4474       }
4475    } else if ((earlier->data.how_declared == ir_var_declared_implicitly &&
4476                state->allow_builtin_variable_redeclaration) ||
4477               allow_all_redeclarations) {
4478       /* Allow verbatim redeclarations of built-in variables. Not explicitly
4479        * valid, but some applications do it.
4480        */
4481    } else {
4482       _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
4483    }
4484 
4485    return earlier;
4486 }
4487 
4488 /**
4489  * Generate the IR for an initializer in a variable declaration
4490  */
4491 static ir_rvalue *
process_initializer(ir_variable * var,ast_declaration * decl,ast_fully_specified_type * type,exec_list * initializer_instructions,struct _mesa_glsl_parse_state * state)4492 process_initializer(ir_variable *var, ast_declaration *decl,
4493                     ast_fully_specified_type *type,
4494                     exec_list *initializer_instructions,
4495                     struct _mesa_glsl_parse_state *state)
4496 {
4497    void *mem_ctx = state;
4498    ir_rvalue *result = NULL;
4499 
4500    YYLTYPE initializer_loc = decl->initializer->get_location();
4501 
4502    /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
4503     *
4504     *    "All uniform variables are read-only and are initialized either
4505     *    directly by an application via API commands, or indirectly by
4506     *    OpenGL."
4507     */
4508    if (var->data.mode == ir_var_uniform) {
4509       state->check_version(120, 0, &initializer_loc,
4510                            "cannot initialize uniform %s",
4511                            var->name);
4512    }
4513 
4514    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
4515     *
4516     *    "Buffer variables cannot have initializers."
4517     */
4518    if (var->data.mode == ir_var_shader_storage) {
4519       _mesa_glsl_error(&initializer_loc, state,
4520                        "cannot initialize buffer variable %s",
4521                        var->name);
4522    }
4523 
4524    /* From section 4.1.7 of the GLSL 4.40 spec:
4525     *
4526     *    "Opaque variables [...] are initialized only through the
4527     *     OpenGL API; they cannot be declared with an initializer in a
4528     *     shader."
4529     *
4530     * From section 4.1.7 of the ARB_bindless_texture spec:
4531     *
4532     *    "Samplers may be declared as shader inputs and outputs, as uniform
4533     *     variables, as temporary variables, and as function parameters."
4534     *
4535     * From section 4.1.X of the ARB_bindless_texture spec:
4536     *
4537     *    "Images may be declared as shader inputs and outputs, as uniform
4538     *     variables, as temporary variables, and as function parameters."
4539     */
4540    if (var->type->contains_atomic() ||
4541        (!state->has_bindless() && var->type->contains_opaque())) {
4542       _mesa_glsl_error(&initializer_loc, state,
4543                        "cannot initialize %s variable %s",
4544                        var->name, state->has_bindless() ? "atomic" : "opaque");
4545    }
4546 
4547    if ((var->data.mode == ir_var_shader_in) && (state->current_function == NULL)) {
4548       _mesa_glsl_error(&initializer_loc, state,
4549                        "cannot initialize %s shader input / %s %s",
4550                        _mesa_shader_stage_to_string(state->stage),
4551                        (state->stage == MESA_SHADER_VERTEX)
4552                        ? "attribute" : "varying",
4553                        var->name);
4554    }
4555 
4556    if (var->data.mode == ir_var_shader_out && state->current_function == NULL) {
4557       _mesa_glsl_error(&initializer_loc, state,
4558                        "cannot initialize %s shader output %s",
4559                        _mesa_shader_stage_to_string(state->stage),
4560                        var->name);
4561    }
4562 
4563    /* If the initializer is an ast_aggregate_initializer, recursively store
4564     * type information from the LHS into it, so that its hir() function can do
4565     * type checking.
4566     */
4567    if (decl->initializer->oper == ast_aggregate)
4568       _mesa_ast_set_aggregate_type(var->type, decl->initializer);
4569 
4570    ir_dereference *const lhs = new(state) ir_dereference_variable(var);
4571    ir_rvalue *rhs = decl->initializer->hir(initializer_instructions, state);
4572 
4573    /* Calculate the constant value if this is a const or uniform
4574     * declaration.
4575     *
4576     * Section 4.3 (Storage Qualifiers) of the GLSL ES 1.00.17 spec says:
4577     *
4578     *     "Declarations of globals without a storage qualifier, or with
4579     *     just the const qualifier, may include initializers, in which case
4580     *     they will be initialized before the first line of main() is
4581     *     executed.  Such initializers must be a constant expression."
4582     *
4583     * The same section of the GLSL ES 3.00.4 spec has similar language.
4584     */
4585    if (type->qualifier.flags.q.constant
4586        || type->qualifier.flags.q.uniform
4587        || (state->es_shader && state->current_function == NULL)) {
4588       ir_rvalue *new_rhs = validate_assignment(state, initializer_loc,
4589                                                lhs, rhs, true);
4590       if (new_rhs != NULL) {
4591          rhs = new_rhs;
4592 
4593          /* Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec
4594           * says:
4595           *
4596           *     "A constant expression is one of
4597           *
4598           *        ...
4599           *
4600           *        - an expression formed by an operator on operands that are
4601           *          all constant expressions, including getting an element of
4602           *          a constant array, or a field of a constant structure, or
4603           *          components of a constant vector.  However, the sequence
4604           *          operator ( , ) and the assignment operators ( =, +=, ...)
4605           *          are not included in the operators that can create a
4606           *          constant expression."
4607           *
4608           * Section 12.43 (Sequence operator and constant expressions) says:
4609           *
4610           *     "Should the following construct be allowed?
4611           *
4612           *         float a[2,3];
4613           *
4614           *     The expression within the brackets uses the sequence operator
4615           *     (',') and returns the integer 3 so the construct is declaring
4616           *     a single-dimensional array of size 3.  In some languages, the
4617           *     construct declares a two-dimensional array.  It would be
4618           *     preferable to make this construct illegal to avoid confusion.
4619           *
4620           *     One possibility is to change the definition of the sequence
4621           *     operator so that it does not return a constant-expression and
4622           *     hence cannot be used to declare an array size.
4623           *
4624           *     RESOLUTION: The result of a sequence operator is not a
4625           *     constant-expression."
4626           *
4627           * Section 4.3.3 (Constant Expressions) of the GLSL 4.30.9 spec
4628           * contains language almost identical to the section 4.3.3 in the
4629           * GLSL ES 3.00.4 spec.  This is a new limitation for these GLSL
4630           * versions.
4631           */
4632          ir_constant *constant_value =
4633             rhs->constant_expression_value(mem_ctx);
4634 
4635          if (!constant_value ||
4636              (state->is_version(430, 300) &&
4637               decl->initializer->has_sequence_subexpression())) {
4638             const char *const variable_mode =
4639                (type->qualifier.flags.q.constant)
4640                ? "const"
4641                : ((type->qualifier.flags.q.uniform) ? "uniform" : "global");
4642 
4643             /* If ARB_shading_language_420pack is enabled, initializers of
4644              * const-qualified local variables do not have to be constant
4645              * expressions. Const-qualified global variables must still be
4646              * initialized with constant expressions.
4647              */
4648             if (!state->has_420pack()
4649                 || state->current_function == NULL) {
4650                _mesa_glsl_error(& initializer_loc, state,
4651                                 "initializer of %s variable `%s' must be a "
4652                                 "constant expression",
4653                                 variable_mode,
4654                                 decl->identifier);
4655                if (var->type->is_numeric()) {
4656                   /* Reduce cascading errors. */
4657                   var->constant_value = type->qualifier.flags.q.constant
4658                      ? ir_constant::zero(state, var->type) : NULL;
4659                }
4660             }
4661          } else {
4662             rhs = constant_value;
4663             var->constant_value = type->qualifier.flags.q.constant
4664                ? constant_value : NULL;
4665          }
4666       } else {
4667          if (var->type->is_numeric()) {
4668             /* Reduce cascading errors. */
4669             rhs = var->constant_value = type->qualifier.flags.q.constant
4670                ? ir_constant::zero(state, var->type) : NULL;
4671          }
4672       }
4673    }
4674 
4675    if (rhs && !rhs->type->is_error()) {
4676       bool temp = var->data.read_only;
4677       if (type->qualifier.flags.q.constant)
4678          var->data.read_only = false;
4679 
4680       /* Never emit code to initialize a uniform.
4681        */
4682       const glsl_type *initializer_type;
4683       bool error_emitted = false;
4684       if (!type->qualifier.flags.q.uniform) {
4685          error_emitted =
4686             do_assignment(initializer_instructions, state,
4687                           NULL, lhs, rhs,
4688                           &result, true, true,
4689                           type->get_location());
4690          initializer_type = result->type;
4691       } else
4692          initializer_type = rhs->type;
4693 
4694       if (!error_emitted) {
4695          var->constant_initializer = rhs->constant_expression_value(mem_ctx);
4696          var->data.has_initializer = true;
4697          var->data.is_implicit_initializer = false;
4698 
4699          /* If the declared variable is an unsized array, it must inherrit
4700          * its full type from the initializer.  A declaration such as
4701          *
4702          *     uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
4703          *
4704          * becomes
4705          *
4706          *     uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
4707          *
4708          * The assignment generated in the if-statement (below) will also
4709          * automatically handle this case for non-uniforms.
4710          *
4711          * If the declared variable is not an array, the types must
4712          * already match exactly.  As a result, the type assignment
4713          * here can be done unconditionally.  For non-uniforms the call
4714          * to do_assignment can change the type of the initializer (via
4715          * the implicit conversion rules).  For uniforms the initializer
4716          * must be a constant expression, and the type of that expression
4717          * was validated above.
4718          */
4719          var->type = initializer_type;
4720       }
4721 
4722       var->data.read_only = temp;
4723    }
4724 
4725    return result;
4726 }
4727 
4728 static void
validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var,unsigned num_vertices,unsigned * size,const char * var_category)4729 validate_layout_qualifier_vertex_count(struct _mesa_glsl_parse_state *state,
4730                                        YYLTYPE loc, ir_variable *var,
4731                                        unsigned num_vertices,
4732                                        unsigned *size,
4733                                        const char *var_category)
4734 {
4735    if (var->type->is_unsized_array()) {
4736       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec says:
4737        *
4738        *   All geometry shader input unsized array declarations will be
4739        *   sized by an earlier input layout qualifier, when present, as per
4740        *   the following table.
4741        *
4742        * Followed by a table mapping each allowed input layout qualifier to
4743        * the corresponding input length.
4744        *
4745        * Similarly for tessellation control shader outputs.
4746        */
4747       if (num_vertices != 0)
4748          var->type = glsl_type::get_array_instance(var->type->fields.array,
4749                                                    num_vertices);
4750    } else {
4751       /* Section 4.3.8.1 (Input Layout Qualifiers) of the GLSL 1.50 spec
4752        * includes the following examples of compile-time errors:
4753        *
4754        *   // code sequence within one shader...
4755        *   in vec4 Color1[];    // size unknown
4756        *   ...Color1.length()...// illegal, length() unknown
4757        *   in vec4 Color2[2];   // size is 2
4758        *   ...Color1.length()...// illegal, Color1 still has no size
4759        *   in vec4 Color3[3];   // illegal, input sizes are inconsistent
4760        *   layout(lines) in;    // legal, input size is 2, matching
4761        *   in vec4 Color4[3];   // illegal, contradicts layout
4762        *   ...
4763        *
4764        * To detect the case illustrated by Color3, we verify that the size of
4765        * an explicitly-sized array matches the size of any previously declared
4766        * explicitly-sized array.  To detect the case illustrated by Color4, we
4767        * verify that the size of an explicitly-sized array is consistent with
4768        * any previously declared input layout.
4769        */
4770       if (num_vertices != 0 && var->type->length != num_vertices) {
4771          _mesa_glsl_error(&loc, state,
4772                           "%s size contradicts previously declared layout "
4773                           "(size is %u, but layout requires a size of %u)",
4774                           var_category, var->type->length, num_vertices);
4775       } else if (*size != 0 && var->type->length != *size) {
4776          _mesa_glsl_error(&loc, state,
4777                           "%s sizes are inconsistent (size is %u, but a "
4778                           "previous declaration has size %u)",
4779                           var_category, var->type->length, *size);
4780       } else {
4781          *size = var->type->length;
4782       }
4783    }
4784 }
4785 
4786 static void
handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4787 handle_tess_ctrl_shader_output_decl(struct _mesa_glsl_parse_state *state,
4788                                     YYLTYPE loc, ir_variable *var)
4789 {
4790    unsigned num_vertices = 0;
4791 
4792    if (state->tcs_output_vertices_specified) {
4793       if (!state->out_qualifier->vertices->
4794              process_qualifier_constant(state, "vertices",
4795                                         &num_vertices, false)) {
4796          return;
4797       }
4798 
4799       if (num_vertices > state->Const.MaxPatchVertices) {
4800          _mesa_glsl_error(&loc, state, "vertices (%d) exceeds "
4801                           "GL_MAX_PATCH_VERTICES", num_vertices);
4802          return;
4803       }
4804    }
4805 
4806    if (!var->type->is_array() && !var->data.patch) {
4807       _mesa_glsl_error(&loc, state,
4808                        "tessellation control shader outputs must be arrays");
4809 
4810       /* To avoid cascading failures, short circuit the checks below. */
4811       return;
4812    }
4813 
4814    if (var->data.patch)
4815       return;
4816 
4817    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4818                                           &state->tcs_output_size,
4819                                           "tessellation control shader output");
4820 }
4821 
4822 /**
4823  * Do additional processing necessary for tessellation control/evaluation shader
4824  * input declarations. This covers both interface block arrays and bare input
4825  * variables.
4826  */
4827 static void
handle_tess_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4828 handle_tess_shader_input_decl(struct _mesa_glsl_parse_state *state,
4829                               YYLTYPE loc, ir_variable *var)
4830 {
4831    if (!var->type->is_array() && !var->data.patch) {
4832       _mesa_glsl_error(&loc, state,
4833                        "per-vertex tessellation shader inputs must be arrays");
4834       /* Avoid cascading failures. */
4835       return;
4836    }
4837 
4838    if (var->data.patch)
4839       return;
4840 
4841    /* The ARB_tessellation_shader spec says:
4842     *
4843     *    "Declaring an array size is optional.  If no size is specified, it
4844     *     will be taken from the implementation-dependent maximum patch size
4845     *     (gl_MaxPatchVertices).  If a size is specified, it must match the
4846     *     maximum patch size; otherwise, a compile or link error will occur."
4847     *
4848     * This text appears twice, once for TCS inputs, and again for TES inputs.
4849     */
4850    if (var->type->is_unsized_array()) {
4851       var->type = glsl_type::get_array_instance(var->type->fields.array,
4852             state->Const.MaxPatchVertices);
4853    } else if (var->type->length != state->Const.MaxPatchVertices) {
4854       _mesa_glsl_error(&loc, state,
4855                        "per-vertex tessellation shader input arrays must be "
4856                        "sized to gl_MaxPatchVertices (%d).",
4857                        state->Const.MaxPatchVertices);
4858    }
4859 }
4860 
4861 
4862 /**
4863  * Do additional processing necessary for geometry shader input declarations
4864  * (this covers both interface blocks arrays and bare input variables).
4865  */
4866 static void
handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state * state,YYLTYPE loc,ir_variable * var)4867 handle_geometry_shader_input_decl(struct _mesa_glsl_parse_state *state,
4868                                   YYLTYPE loc, ir_variable *var)
4869 {
4870    unsigned num_vertices = 0;
4871 
4872    if (state->gs_input_prim_type_specified) {
4873       num_vertices = vertices_per_prim(state->in_qualifier->prim_type);
4874    }
4875 
4876    /* Geometry shader input variables must be arrays.  Caller should have
4877     * reported an error for this.
4878     */
4879    if (!var->type->is_array()) {
4880       assert(state->error);
4881 
4882       /* To avoid cascading failures, short circuit the checks below. */
4883       return;
4884    }
4885 
4886    validate_layout_qualifier_vertex_count(state, loc, var, num_vertices,
4887                                           &state->gs_input_size,
4888                                           "geometry shader input");
4889 }
4890 
4891 static void
validate_identifier(const char * identifier,YYLTYPE loc,struct _mesa_glsl_parse_state * state)4892 validate_identifier(const char *identifier, YYLTYPE loc,
4893                     struct _mesa_glsl_parse_state *state)
4894 {
4895    /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
4896     *
4897     *   "Identifiers starting with "gl_" are reserved for use by
4898     *   OpenGL, and may not be declared in a shader as either a
4899     *   variable or a function."
4900     */
4901    if (is_gl_identifier(identifier)) {
4902       _mesa_glsl_error(&loc, state,
4903                        "identifier `%s' uses reserved `gl_' prefix",
4904                        identifier);
4905    } else if (strstr(identifier, "__")) {
4906       /* From page 14 (page 20 of the PDF) of the GLSL 1.10
4907        * spec:
4908        *
4909        *     "In addition, all identifiers containing two
4910        *      consecutive underscores (__) are reserved as
4911        *      possible future keywords."
4912        *
4913        * The intention is that names containing __ are reserved for internal
4914        * use by the implementation, and names prefixed with GL_ are reserved
4915        * for use by Khronos.  Names simply containing __ are dangerous to use,
4916        * but should be allowed.
4917        *
4918        * A future version of the GLSL specification will clarify this.
4919        */
4920       _mesa_glsl_warning(&loc, state,
4921                          "identifier `%s' uses reserved `__' string",
4922                          identifier);
4923    }
4924 }
4925 
4926 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)4927 ast_declarator_list::hir(exec_list *instructions,
4928                          struct _mesa_glsl_parse_state *state)
4929 {
4930    void *ctx = state;
4931    const struct glsl_type *decl_type;
4932    const char *type_name = NULL;
4933    ir_rvalue *result = NULL;
4934    YYLTYPE loc = this->get_location();
4935 
4936    /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
4937     *
4938     *     "To ensure that a particular output variable is invariant, it is
4939     *     necessary to use the invariant qualifier. It can either be used to
4940     *     qualify a previously declared variable as being invariant
4941     *
4942     *         invariant gl_Position; // make existing gl_Position be invariant"
4943     *
4944     * In these cases the parser will set the 'invariant' flag in the declarator
4945     * list, and the type will be NULL.
4946     */
4947    if (this->invariant) {
4948       assert(this->type == NULL);
4949 
4950       if (state->current_function != NULL) {
4951          _mesa_glsl_error(& loc, state,
4952                           "all uses of `invariant' keyword must be at global "
4953                           "scope");
4954       }
4955 
4956       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4957          assert(decl->array_specifier == NULL);
4958          assert(decl->initializer == NULL);
4959 
4960          ir_variable *const earlier =
4961             state->symbols->get_variable(decl->identifier);
4962          if (earlier == NULL) {
4963             _mesa_glsl_error(& loc, state,
4964                              "undeclared variable `%s' cannot be marked "
4965                              "invariant", decl->identifier);
4966          } else if (!is_allowed_invariant(earlier, state)) {
4967             _mesa_glsl_error(&loc, state,
4968                              "`%s' cannot be marked invariant; interfaces between "
4969                              "shader stages only.", decl->identifier);
4970          } else if (earlier->data.used) {
4971             _mesa_glsl_error(& loc, state,
4972                             "variable `%s' may not be redeclared "
4973                             "`invariant' after being used",
4974                             earlier->name);
4975          } else {
4976             earlier->data.explicit_invariant = true;
4977             earlier->data.invariant = true;
4978          }
4979       }
4980 
4981       /* Invariant redeclarations do not have r-values.
4982        */
4983       return NULL;
4984    }
4985 
4986    if (this->precise) {
4987       assert(this->type == NULL);
4988 
4989       foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
4990          assert(decl->array_specifier == NULL);
4991          assert(decl->initializer == NULL);
4992 
4993          ir_variable *const earlier =
4994             state->symbols->get_variable(decl->identifier);
4995          if (earlier == NULL) {
4996             _mesa_glsl_error(& loc, state,
4997                              "undeclared variable `%s' cannot be marked "
4998                              "precise", decl->identifier);
4999          } else if (state->current_function != NULL &&
5000                     !state->symbols->name_declared_this_scope(decl->identifier)) {
5001             /* Note: we have to check if we're in a function, since
5002              * builtins are treated as having come from another scope.
5003              */
5004             _mesa_glsl_error(& loc, state,
5005                              "variable `%s' from an outer scope may not be "
5006                              "redeclared `precise' in this scope",
5007                              earlier->name);
5008          } else if (earlier->data.used) {
5009             _mesa_glsl_error(& loc, state,
5010                              "variable `%s' may not be redeclared "
5011                              "`precise' after being used",
5012                              earlier->name);
5013          } else {
5014             earlier->data.precise = true;
5015          }
5016       }
5017 
5018       /* Precise redeclarations do not have r-values either. */
5019       return NULL;
5020    }
5021 
5022    assert(this->type != NULL);
5023    assert(!this->invariant);
5024    assert(!this->precise);
5025 
5026    /* GL_EXT_shader_image_load_store base type uses GLSL_TYPE_VOID as a special value to
5027     * indicate that it needs to be updated later (see glsl_parser.yy).
5028     * This is done here, based on the layout qualifier and the type of the image var
5029     */
5030    if (this->type->qualifier.flags.q.explicit_image_format &&
5031          this->type->specifier->type->is_image() &&
5032          this->type->qualifier.image_base_type == GLSL_TYPE_VOID) {
5033       /*     "The ARB_shader_image_load_store says:
5034        *     If both extensions are enabled in the shading language, the "size*" layout
5035        *     qualifiers are treated as format qualifiers, and are mapped to equivalent
5036        *     format qualifiers in the table below, according to the type of image
5037        *     variable.
5038        *                     image*    iimage*   uimage*
5039        *                     --------  --------  --------
5040        *       size1x8       n/a       r8i       r8ui
5041        *       size1x16      r16f      r16i      r16ui
5042        *       size1x32      r32f      r32i      r32ui
5043        *       size2x32      rg32f     rg32i     rg32ui
5044        *       size4x32      rgba32f   rgba32i   rgba32ui"
5045        */
5046       if (strncmp(this->type->specifier->type_name, "image", strlen("image")) == 0) {
5047          switch (this->type->qualifier.image_format) {
5048          case PIPE_FORMAT_R8_SINT:
5049             /* The GL_EXT_shader_image_load_store spec says:
5050              *    A layout of "size1x8" is illegal for image variables associated
5051              *    with floating-point data types.
5052              */
5053             _mesa_glsl_error(& loc, state,
5054                              "size1x8 is illegal for image variables "
5055                              "with floating-point data types.");
5056             return NULL;
5057          case PIPE_FORMAT_R16_SINT:
5058             this->type->qualifier.image_format = PIPE_FORMAT_R16_FLOAT;
5059             break;
5060          case PIPE_FORMAT_R32_SINT:
5061             this->type->qualifier.image_format = PIPE_FORMAT_R32_FLOAT;
5062             break;
5063          case PIPE_FORMAT_R32G32_SINT:
5064             this->type->qualifier.image_format = PIPE_FORMAT_R32G32_FLOAT;
5065             break;
5066          case PIPE_FORMAT_R32G32B32A32_SINT:
5067             this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_FLOAT;
5068             break;
5069          default:
5070             unreachable("Unknown image format");
5071          }
5072          this->type->qualifier.image_base_type = GLSL_TYPE_FLOAT;
5073       } else if (strncmp(this->type->specifier->type_name, "uimage", strlen("uimage")) == 0) {
5074          switch (this->type->qualifier.image_format) {
5075          case PIPE_FORMAT_R8_SINT:
5076             this->type->qualifier.image_format = PIPE_FORMAT_R8_UINT;
5077             break;
5078          case PIPE_FORMAT_R16_SINT:
5079             this->type->qualifier.image_format = PIPE_FORMAT_R16_UINT;
5080             break;
5081          case PIPE_FORMAT_R32_SINT:
5082             this->type->qualifier.image_format = PIPE_FORMAT_R32_UINT;
5083             break;
5084          case PIPE_FORMAT_R32G32_SINT:
5085             this->type->qualifier.image_format = PIPE_FORMAT_R32G32_UINT;
5086             break;
5087          case PIPE_FORMAT_R32G32B32A32_SINT:
5088             this->type->qualifier.image_format = PIPE_FORMAT_R32G32B32A32_UINT;
5089             break;
5090          default:
5091             unreachable("Unknown image format");
5092          }
5093          this->type->qualifier.image_base_type = GLSL_TYPE_UINT;
5094       } else if (strncmp(this->type->specifier->type_name, "iimage", strlen("iimage")) == 0) {
5095          this->type->qualifier.image_base_type = GLSL_TYPE_INT;
5096       } else {
5097          assert(false);
5098       }
5099    }
5100 
5101    /* The type specifier may contain a structure definition.  Process that
5102     * before any of the variable declarations.
5103     */
5104    (void) this->type->specifier->hir(instructions, state);
5105 
5106    decl_type = this->type->glsl_type(& type_name, state);
5107 
5108    /* Section 4.3.7 "Buffer Variables" of the GLSL 4.30 spec:
5109     *    "Buffer variables may only be declared inside interface blocks
5110     *    (section 4.3.9 “Interface Blocks”), which are then referred to as
5111     *    shader storage blocks. It is a compile-time error to declare buffer
5112     *    variables at global scope (outside a block)."
5113     */
5114    if (type->qualifier.flags.q.buffer && !decl_type->is_interface()) {
5115       _mesa_glsl_error(&loc, state,
5116                        "buffer variables cannot be declared outside "
5117                        "interface blocks");
5118    }
5119 
5120    /* An offset-qualified atomic counter declaration sets the default
5121     * offset for the next declaration within the same atomic counter
5122     * buffer.
5123     */
5124    if (decl_type && decl_type->contains_atomic()) {
5125       if (type->qualifier.flags.q.explicit_binding &&
5126           type->qualifier.flags.q.explicit_offset) {
5127          unsigned qual_binding;
5128          unsigned qual_offset;
5129          if (process_qualifier_constant(state, &loc, "binding",
5130                                         type->qualifier.binding,
5131                                         &qual_binding)
5132              && process_qualifier_constant(state, &loc, "offset",
5133                                         type->qualifier.offset,
5134                                         &qual_offset)) {
5135             if (qual_binding < ARRAY_SIZE(state->atomic_counter_offsets))
5136                state->atomic_counter_offsets[qual_binding] = qual_offset;
5137          }
5138       }
5139 
5140       ast_type_qualifier allowed_atomic_qual_mask;
5141       allowed_atomic_qual_mask.flags.i = 0;
5142       allowed_atomic_qual_mask.flags.q.explicit_binding = 1;
5143       allowed_atomic_qual_mask.flags.q.explicit_offset = 1;
5144       allowed_atomic_qual_mask.flags.q.uniform = 1;
5145 
5146       type->qualifier.validate_flags(&loc, state, allowed_atomic_qual_mask,
5147                                      "invalid layout qualifier for",
5148                                      "atomic_uint");
5149    }
5150 
5151    if (this->declarations.is_empty()) {
5152       /* If there is no structure involved in the program text, there are two
5153        * possible scenarios:
5154        *
5155        * - The program text contained something like 'vec4;'.  This is an
5156        *   empty declaration.  It is valid but weird.  Emit a warning.
5157        *
5158        * - The program text contained something like 'S;' and 'S' is not the
5159        *   name of a known structure type.  This is both invalid and weird.
5160        *   Emit an error.
5161        *
5162        * - The program text contained something like 'mediump float;'
5163        *   when the programmer probably meant 'precision mediump
5164        *   float;' Emit a warning with a description of what they
5165        *   probably meant to do.
5166        *
5167        * Note that if decl_type is NULL and there is a structure involved,
5168        * there must have been some sort of error with the structure.  In this
5169        * case we assume that an error was already generated on this line of
5170        * code for the structure.  There is no need to generate an additional,
5171        * confusing error.
5172        */
5173       assert(this->type->specifier->structure == NULL || decl_type != NULL
5174              || state->error);
5175 
5176       if (decl_type == NULL) {
5177          _mesa_glsl_error(&loc, state,
5178                           "invalid type `%s' in empty declaration",
5179                           type_name);
5180       } else {
5181          if (decl_type->is_array()) {
5182             /* From Section 13.22 (Array Declarations) of the GLSL ES 3.2
5183              * spec:
5184              *
5185              *    "... any declaration that leaves the size undefined is
5186              *    disallowed as this would add complexity and there are no
5187              *    use-cases."
5188              */
5189             if (state->es_shader && decl_type->is_unsized_array()) {
5190                _mesa_glsl_error(&loc, state, "array size must be explicitly "
5191                                 "or implicitly defined");
5192             }
5193 
5194             /* From Section 4.12 (Empty Declarations) of the GLSL 4.5 spec:
5195              *
5196              *    "The combinations of types and qualifiers that cause
5197              *    compile-time or link-time errors are the same whether or not
5198              *    the declaration is empty."
5199              */
5200             validate_array_dimensions(decl_type, state, &loc);
5201          }
5202 
5203          if (decl_type->is_atomic_uint()) {
5204             /* Empty atomic counter declarations are allowed and useful
5205              * to set the default offset qualifier.
5206              */
5207             return NULL;
5208          } else if (this->type->qualifier.precision != ast_precision_none) {
5209             if (this->type->specifier->structure != NULL) {
5210                _mesa_glsl_error(&loc, state,
5211                                 "precision qualifiers can't be applied "
5212                                 "to structures");
5213             } else {
5214                static const char *const precision_names[] = {
5215                   "highp",
5216                   "highp",
5217                   "mediump",
5218                   "lowp"
5219                };
5220 
5221                _mesa_glsl_warning(&loc, state,
5222                                   "empty declaration with precision "
5223                                   "qualifier, to set the default precision, "
5224                                   "use `precision %s %s;'",
5225                                   precision_names[this->type->
5226                                      qualifier.precision],
5227                                   type_name);
5228             }
5229          } else if (this->type->specifier->structure == NULL) {
5230             _mesa_glsl_warning(&loc, state, "empty declaration");
5231          }
5232       }
5233    }
5234 
5235    foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
5236       const struct glsl_type *var_type;
5237       ir_variable *var;
5238       const char *identifier = decl->identifier;
5239       /* FINISHME: Emit a warning if a variable declaration shadows a
5240        * FINISHME: declaration at a higher scope.
5241        */
5242 
5243       if ((decl_type == NULL) || decl_type->is_void()) {
5244          if (type_name != NULL) {
5245             _mesa_glsl_error(& loc, state,
5246                              "invalid type `%s' in declaration of `%s'",
5247                              type_name, decl->identifier);
5248          } else {
5249             _mesa_glsl_error(& loc, state,
5250                              "invalid type in declaration of `%s'",
5251                              decl->identifier);
5252          }
5253          continue;
5254       }
5255 
5256       if (this->type->qualifier.is_subroutine_decl()) {
5257          const glsl_type *t;
5258          const char *name;
5259 
5260          t = state->symbols->get_type(this->type->specifier->type_name);
5261          if (!t)
5262             _mesa_glsl_error(& loc, state,
5263                              "invalid type in declaration of `%s'",
5264                              decl->identifier);
5265          name = ralloc_asprintf(ctx, "%s_%s", _mesa_shader_stage_to_subroutine_prefix(state->stage), decl->identifier);
5266 
5267          identifier = name;
5268 
5269       }
5270       var_type = process_array_type(&loc, decl_type, decl->array_specifier,
5271                                     state);
5272 
5273       var = new(ctx) ir_variable(var_type, identifier, ir_var_auto);
5274 
5275       /* The 'varying in' and 'varying out' qualifiers can only be used with
5276        * ARB_geometry_shader4 and EXT_geometry_shader4, which we don't support
5277        * yet.
5278        */
5279       if (this->type->qualifier.flags.q.varying) {
5280          if (this->type->qualifier.flags.q.in) {
5281             _mesa_glsl_error(& loc, state,
5282                              "`varying in' qualifier in declaration of "
5283                              "`%s' only valid for geometry shaders using "
5284                              "ARB_geometry_shader4 or EXT_geometry_shader4",
5285                              decl->identifier);
5286          } else if (this->type->qualifier.flags.q.out) {
5287             _mesa_glsl_error(& loc, state,
5288                              "`varying out' qualifier in declaration of "
5289                              "`%s' only valid for geometry shaders using "
5290                              "ARB_geometry_shader4 or EXT_geometry_shader4",
5291                              decl->identifier);
5292          }
5293       }
5294 
5295       /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
5296        *
5297        *     "Global variables can only use the qualifiers const,
5298        *     attribute, uniform, or varying. Only one may be
5299        *     specified.
5300        *
5301        *     Local variables can only use the qualifier const."
5302        *
5303        * This is relaxed in GLSL 1.30 and GLSL ES 3.00.  It is also relaxed by
5304        * any extension that adds the 'layout' keyword.
5305        */
5306       if (!state->is_version(130, 300)
5307           && !state->has_explicit_attrib_location()
5308           && !state->has_separate_shader_objects()
5309           && !state->ARB_fragment_coord_conventions_enable) {
5310          /* GL_EXT_gpu_shader4 only allows "varying out" on fragment shader
5311           * outputs. (the varying flag is not set by the parser)
5312           */
5313          if (this->type->qualifier.flags.q.out &&
5314              (!state->EXT_gpu_shader4_enable ||
5315               state->stage != MESA_SHADER_FRAGMENT)) {
5316             _mesa_glsl_error(& loc, state,
5317                              "`out' qualifier in declaration of `%s' "
5318                              "only valid for function parameters in %s",
5319                              decl->identifier, state->get_version_string());
5320          }
5321          if (this->type->qualifier.flags.q.in) {
5322             _mesa_glsl_error(& loc, state,
5323                              "`in' qualifier in declaration of `%s' "
5324                              "only valid for function parameters in %s",
5325                              decl->identifier, state->get_version_string());
5326          }
5327          /* FINISHME: Test for other invalid qualifiers. */
5328       }
5329 
5330       apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
5331                                        & loc, false);
5332       apply_layout_qualifier_to_variable(&this->type->qualifier, var, state,
5333                                          &loc);
5334 
5335       if ((state->zero_init & (1u << var->data.mode)) &&
5336           (var->type->is_numeric() || var->type->is_boolean())) {
5337          const ir_constant_data data = { { 0 } };
5338          var->data.has_initializer = true;
5339          var->data.is_implicit_initializer = true;
5340          var->constant_initializer = new(var) ir_constant(var->type, &data);
5341       }
5342 
5343       if (this->type->qualifier.flags.q.invariant) {
5344          if (!is_allowed_invariant(var, state)) {
5345             _mesa_glsl_error(&loc, state,
5346                              "`%s' cannot be marked invariant; interfaces between "
5347                              "shader stages only", var->name);
5348          }
5349       }
5350 
5351       if (state->current_function != NULL) {
5352          const char *mode = NULL;
5353          const char *extra = "";
5354 
5355          /* There is no need to check for 'inout' here because the parser will
5356           * only allow that in function parameter lists.
5357           */
5358          if (this->type->qualifier.flags.q.attribute) {
5359             mode = "attribute";
5360          } else if (this->type->qualifier.is_subroutine_decl()) {
5361             mode = "subroutine uniform";
5362          } else if (this->type->qualifier.flags.q.uniform) {
5363             mode = "uniform";
5364          } else if (this->type->qualifier.flags.q.varying) {
5365             mode = "varying";
5366          } else if (this->type->qualifier.flags.q.in) {
5367             mode = "in";
5368             extra = " or in function parameter list";
5369          } else if (this->type->qualifier.flags.q.out) {
5370             mode = "out";
5371             extra = " or in function parameter list";
5372          }
5373 
5374          if (mode) {
5375             _mesa_glsl_error(& loc, state,
5376                              "%s variable `%s' must be declared at "
5377                              "global scope%s",
5378                              mode, var->name, extra);
5379          }
5380       } else if (var->data.mode == ir_var_shader_in) {
5381          var->data.read_only = true;
5382 
5383          if (state->stage == MESA_SHADER_VERTEX) {
5384             /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
5385              *
5386              *    "Vertex shader inputs can only be float, floating-point
5387              *    vectors, matrices, signed and unsigned integers and integer
5388              *    vectors. Vertex shader inputs can also form arrays of these
5389              *    types, but not structures."
5390              *
5391              * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
5392              *
5393              *    "Vertex shader inputs can only be float, floating-point
5394              *    vectors, matrices, signed and unsigned integers and integer
5395              *    vectors. They cannot be arrays or structures."
5396              *
5397              * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
5398              *
5399              *    "The attribute qualifier can be used only with float,
5400              *    floating-point vectors, and matrices. Attribute variables
5401              *    cannot be declared as arrays or structures."
5402              *
5403              * From page 33 (page 39 of the PDF) of the GLSL ES 3.00 spec:
5404              *
5405              *    "Vertex shader inputs can only be float, floating-point
5406              *    vectors, matrices, signed and unsigned integers and integer
5407              *    vectors. Vertex shader inputs cannot be arrays or
5408              *    structures."
5409              *
5410              * From section 4.3.4 of the ARB_bindless_texture spec:
5411              *
5412              *    "(modify third paragraph of the section to allow sampler and
5413              *    image types) ...  Vertex shader inputs can only be float,
5414              *    single-precision floating-point scalars, single-precision
5415              *    floating-point vectors, matrices, signed and unsigned
5416              *    integers and integer vectors, sampler and image types."
5417              */
5418             const glsl_type *check_type = var->type->without_array();
5419 
5420             bool error = false;
5421             switch (check_type->base_type) {
5422             case GLSL_TYPE_FLOAT:
5423                break;
5424             case GLSL_TYPE_UINT64:
5425             case GLSL_TYPE_INT64:
5426                break;
5427             case GLSL_TYPE_UINT:
5428             case GLSL_TYPE_INT:
5429                error = !state->is_version(120, 300) && !state->EXT_gpu_shader4_enable;
5430                break;
5431             case GLSL_TYPE_DOUBLE:
5432                error = !state->is_version(410, 0) && !state->ARB_vertex_attrib_64bit_enable;
5433                break;
5434             case GLSL_TYPE_SAMPLER:
5435             case GLSL_TYPE_IMAGE:
5436                error = !state->has_bindless();
5437                break;
5438             default:
5439                error = true;
5440             }
5441 
5442             if (error) {
5443                _mesa_glsl_error(& loc, state,
5444                                 "vertex shader input / attribute cannot have "
5445                                 "type %s`%s'",
5446                                 var->type->is_array() ? "array of " : "",
5447                                 check_type->name);
5448             } else if (var->type->is_array() &&
5449                 !state->check_version(150, 0, &loc,
5450                                       "vertex shader input / attribute "
5451                                       "cannot have array type")) {
5452             }
5453          } else if (state->stage == MESA_SHADER_GEOMETRY) {
5454             /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
5455              *
5456              *     Geometry shader input variables get the per-vertex values
5457              *     written out by vertex shader output variables of the same
5458              *     names. Since a geometry shader operates on a set of
5459              *     vertices, each input varying variable (or input block, see
5460              *     interface blocks below) needs to be declared as an array.
5461              */
5462             if (!var->type->is_array()) {
5463                _mesa_glsl_error(&loc, state,
5464                                 "geometry shader inputs must be arrays");
5465             }
5466 
5467             handle_geometry_shader_input_decl(state, loc, var);
5468          } else if (state->stage == MESA_SHADER_FRAGMENT) {
5469             /* From section 4.3.4 (Input Variables) of the GLSL ES 3.10 spec:
5470              *
5471              *     It is a compile-time error to declare a fragment shader
5472              *     input with, or that contains, any of the following types:
5473              *
5474              *     * A boolean type
5475              *     * An opaque type
5476              *     * An array of arrays
5477              *     * An array of structures
5478              *     * A structure containing an array
5479              *     * A structure containing a structure
5480              */
5481             if (state->es_shader) {
5482                const glsl_type *check_type = var->type->without_array();
5483                if (check_type->is_boolean() ||
5484                    check_type->contains_opaque()) {
5485                   _mesa_glsl_error(&loc, state,
5486                                    "fragment shader input cannot have type %s",
5487                                    check_type->name);
5488                }
5489                if (var->type->is_array() &&
5490                    var->type->fields.array->is_array()) {
5491                   _mesa_glsl_error(&loc, state,
5492                                    "%s shader output "
5493                                    "cannot have an array of arrays",
5494                                    _mesa_shader_stage_to_string(state->stage));
5495                }
5496                if (var->type->is_array() &&
5497                    var->type->fields.array->is_struct()) {
5498                   _mesa_glsl_error(&loc, state,
5499                                    "fragment shader input "
5500                                    "cannot have an array of structs");
5501                }
5502                if (var->type->is_struct()) {
5503                   for (unsigned i = 0; i < var->type->length; i++) {
5504                      if (var->type->fields.structure[i].type->is_array() ||
5505                          var->type->fields.structure[i].type->is_struct())
5506                         _mesa_glsl_error(&loc, state,
5507                                          "fragment shader input cannot have "
5508                                          "a struct that contains an "
5509                                          "array or struct");
5510                   }
5511                }
5512             }
5513          } else if (state->stage == MESA_SHADER_TESS_CTRL ||
5514                     state->stage == MESA_SHADER_TESS_EVAL) {
5515             handle_tess_shader_input_decl(state, loc, var);
5516          }
5517       } else if (var->data.mode == ir_var_shader_out) {
5518          const glsl_type *check_type = var->type->without_array();
5519 
5520          /* From section 4.3.6 (Output variables) of the GLSL 4.40 spec:
5521           *
5522           *     It is a compile-time error to declare a fragment shader output
5523           *     that contains any of the following:
5524           *
5525           *     * A Boolean type (bool, bvec2 ...)
5526           *     * A double-precision scalar or vector (double, dvec2 ...)
5527           *     * An opaque type
5528           *     * Any matrix type
5529           *     * A structure
5530           */
5531          if (state->stage == MESA_SHADER_FRAGMENT) {
5532             if (check_type->is_struct() || check_type->is_matrix())
5533                _mesa_glsl_error(&loc, state,
5534                                 "fragment shader output "
5535                                 "cannot have struct or matrix type");
5536             switch (check_type->base_type) {
5537             case GLSL_TYPE_UINT:
5538             case GLSL_TYPE_INT:
5539             case GLSL_TYPE_FLOAT:
5540                break;
5541             default:
5542                _mesa_glsl_error(&loc, state,
5543                                 "fragment shader output cannot have "
5544                                 "type %s", check_type->name);
5545             }
5546          }
5547 
5548          /* From section 4.3.6 (Output Variables) of the GLSL ES 3.10 spec:
5549           *
5550           *     It is a compile-time error to declare a vertex shader output
5551           *     with, or that contains, any of the following types:
5552           *
5553           *     * A boolean type
5554           *     * An opaque type
5555           *     * An array of arrays
5556           *     * An array of structures
5557           *     * A structure containing an array
5558           *     * A structure containing a structure
5559           *
5560           *     It is a compile-time error to declare a fragment shader output
5561           *     with, or that contains, any of the following types:
5562           *
5563           *     * A boolean type
5564           *     * An opaque type
5565           *     * A matrix
5566           *     * A structure
5567           *     * An array of array
5568           *
5569           * ES 3.20 updates this to apply to tessellation and geometry shaders
5570           * as well.  Because there are per-vertex arrays in the new stages,
5571           * it strikes the "array of..." rules and replaces them with these:
5572           *
5573           *     * For per-vertex-arrayed variables (applies to tessellation
5574           *       control, tessellation evaluation and geometry shaders):
5575           *
5576           *       * Per-vertex-arrayed arrays of arrays
5577           *       * Per-vertex-arrayed arrays of structures
5578           *
5579           *     * For non-per-vertex-arrayed variables:
5580           *
5581           *       * An array of arrays
5582           *       * An array of structures
5583           *
5584           * which basically says to unwrap the per-vertex aspect and apply
5585           * the old rules.
5586           */
5587          if (state->es_shader) {
5588             if (var->type->is_array() &&
5589                 var->type->fields.array->is_array()) {
5590                _mesa_glsl_error(&loc, state,
5591                                 "%s shader output "
5592                                 "cannot have an array of arrays",
5593                                 _mesa_shader_stage_to_string(state->stage));
5594             }
5595             if (state->stage <= MESA_SHADER_GEOMETRY) {
5596                const glsl_type *type = var->type;
5597 
5598                if (state->stage == MESA_SHADER_TESS_CTRL &&
5599                    !var->data.patch && var->type->is_array()) {
5600                   type = var->type->fields.array;
5601                }
5602 
5603                if (type->is_array() && type->fields.array->is_struct()) {
5604                   _mesa_glsl_error(&loc, state,
5605                                    "%s shader output cannot have "
5606                                    "an array of structs",
5607                                    _mesa_shader_stage_to_string(state->stage));
5608                }
5609                if (type->is_struct()) {
5610                   for (unsigned i = 0; i < type->length; i++) {
5611                      if (type->fields.structure[i].type->is_array() ||
5612                          type->fields.structure[i].type->is_struct())
5613                         _mesa_glsl_error(&loc, state,
5614                                          "%s shader output cannot have a "
5615                                          "struct that contains an "
5616                                          "array or struct",
5617                                          _mesa_shader_stage_to_string(state->stage));
5618                   }
5619                }
5620             }
5621          }
5622 
5623          if (state->stage == MESA_SHADER_TESS_CTRL) {
5624             handle_tess_ctrl_shader_output_decl(state, loc, var);
5625          }
5626       } else if (var->type->contains_subroutine()) {
5627          /* declare subroutine uniforms as hidden */
5628          var->data.how_declared = ir_var_hidden;
5629       }
5630 
5631       /* From section 4.3.4 of the GLSL 4.00 spec:
5632        *    "Input variables may not be declared using the patch in qualifier
5633        *    in tessellation control or geometry shaders."
5634        *
5635        * From section 4.3.6 of the GLSL 4.00 spec:
5636        *    "It is an error to use patch out in a vertex, tessellation
5637        *    evaluation, or geometry shader."
5638        *
5639        * This doesn't explicitly forbid using them in a fragment shader, but
5640        * that's probably just an oversight.
5641        */
5642       if (state->stage != MESA_SHADER_TESS_EVAL
5643           && this->type->qualifier.flags.q.patch
5644           && this->type->qualifier.flags.q.in) {
5645 
5646          _mesa_glsl_error(&loc, state, "'patch in' can only be used in a "
5647                           "tessellation evaluation shader");
5648       }
5649 
5650       if (state->stage != MESA_SHADER_TESS_CTRL
5651           && this->type->qualifier.flags.q.patch
5652           && this->type->qualifier.flags.q.out) {
5653 
5654          _mesa_glsl_error(&loc, state, "'patch out' can only be used in a "
5655                           "tessellation control shader");
5656       }
5657 
5658       /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
5659        */
5660       if (this->type->qualifier.precision != ast_precision_none) {
5661          state->check_precision_qualifiers_allowed(&loc);
5662       }
5663 
5664       if (this->type->qualifier.precision != ast_precision_none &&
5665           !precision_qualifier_allowed(var->type)) {
5666          _mesa_glsl_error(&loc, state,
5667                           "precision qualifiers apply only to floating point"
5668                           ", integer and opaque types");
5669       }
5670 
5671       /* From section 4.1.7 of the GLSL 4.40 spec:
5672        *
5673        *    "[Opaque types] can only be declared as function
5674        *     parameters or uniform-qualified variables."
5675        *
5676        * From section 4.1.7 of the ARB_bindless_texture spec:
5677        *
5678        *    "Samplers may be declared as shader inputs and outputs, as uniform
5679        *     variables, as temporary variables, and as function parameters."
5680        *
5681        * From section 4.1.X of the ARB_bindless_texture spec:
5682        *
5683        *    "Images may be declared as shader inputs and outputs, as uniform
5684        *     variables, as temporary variables, and as function parameters."
5685        */
5686       if (!this->type->qualifier.flags.q.uniform &&
5687           (var_type->contains_atomic() ||
5688            (!state->has_bindless() && var_type->contains_opaque()))) {
5689          _mesa_glsl_error(&loc, state,
5690                           "%s variables must be declared uniform",
5691                           state->has_bindless() ? "atomic" : "opaque");
5692       }
5693 
5694       /* Process the initializer and add its instructions to a temporary
5695        * list.  This list will be added to the instruction stream (below) after
5696        * the declaration is added.  This is done because in some cases (such as
5697        * redeclarations) the declaration may not actually be added to the
5698        * instruction stream.
5699        */
5700       exec_list initializer_instructions;
5701 
5702       /* Examine var name here since var may get deleted in the next call */
5703       bool var_is_gl_id = is_gl_identifier(var->name);
5704 
5705       bool is_redeclaration;
5706       var = get_variable_being_redeclared(&var, decl->get_location(), state,
5707                                           false /* allow_all_redeclarations */,
5708                                           &is_redeclaration);
5709       if (is_redeclaration) {
5710          if (var_is_gl_id &&
5711              var->data.how_declared == ir_var_declared_in_block) {
5712             _mesa_glsl_error(&loc, state,
5713                              "`%s' has already been redeclared using "
5714                              "gl_PerVertex", var->name);
5715          }
5716          var->data.how_declared = ir_var_declared_normally;
5717       }
5718 
5719       if (decl->initializer != NULL) {
5720          result = process_initializer(var,
5721                                       decl, this->type,
5722                                       &initializer_instructions, state);
5723       } else {
5724          validate_array_dimensions(var_type, state, &loc);
5725       }
5726 
5727       /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
5728        *
5729        *     "It is an error to write to a const variable outside of
5730        *      its declaration, so they must be initialized when
5731        *      declared."
5732        */
5733       if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
5734          _mesa_glsl_error(& loc, state,
5735                           "const declaration of `%s' must be initialized",
5736                           decl->identifier);
5737       }
5738 
5739       if (state->es_shader) {
5740          const glsl_type *const t = var->type;
5741 
5742          /* Skip the unsized array check for TCS/TES/GS inputs & TCS outputs.
5743           *
5744           * The GL_OES_tessellation_shader spec says about inputs:
5745           *
5746           *    "Declaring an array size is optional. If no size is specified,
5747           *     it will be taken from the implementation-dependent maximum
5748           *     patch size (gl_MaxPatchVertices)."
5749           *
5750           * and about TCS outputs:
5751           *
5752           *    "If no size is specified, it will be taken from output patch
5753           *     size declared in the shader."
5754           *
5755           * The GL_OES_geometry_shader spec says:
5756           *
5757           *    "All geometry shader input unsized array declarations will be
5758           *     sized by an earlier input primitive layout qualifier, when
5759           *     present, as per the following table."
5760           */
5761          const bool implicitly_sized =
5762             (var->data.mode == ir_var_shader_in &&
5763              state->stage >= MESA_SHADER_TESS_CTRL &&
5764              state->stage <= MESA_SHADER_GEOMETRY) ||
5765             (var->data.mode == ir_var_shader_out &&
5766              state->stage == MESA_SHADER_TESS_CTRL);
5767 
5768          if (t->is_unsized_array() && !implicitly_sized)
5769             /* Section 10.17 of the GLSL ES 1.00 specification states that
5770              * unsized array declarations have been removed from the language.
5771              * Arrays that are sized using an initializer are still explicitly
5772              * sized.  However, GLSL ES 1.00 does not allow array
5773              * initializers.  That is only allowed in GLSL ES 3.00.
5774              *
5775              * Section 4.1.9 (Arrays) of the GLSL ES 3.00 spec says:
5776              *
5777              *     "An array type can also be formed without specifying a size
5778              *     if the definition includes an initializer:
5779              *
5780              *         float x[] = float[2] (1.0, 2.0);     // declares an array of size 2
5781              *         float y[] = float[] (1.0, 2.0, 3.0); // declares an array of size 3
5782              *
5783              *         float a[5];
5784              *         float b[] = a;"
5785              */
5786             _mesa_glsl_error(& loc, state,
5787                              "unsized array declarations are not allowed in "
5788                              "GLSL ES");
5789       }
5790 
5791       /* Section 4.4.6.1 Atomic Counter Layout Qualifiers of the GLSL 4.60 spec:
5792        *
5793        *    "It is a compile-time error to declare an unsized array of
5794        *     atomic_uint"
5795        */
5796       if (var->type->is_unsized_array() &&
5797           var->type->without_array()->base_type == GLSL_TYPE_ATOMIC_UINT) {
5798          _mesa_glsl_error(& loc, state,
5799                           "Unsized array of atomic_uint is not allowed");
5800       }
5801 
5802       /* If the declaration is not a redeclaration, there are a few additional
5803        * semantic checks that must be applied.  In addition, variable that was
5804        * created for the declaration should be added to the IR stream.
5805        */
5806       if (!is_redeclaration) {
5807          validate_identifier(decl->identifier, loc, state);
5808 
5809          /* Add the variable to the symbol table.  Note that the initializer's
5810           * IR was already processed earlier (though it hasn't been emitted
5811           * yet), without the variable in scope.
5812           *
5813           * This differs from most C-like languages, but it follows the GLSL
5814           * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
5815           * spec:
5816           *
5817           *     "Within a declaration, the scope of a name starts immediately
5818           *     after the initializer if present or immediately after the name
5819           *     being declared if not."
5820           */
5821          if (!state->symbols->add_variable(var)) {
5822             YYLTYPE loc = this->get_location();
5823             _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
5824                              "current scope", decl->identifier);
5825             continue;
5826          }
5827 
5828          /* Push the variable declaration to the top.  It means that all the
5829           * variable declarations will appear in a funny last-to-first order,
5830           * but otherwise we run into trouble if a function is prototyped, a
5831           * global var is decled, then the function is defined with usage of
5832           * the global var.  See glslparsertest's CorrectModule.frag.
5833           */
5834          instructions->push_head(var);
5835       }
5836 
5837       instructions->append_list(&initializer_instructions);
5838    }
5839 
5840 
5841    /* Generally, variable declarations do not have r-values.  However,
5842     * one is used for the declaration in
5843     *
5844     * while (bool b = some_condition()) {
5845     *   ...
5846     * }
5847     *
5848     * so we return the rvalue from the last seen declaration here.
5849     */
5850    return result;
5851 }
5852 
5853 
5854 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)5855 ast_parameter_declarator::hir(exec_list *instructions,
5856                               struct _mesa_glsl_parse_state *state)
5857 {
5858    void *ctx = state;
5859    const struct glsl_type *type;
5860    const char *name = NULL;
5861    YYLTYPE loc = this->get_location();
5862 
5863    type = this->type->glsl_type(& name, state);
5864 
5865    if (type == NULL) {
5866       if (name != NULL) {
5867          _mesa_glsl_error(& loc, state,
5868                           "invalid type `%s' in declaration of `%s'",
5869                           name, this->identifier);
5870       } else {
5871          _mesa_glsl_error(& loc, state,
5872                           "invalid type in declaration of `%s'",
5873                           this->identifier);
5874       }
5875 
5876       type = glsl_type::error_type;
5877    }
5878 
5879    /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
5880     *
5881     *    "Functions that accept no input arguments need not use void in the
5882     *    argument list because prototypes (or definitions) are required and
5883     *    therefore there is no ambiguity when an empty argument list "( )" is
5884     *    declared. The idiom "(void)" as a parameter list is provided for
5885     *    convenience."
5886     *
5887     * Placing this check here prevents a void parameter being set up
5888     * for a function, which avoids tripping up checks for main taking
5889     * parameters and lookups of an unnamed symbol.
5890     */
5891    if (type->is_void()) {
5892       if (this->identifier != NULL)
5893          _mesa_glsl_error(& loc, state,
5894                           "named parameter cannot have type `void'");
5895 
5896       is_void = true;
5897       return NULL;
5898    }
5899 
5900    if (formal_parameter && (this->identifier == NULL)) {
5901       _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
5902       return NULL;
5903    }
5904 
5905    /* This only handles "vec4 foo[..]".  The earlier specifier->glsl_type(...)
5906     * call already handled the "vec4[..] foo" case.
5907     */
5908    type = process_array_type(&loc, type, this->array_specifier, state);
5909 
5910    if (!type->is_error() && type->is_unsized_array()) {
5911       _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
5912                        "a declared size");
5913       type = glsl_type::error_type;
5914    }
5915 
5916    is_void = false;
5917    ir_variable *var = new(ctx)
5918       ir_variable(type, this->identifier, ir_var_function_in);
5919 
5920    /* Apply any specified qualifiers to the parameter declaration.  Note that
5921     * for function parameters the default mode is 'in'.
5922     */
5923    apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc,
5924                                     true);
5925 
5926    if (((1u << var->data.mode) & state->zero_init) &&
5927        (var->type->is_numeric() || var->type->is_boolean())) {
5928          const ir_constant_data data = { { 0 } };
5929          var->data.has_initializer = true;
5930          var->data.is_implicit_initializer = true;
5931          var->constant_initializer = new(var) ir_constant(var->type, &data);
5932    }
5933 
5934    /* From section 4.1.7 of the GLSL 4.40 spec:
5935     *
5936     *   "Opaque variables cannot be treated as l-values; hence cannot
5937     *    be used as out or inout function parameters, nor can they be
5938     *    assigned into."
5939     *
5940     * From section 4.1.7 of the ARB_bindless_texture spec:
5941     *
5942     *   "Samplers can be used as l-values, so can be assigned into and used
5943     *    as "out" and "inout" function parameters."
5944     *
5945     * From section 4.1.X of the ARB_bindless_texture spec:
5946     *
5947     *   "Images can be used as l-values, so can be assigned into and used as
5948     *    "out" and "inout" function parameters."
5949     */
5950    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5951        && (type->contains_atomic() ||
5952            (!state->has_bindless() && type->contains_opaque()))) {
5953       _mesa_glsl_error(&loc, state, "out and inout parameters cannot "
5954                        "contain %s variables",
5955                        state->has_bindless() ? "atomic" : "opaque");
5956       type = glsl_type::error_type;
5957    }
5958 
5959    /* From page 39 (page 45 of the PDF) of the GLSL 1.10 spec:
5960     *
5961     *    "When calling a function, expressions that do not evaluate to
5962     *     l-values cannot be passed to parameters declared as out or inout."
5963     *
5964     * From page 32 (page 38 of the PDF) of the GLSL 1.10 spec:
5965     *
5966     *    "Other binary or unary expressions, non-dereferenced arrays,
5967     *     function names, swizzles with repeated fields, and constants
5968     *     cannot be l-values."
5969     *
5970     * So for GLSL 1.10, passing an array as an out or inout parameter is not
5971     * allowed.  This restriction is removed in GLSL 1.20, and in GLSL ES.
5972     */
5973    if ((var->data.mode == ir_var_function_inout || var->data.mode == ir_var_function_out)
5974        && type->is_array()
5975        && !state->check_version(120, 100, &loc,
5976                                 "arrays cannot be out or inout parameters")) {
5977       type = glsl_type::error_type;
5978    }
5979 
5980    instructions->push_tail(var);
5981 
5982    /* Parameter declarations do not have r-values.
5983     */
5984    return NULL;
5985 }
5986 
5987 
5988 void
parameters_to_hir(exec_list * ast_parameters,bool formal,exec_list * ir_parameters,_mesa_glsl_parse_state * state)5989 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
5990                                             bool formal,
5991                                             exec_list *ir_parameters,
5992                                             _mesa_glsl_parse_state *state)
5993 {
5994    ast_parameter_declarator *void_param = NULL;
5995    unsigned count = 0;
5996 
5997    foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
5998       param->formal_parameter = formal;
5999       param->hir(ir_parameters, state);
6000 
6001       if (param->is_void)
6002          void_param = param;
6003 
6004       count++;
6005    }
6006 
6007    if ((void_param != NULL) && (count > 1)) {
6008       YYLTYPE loc = void_param->get_location();
6009 
6010       _mesa_glsl_error(& loc, state,
6011                        "`void' parameter must be only parameter");
6012    }
6013 }
6014 
6015 
6016 void
emit_function(_mesa_glsl_parse_state * state,ir_function * f)6017 emit_function(_mesa_glsl_parse_state *state, ir_function *f)
6018 {
6019    /* IR invariants disallow function declarations or definitions
6020     * nested within other function definitions.  But there is no
6021     * requirement about the relative order of function declarations
6022     * and definitions with respect to one another.  So simply insert
6023     * the new ir_function block at the end of the toplevel instruction
6024     * list.
6025     */
6026    state->toplevel_ir->push_tail(f);
6027 }
6028 
6029 
6030 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6031 ast_function::hir(exec_list *instructions,
6032                   struct _mesa_glsl_parse_state *state)
6033 {
6034    void *ctx = state;
6035    ir_function *f = NULL;
6036    ir_function_signature *sig = NULL;
6037    exec_list hir_parameters;
6038    YYLTYPE loc = this->get_location();
6039 
6040    const char *const name = identifier;
6041 
6042    /* New functions are always added to the top-level IR instruction stream,
6043     * so this instruction list pointer is ignored.  See also emit_function
6044     * (called below).
6045     */
6046    (void) instructions;
6047 
6048    /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
6049     *
6050     *   "Function declarations (prototypes) cannot occur inside of functions;
6051     *   they must be at global scope, or for the built-in functions, outside
6052     *   the global scope."
6053     *
6054     * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
6055     *
6056     *   "User defined functions may only be defined within the global scope."
6057     *
6058     * Note that this language does not appear in GLSL 1.10.
6059     */
6060    if ((state->current_function != NULL) &&
6061        state->is_version(120, 100)) {
6062       YYLTYPE loc = this->get_location();
6063       _mesa_glsl_error(&loc, state,
6064                        "declaration of function `%s' not allowed within "
6065                        "function body", name);
6066    }
6067 
6068    validate_identifier(name, this->get_location(), state);
6069 
6070    /* Convert the list of function parameters to HIR now so that they can be
6071     * used below to compare this function's signature with previously seen
6072     * signatures for functions with the same name.
6073     */
6074    ast_parameter_declarator::parameters_to_hir(& this->parameters,
6075                                                is_definition,
6076                                                & hir_parameters, state);
6077 
6078    const char *return_type_name;
6079    const glsl_type *return_type =
6080       this->return_type->glsl_type(& return_type_name, state);
6081 
6082    if (!return_type) {
6083       YYLTYPE loc = this->get_location();
6084       _mesa_glsl_error(&loc, state,
6085                        "function `%s' has undeclared return type `%s'",
6086                        name, return_type_name);
6087       return_type = glsl_type::error_type;
6088    }
6089 
6090    /* ARB_shader_subroutine states:
6091     *  "Subroutine declarations cannot be prototyped. It is an error to prepend
6092     *   subroutine(...) to a function declaration."
6093     */
6094    if (this->return_type->qualifier.subroutine_list && !is_definition) {
6095       YYLTYPE loc = this->get_location();
6096       _mesa_glsl_error(&loc, state,
6097                        "function declaration `%s' cannot have subroutine prepended",
6098                        name);
6099    }
6100 
6101    /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
6102     * "No qualifier is allowed on the return type of a function."
6103     */
6104    if (this->return_type->has_qualifiers(state)) {
6105       YYLTYPE loc = this->get_location();
6106       _mesa_glsl_error(& loc, state,
6107                        "function `%s' return type has qualifiers", name);
6108    }
6109 
6110    /* Section 6.1 (Function Definitions) of the GLSL 1.20 spec says:
6111     *
6112     *     "Arrays are allowed as arguments and as the return type. In both
6113     *     cases, the array must be explicitly sized."
6114     */
6115    if (return_type->is_unsized_array()) {
6116       YYLTYPE loc = this->get_location();
6117       _mesa_glsl_error(& loc, state,
6118                        "function `%s' return type array must be explicitly "
6119                        "sized", name);
6120    }
6121 
6122    /* From Section 6.1 (Function Definitions) of the GLSL 1.00 spec:
6123     *
6124     *     "Arrays are allowed as arguments, but not as the return type. [...]
6125     *      The return type can also be a structure if the structure does not
6126     *      contain an array."
6127     */
6128    if (state->language_version == 100 && return_type->contains_array()) {
6129       YYLTYPE loc = this->get_location();
6130       _mesa_glsl_error(& loc, state,
6131                        "function `%s' return type contains an array", name);
6132    }
6133 
6134    /* From section 4.1.7 of the GLSL 4.40 spec:
6135     *
6136     *    "[Opaque types] can only be declared as function parameters
6137     *     or uniform-qualified variables."
6138     *
6139     * The ARB_bindless_texture spec doesn't clearly state this, but as it says
6140     * "Replace Section 4.1.7 (Samplers), p. 25" and, "Replace Section 4.1.X,
6141     * (Images)", this should be allowed.
6142     */
6143    if (return_type->contains_atomic() ||
6144        (!state->has_bindless() && return_type->contains_opaque())) {
6145       YYLTYPE loc = this->get_location();
6146       _mesa_glsl_error(&loc, state,
6147                        "function `%s' return type can't contain an %s type",
6148                        name, state->has_bindless() ? "atomic" : "opaque");
6149    }
6150 
6151    /**/
6152    if (return_type->is_subroutine()) {
6153       YYLTYPE loc = this->get_location();
6154       _mesa_glsl_error(&loc, state,
6155                        "function `%s' return type can't be a subroutine type",
6156                        name);
6157    }
6158 
6159    /* Get the precision for the return type */
6160    unsigned return_precision;
6161 
6162    if (state->es_shader) {
6163       YYLTYPE loc = this->get_location();
6164       return_precision =
6165          select_gles_precision(this->return_type->qualifier.precision,
6166                                return_type,
6167                                state,
6168                                &loc);
6169    } else {
6170       return_precision = GLSL_PRECISION_NONE;
6171    }
6172 
6173    /* Create an ir_function if one doesn't already exist. */
6174    f = state->symbols->get_function(name);
6175    if (f == NULL) {
6176       f = new(ctx) ir_function(name);
6177       if (!this->return_type->qualifier.is_subroutine_decl()) {
6178          if (!state->symbols->add_function(f)) {
6179             /* This function name shadows a non-function use of the same name. */
6180             YYLTYPE loc = this->get_location();
6181             _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
6182                              "non-function", name);
6183             return NULL;
6184          }
6185       }
6186       emit_function(state, f);
6187    }
6188 
6189    /* From GLSL ES 3.0 spec, chapter 6.1 "Function Definitions", page 71:
6190     *
6191     * "A shader cannot redefine or overload built-in functions."
6192     *
6193     * While in GLSL ES 1.0 specification, chapter 8 "Built-in Functions":
6194     *
6195     * "User code can overload the built-in functions but cannot redefine
6196     * them."
6197     */
6198    if (state->es_shader) {
6199       /* Local shader has no exact candidates; check the built-ins. */
6200       if (state->language_version >= 300 &&
6201           _mesa_glsl_has_builtin_function(state, name)) {
6202          YYLTYPE loc = this->get_location();
6203          _mesa_glsl_error(& loc, state,
6204                           "A shader cannot redefine or overload built-in "
6205                           "function `%s' in GLSL ES 3.00", name);
6206          return NULL;
6207       }
6208 
6209       if (state->language_version == 100) {
6210          ir_function_signature *sig =
6211             _mesa_glsl_find_builtin_function(state, name, &hir_parameters);
6212          if (sig && sig->is_builtin()) {
6213             _mesa_glsl_error(& loc, state,
6214                              "A shader cannot redefine built-in "
6215                              "function `%s' in GLSL ES 1.00", name);
6216          }
6217       }
6218    }
6219 
6220    /* Verify that this function's signature either doesn't match a previously
6221     * seen signature for a function with the same name, or, if a match is found,
6222     * that the previously seen signature does not have an associated definition.
6223     */
6224    if (state->es_shader || f->has_user_signature()) {
6225       sig = f->exact_matching_signature(state, &hir_parameters);
6226       if (sig != NULL) {
6227          const char *badvar = sig->qualifiers_match(&hir_parameters);
6228          if (badvar != NULL) {
6229             YYLTYPE loc = this->get_location();
6230 
6231             _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
6232                              "qualifiers don't match prototype", name, badvar);
6233          }
6234 
6235          if (sig->return_type != return_type) {
6236             YYLTYPE loc = this->get_location();
6237 
6238             _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
6239                              "match prototype", name);
6240          }
6241 
6242          if (sig->return_precision != return_precision) {
6243             YYLTYPE loc = this->get_location();
6244 
6245             _mesa_glsl_error(&loc, state, "function `%s' return type precision "
6246                              "doesn't match prototype", name);
6247          }
6248 
6249          if (sig->is_defined) {
6250             if (is_definition) {
6251                YYLTYPE loc = this->get_location();
6252                _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
6253             } else {
6254                /* We just encountered a prototype that exactly matches a
6255                 * function that's already been defined.  This is redundant,
6256                 * and we should ignore it.
6257                 */
6258                return NULL;
6259             }
6260          } else if (state->language_version == 100 && !is_definition) {
6261             /* From the GLSL 1.00 spec, section 4.2.7:
6262              *
6263              *     "A particular variable, structure or function declaration
6264              *      may occur at most once within a scope with the exception
6265              *      that a single function prototype plus the corresponding
6266              *      function definition are allowed."
6267              */
6268             YYLTYPE loc = this->get_location();
6269             _mesa_glsl_error(&loc, state, "function `%s' redeclared", name);
6270          }
6271       }
6272    }
6273 
6274    /* Verify the return type of main() */
6275    if (strcmp(name, "main") == 0) {
6276       if (! return_type->is_void()) {
6277          YYLTYPE loc = this->get_location();
6278 
6279          _mesa_glsl_error(& loc, state, "main() must return void");
6280       }
6281 
6282       if (!hir_parameters.is_empty()) {
6283          YYLTYPE loc = this->get_location();
6284 
6285          _mesa_glsl_error(& loc, state, "main() must not take any parameters");
6286       }
6287    }
6288 
6289    /* Finish storing the information about this new function in its signature.
6290     */
6291    if (sig == NULL) {
6292       sig = new(ctx) ir_function_signature(return_type);
6293       sig->return_precision = return_precision;
6294       f->add_signature(sig);
6295    }
6296 
6297    sig->replace_parameters(&hir_parameters);
6298    signature = sig;
6299 
6300    if (this->return_type->qualifier.subroutine_list) {
6301       int idx;
6302 
6303       if (this->return_type->qualifier.flags.q.explicit_index) {
6304          unsigned qual_index;
6305          if (process_qualifier_constant(state, &loc, "index",
6306                                         this->return_type->qualifier.index,
6307                                         &qual_index)) {
6308             if (!state->has_explicit_uniform_location()) {
6309                _mesa_glsl_error(&loc, state, "subroutine index requires "
6310                                 "GL_ARB_explicit_uniform_location or "
6311                                 "GLSL 4.30");
6312             } else if (qual_index >= MAX_SUBROUTINES) {
6313                _mesa_glsl_error(&loc, state,
6314                                 "invalid subroutine index (%d) index must "
6315                                 "be a number between 0 and "
6316                                 "GL_MAX_SUBROUTINES - 1 (%d)", qual_index,
6317                                 MAX_SUBROUTINES - 1);
6318             } else {
6319                f->subroutine_index = qual_index;
6320             }
6321          }
6322       }
6323 
6324       f->num_subroutine_types = this->return_type->qualifier.subroutine_list->declarations.length();
6325       f->subroutine_types = ralloc_array(state, const struct glsl_type *,
6326                                          f->num_subroutine_types);
6327       idx = 0;
6328       foreach_list_typed(ast_declaration, decl, link, &this->return_type->qualifier.subroutine_list->declarations) {
6329          const struct glsl_type *type;
6330          /* the subroutine type must be already declared */
6331          type = state->symbols->get_type(decl->identifier);
6332          if (!type) {
6333             _mesa_glsl_error(& loc, state, "unknown type '%s' in subroutine function definition", decl->identifier);
6334          }
6335 
6336          for (int i = 0; i < state->num_subroutine_types; i++) {
6337             ir_function *fn = state->subroutine_types[i];
6338             ir_function_signature *tsig = NULL;
6339 
6340             if (strcmp(fn->name, decl->identifier))
6341                continue;
6342 
6343             tsig = fn->matching_signature(state, &sig->parameters,
6344                                           false);
6345             if (!tsig) {
6346                _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - signatures do not match\n", decl->identifier);
6347             } else {
6348                if (tsig->return_type != sig->return_type) {
6349                   _mesa_glsl_error(& loc, state, "subroutine type mismatch '%s' - return types do not match\n", decl->identifier);
6350                }
6351             }
6352          }
6353          f->subroutine_types[idx++] = type;
6354       }
6355       state->subroutines = (ir_function **)reralloc(state, state->subroutines,
6356                                                     ir_function *,
6357                                                     state->num_subroutines + 1);
6358       state->subroutines[state->num_subroutines] = f;
6359       state->num_subroutines++;
6360 
6361    }
6362 
6363    if (this->return_type->qualifier.is_subroutine_decl()) {
6364       if (!state->symbols->add_type(this->identifier, glsl_type::get_subroutine_instance(this->identifier))) {
6365          _mesa_glsl_error(& loc, state, "type '%s' previously defined", this->identifier);
6366          return NULL;
6367       }
6368       state->subroutine_types = (ir_function **)reralloc(state, state->subroutine_types,
6369                                                          ir_function *,
6370                                                          state->num_subroutine_types + 1);
6371       state->subroutine_types[state->num_subroutine_types] = f;
6372       state->num_subroutine_types++;
6373 
6374       f->is_subroutine = true;
6375    }
6376 
6377    /* Function declarations (prototypes) do not have r-values.
6378     */
6379    return NULL;
6380 }
6381 
6382 
6383 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6384 ast_function_definition::hir(exec_list *instructions,
6385                              struct _mesa_glsl_parse_state *state)
6386 {
6387    prototype->is_definition = true;
6388    prototype->hir(instructions, state);
6389 
6390    ir_function_signature *signature = prototype->signature;
6391    if (signature == NULL)
6392       return NULL;
6393 
6394    assert(state->current_function == NULL);
6395    state->current_function = signature;
6396    state->found_return = false;
6397    state->found_begin_interlock = false;
6398    state->found_end_interlock = false;
6399 
6400    /* Duplicate parameters declared in the prototype as concrete variables.
6401     * Add these to the symbol table.
6402     */
6403    state->symbols->push_scope();
6404    foreach_in_list(ir_variable, var, &signature->parameters) {
6405       assert(var->as_variable() != NULL);
6406 
6407       /* The only way a parameter would "exist" is if two parameters have
6408        * the same name.
6409        */
6410       if (state->symbols->name_declared_this_scope(var->name)) {
6411          YYLTYPE loc = this->get_location();
6412 
6413          _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
6414       } else {
6415          state->symbols->add_variable(var);
6416       }
6417    }
6418 
6419    /* Convert the body of the function to HIR. */
6420    this->body->hir(&signature->body, state);
6421    signature->is_defined = true;
6422 
6423    state->symbols->pop_scope();
6424 
6425    assert(state->current_function == signature);
6426    state->current_function = NULL;
6427 
6428    if (!signature->return_type->is_void() && !state->found_return) {
6429       YYLTYPE loc = this->get_location();
6430       _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
6431                        "%s, but no return statement",
6432                        signature->function_name(),
6433                        signature->return_type->name);
6434    }
6435 
6436    /* Function definitions do not have r-values.
6437     */
6438    return NULL;
6439 }
6440 
6441 
6442 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6443 ast_jump_statement::hir(exec_list *instructions,
6444                         struct _mesa_glsl_parse_state *state)
6445 {
6446    void *ctx = state;
6447 
6448    switch (mode) {
6449    case ast_return: {
6450       ir_return *inst;
6451       assert(state->current_function);
6452 
6453       if (opt_return_value) {
6454          ir_rvalue *ret = opt_return_value->hir(instructions, state);
6455 
6456          /* The value of the return type can be NULL if the shader says
6457           * 'return foo();' and foo() is a function that returns void.
6458           *
6459           * NOTE: The GLSL spec doesn't say that this is an error.  The type
6460           * of the return value is void.  If the return type of the function is
6461           * also void, then this should compile without error.  Seriously.
6462           */
6463          const glsl_type *const ret_type =
6464             (ret == NULL) ? glsl_type::void_type : ret->type;
6465 
6466          /* Implicit conversions are not allowed for return values prior to
6467           * ARB_shading_language_420pack.
6468           */
6469          if (state->current_function->return_type != ret_type) {
6470             YYLTYPE loc = this->get_location();
6471 
6472             if (state->has_420pack()) {
6473                if (!apply_implicit_conversion(state->current_function->return_type,
6474                                               ret, state)
6475                    || (ret->type != state->current_function->return_type)) {
6476                   _mesa_glsl_error(& loc, state,
6477                                    "could not implicitly convert return value "
6478                                    "to %s, in function `%s'",
6479                                    state->current_function->return_type->name,
6480                                    state->current_function->function_name());
6481                }
6482             } else {
6483                _mesa_glsl_error(& loc, state,
6484                                 "`return' with wrong type %s, in function `%s' "
6485                                 "returning %s",
6486                                 ret_type->name,
6487                                 state->current_function->function_name(),
6488                                 state->current_function->return_type->name);
6489             }
6490          } else if (state->current_function->return_type->base_type ==
6491                     GLSL_TYPE_VOID) {
6492             YYLTYPE loc = this->get_location();
6493 
6494             /* The ARB_shading_language_420pack, GLSL ES 3.0, and GLSL 4.20
6495              * specs add a clarification:
6496              *
6497              *    "A void function can only use return without a return argument, even if
6498              *     the return argument has void type. Return statements only accept values:
6499              *
6500              *         void func1() { }
6501              *         void func2() { return func1(); } // illegal return statement"
6502              */
6503             _mesa_glsl_error(& loc, state,
6504                              "void functions can only use `return' without a "
6505                              "return argument");
6506          }
6507 
6508          inst = new(ctx) ir_return(ret);
6509       } else {
6510          if (state->current_function->return_type->base_type !=
6511              GLSL_TYPE_VOID) {
6512             YYLTYPE loc = this->get_location();
6513 
6514             _mesa_glsl_error(& loc, state,
6515                              "`return' with no value, in function %s returning "
6516                              "non-void",
6517             state->current_function->function_name());
6518          }
6519          inst = new(ctx) ir_return;
6520       }
6521 
6522       state->found_return = true;
6523       instructions->push_tail(inst);
6524       break;
6525    }
6526 
6527    case ast_discard:
6528       if (state->stage != MESA_SHADER_FRAGMENT) {
6529          YYLTYPE loc = this->get_location();
6530 
6531          _mesa_glsl_error(& loc, state,
6532                           "`discard' may only appear in a fragment shader");
6533       }
6534       instructions->push_tail(new(ctx) ir_discard);
6535       break;
6536 
6537    case ast_break:
6538    case ast_continue:
6539       if (mode == ast_continue &&
6540           state->loop_nesting_ast == NULL) {
6541          YYLTYPE loc = this->get_location();
6542 
6543          _mesa_glsl_error(& loc, state, "continue may only appear in a loop");
6544       } else if (mode == ast_break &&
6545          state->loop_nesting_ast == NULL &&
6546          state->switch_state.switch_nesting_ast == NULL) {
6547          YYLTYPE loc = this->get_location();
6548 
6549          _mesa_glsl_error(& loc, state,
6550                           "break may only appear in a loop or a switch");
6551       } else {
6552          /* For a loop, inline the for loop expression again, since we don't
6553           * know where near the end of the loop body the normal copy of it is
6554           * going to be placed.  Same goes for the condition for a do-while
6555           * loop.
6556           */
6557          if (state->loop_nesting_ast != NULL &&
6558              mode == ast_continue && !state->switch_state.is_switch_innermost) {
6559             if (state->loop_nesting_ast->rest_expression) {
6560                clone_ir_list(ctx, instructions,
6561                              &state->loop_nesting_ast->rest_instructions);
6562             }
6563             if (state->loop_nesting_ast->mode ==
6564                 ast_iteration_statement::ast_do_while) {
6565                state->loop_nesting_ast->condition_to_hir(instructions, state);
6566             }
6567          }
6568 
6569          if (state->switch_state.is_switch_innermost &&
6570              mode == ast_continue) {
6571             /* Set 'continue_inside' to true. */
6572             ir_rvalue *const true_val = new (ctx) ir_constant(true);
6573             ir_dereference_variable *deref_continue_inside_var =
6574                new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6575             instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6576                                                            true_val));
6577 
6578             /* Break out from the switch, continue for the loop will
6579              * be called right after switch. */
6580             ir_loop_jump *const jump =
6581                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6582             instructions->push_tail(jump);
6583 
6584          } else if (state->switch_state.is_switch_innermost &&
6585              mode == ast_break) {
6586             /* Force break out of switch by inserting a break. */
6587             ir_loop_jump *const jump =
6588                new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6589             instructions->push_tail(jump);
6590          } else {
6591             ir_loop_jump *const jump =
6592                new(ctx) ir_loop_jump((mode == ast_break)
6593                   ? ir_loop_jump::jump_break
6594                   : ir_loop_jump::jump_continue);
6595             instructions->push_tail(jump);
6596          }
6597       }
6598 
6599       break;
6600    }
6601 
6602    /* Jump instructions do not have r-values.
6603     */
6604    return NULL;
6605 }
6606 
6607 
6608 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6609 ast_demote_statement::hir(exec_list *instructions,
6610                           struct _mesa_glsl_parse_state *state)
6611 {
6612    void *ctx = state;
6613 
6614    if (state->stage != MESA_SHADER_FRAGMENT) {
6615       YYLTYPE loc = this->get_location();
6616 
6617       _mesa_glsl_error(& loc, state,
6618                        "`demote' may only appear in a fragment shader");
6619    }
6620 
6621    instructions->push_tail(new(ctx) ir_demote);
6622 
6623    return NULL;
6624 }
6625 
6626 
6627 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6628 ast_selection_statement::hir(exec_list *instructions,
6629                              struct _mesa_glsl_parse_state *state)
6630 {
6631    void *ctx = state;
6632 
6633    ir_rvalue *const condition = this->condition->hir(instructions, state);
6634 
6635    /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
6636     *
6637     *    "Any expression whose type evaluates to a Boolean can be used as the
6638     *    conditional expression bool-expression. Vector types are not accepted
6639     *    as the expression to if."
6640     *
6641     * The checks are separated so that higher quality diagnostics can be
6642     * generated for cases where both rules are violated.
6643     */
6644    if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
6645       YYLTYPE loc = this->condition->get_location();
6646 
6647       _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
6648                        "boolean");
6649    }
6650 
6651    ir_if *const stmt = new(ctx) ir_if(condition);
6652 
6653    if (then_statement != NULL) {
6654       state->symbols->push_scope();
6655       then_statement->hir(& stmt->then_instructions, state);
6656       state->symbols->pop_scope();
6657    }
6658 
6659    if (else_statement != NULL) {
6660       state->symbols->push_scope();
6661       else_statement->hir(& stmt->else_instructions, state);
6662       state->symbols->pop_scope();
6663    }
6664 
6665    instructions->push_tail(stmt);
6666 
6667    /* if-statements do not have r-values.
6668     */
6669    return NULL;
6670 }
6671 
6672 
6673 struct case_label {
6674    /** Value of the case label. */
6675    unsigned value;
6676 
6677    /** Does this label occur after the default? */
6678    bool after_default;
6679 
6680    /**
6681     * AST for the case label.
6682     *
6683     * This is only used to generate error messages for duplicate labels.
6684     */
6685    ast_expression *ast;
6686 };
6687 
6688 /* Used for detection of duplicate case values, compare
6689  * given contents directly.
6690  */
6691 static bool
compare_case_value(const void * a,const void * b)6692 compare_case_value(const void *a, const void *b)
6693 {
6694    return ((struct case_label *) a)->value == ((struct case_label *) b)->value;
6695 }
6696 
6697 
6698 /* Used for detection of duplicate case values, just
6699  * returns key contents as is.
6700  */
6701 static unsigned
key_contents(const void * key)6702 key_contents(const void *key)
6703 {
6704    return ((struct case_label *) key)->value;
6705 }
6706 
6707 void
eval_test_expression(exec_list * instructions,struct _mesa_glsl_parse_state * state)6708 ast_switch_statement::eval_test_expression(exec_list *instructions,
6709                                            struct _mesa_glsl_parse_state *state)
6710 {
6711    if (test_val == NULL)
6712       test_val = this->test_expression->hir(instructions, state);
6713 }
6714 
6715 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6716 ast_switch_statement::hir(exec_list *instructions,
6717                           struct _mesa_glsl_parse_state *state)
6718 {
6719    void *ctx = state;
6720 
6721    this->eval_test_expression(instructions, state);
6722 
6723    /* From page 66 (page 55 of the PDF) of the GLSL 1.50 spec:
6724     *
6725     *    "The type of init-expression in a switch statement must be a
6726     *     scalar integer."
6727     */
6728    if (!test_val->type->is_scalar() ||
6729        !test_val->type->is_integer_32()) {
6730       YYLTYPE loc = this->test_expression->get_location();
6731 
6732       _mesa_glsl_error(& loc,
6733                        state,
6734                        "switch-statement expression must be scalar "
6735                        "integer");
6736       return NULL;
6737    }
6738 
6739    /* Track the switch-statement nesting in a stack-like manner.
6740     */
6741    struct glsl_switch_state saved = state->switch_state;
6742 
6743    state->switch_state.is_switch_innermost = true;
6744    state->switch_state.switch_nesting_ast = this;
6745    state->switch_state.labels_ht =
6746          _mesa_hash_table_create(NULL, key_contents,
6747                                  compare_case_value);
6748    state->switch_state.previous_default = NULL;
6749 
6750    /* Initalize is_fallthru state to false.
6751     */
6752    ir_rvalue *const is_fallthru_val = new (ctx) ir_constant(false);
6753    state->switch_state.is_fallthru_var =
6754       new(ctx) ir_variable(glsl_type::bool_type,
6755                            "switch_is_fallthru_tmp",
6756                            ir_var_temporary);
6757    instructions->push_tail(state->switch_state.is_fallthru_var);
6758 
6759    ir_dereference_variable *deref_is_fallthru_var =
6760       new(ctx) ir_dereference_variable(state->switch_state.is_fallthru_var);
6761    instructions->push_tail(new(ctx) ir_assignment(deref_is_fallthru_var,
6762                                                   is_fallthru_val));
6763 
6764    /* Initialize continue_inside state to false.
6765     */
6766    state->switch_state.continue_inside =
6767       new(ctx) ir_variable(glsl_type::bool_type,
6768                            "continue_inside_tmp",
6769                            ir_var_temporary);
6770    instructions->push_tail(state->switch_state.continue_inside);
6771 
6772    ir_rvalue *const false_val = new (ctx) ir_constant(false);
6773    ir_dereference_variable *deref_continue_inside_var =
6774       new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6775    instructions->push_tail(new(ctx) ir_assignment(deref_continue_inside_var,
6776                                                   false_val));
6777 
6778    state->switch_state.run_default =
6779       new(ctx) ir_variable(glsl_type::bool_type,
6780                              "run_default_tmp",
6781                              ir_var_temporary);
6782    instructions->push_tail(state->switch_state.run_default);
6783 
6784    /* Loop around the switch is used for flow control. */
6785    ir_loop * loop = new(ctx) ir_loop();
6786    instructions->push_tail(loop);
6787 
6788    /* Cache test expression.
6789     */
6790    test_to_hir(&loop->body_instructions, state);
6791 
6792    /* Emit code for body of switch stmt.
6793     */
6794    body->hir(&loop->body_instructions, state);
6795 
6796    /* Insert a break at the end to exit loop. */
6797    ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
6798    loop->body_instructions.push_tail(jump);
6799 
6800    /* If we are inside loop, check if continue got called inside switch. */
6801    if (state->loop_nesting_ast != NULL) {
6802       ir_dereference_variable *deref_continue_inside =
6803          new(ctx) ir_dereference_variable(state->switch_state.continue_inside);
6804       ir_if *irif = new(ctx) ir_if(deref_continue_inside);
6805       ir_loop_jump *jump = new(ctx) ir_loop_jump(ir_loop_jump::jump_continue);
6806 
6807       if (state->loop_nesting_ast != NULL) {
6808          if (state->loop_nesting_ast->rest_expression) {
6809             clone_ir_list(ctx, &irif->then_instructions,
6810                           &state->loop_nesting_ast->rest_instructions);
6811          }
6812          if (state->loop_nesting_ast->mode ==
6813              ast_iteration_statement::ast_do_while) {
6814             state->loop_nesting_ast->condition_to_hir(&irif->then_instructions, state);
6815          }
6816       }
6817       irif->then_instructions.push_tail(jump);
6818       instructions->push_tail(irif);
6819    }
6820 
6821    _mesa_hash_table_destroy(state->switch_state.labels_ht, NULL);
6822 
6823    state->switch_state = saved;
6824 
6825    /* Switch statements do not have r-values. */
6826    return NULL;
6827 }
6828 
6829 
6830 void
test_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6831 ast_switch_statement::test_to_hir(exec_list *instructions,
6832                                   struct _mesa_glsl_parse_state *state)
6833 {
6834    void *ctx = state;
6835 
6836    /* set to true to avoid a duplicate "use of uninitialized variable" warning
6837     * on the switch test case. The first one would be already raised when
6838     * getting the test_expression at ast_switch_statement::hir
6839     */
6840    test_expression->set_is_lhs(true);
6841    /* Cache value of test expression. */
6842    this->eval_test_expression(instructions, state);
6843 
6844    state->switch_state.test_var = new(ctx) ir_variable(test_val->type,
6845                                                        "switch_test_tmp",
6846                                                        ir_var_temporary);
6847    ir_dereference_variable *deref_test_var =
6848       new(ctx) ir_dereference_variable(state->switch_state.test_var);
6849 
6850    instructions->push_tail(state->switch_state.test_var);
6851    instructions->push_tail(new(ctx) ir_assignment(deref_test_var, test_val));
6852 }
6853 
6854 
6855 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6856 ast_switch_body::hir(exec_list *instructions,
6857                      struct _mesa_glsl_parse_state *state)
6858 {
6859    if (stmts != NULL) {
6860       state->symbols->push_scope();
6861       stmts->hir(instructions, state);
6862       state->symbols->pop_scope();
6863    }
6864 
6865    /* Switch bodies do not have r-values. */
6866    return NULL;
6867 }
6868 
6869 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6870 ast_case_statement_list::hir(exec_list *instructions,
6871                              struct _mesa_glsl_parse_state *state)
6872 {
6873    exec_list default_case, after_default, tmp;
6874 
6875    foreach_list_typed (ast_case_statement, case_stmt, link, & this->cases) {
6876       case_stmt->hir(&tmp, state);
6877 
6878       /* Default case. */
6879       if (state->switch_state.previous_default && default_case.is_empty()) {
6880          default_case.append_list(&tmp);
6881          continue;
6882       }
6883 
6884       /* If default case found, append 'after_default' list. */
6885       if (!default_case.is_empty())
6886          after_default.append_list(&tmp);
6887       else
6888          instructions->append_list(&tmp);
6889    }
6890 
6891    /* Handle the default case. This is done here because default might not be
6892     * the last case. We need to add checks against following cases first to see
6893     * if default should be chosen or not.
6894     */
6895    if (!default_case.is_empty()) {
6896       ir_factory body(instructions, state);
6897 
6898       ir_expression *cmp = NULL;
6899 
6900       hash_table_foreach(state->switch_state.labels_ht, entry) {
6901          const struct case_label *const l = (struct case_label *) entry->data;
6902 
6903          /* If the switch init-value is the value of one of the labels that
6904           * occurs after the default case, disable execution of the default
6905           * case.
6906           */
6907          if (l->after_default) {
6908             ir_constant *const cnst =
6909                state->switch_state.test_var->type->base_type == GLSL_TYPE_UINT
6910                ? body.constant(unsigned(l->value))
6911                : body.constant(int(l->value));
6912 
6913             cmp = cmp == NULL
6914                ? equal(cnst, state->switch_state.test_var)
6915                : logic_or(cmp, equal(cnst, state->switch_state.test_var));
6916          }
6917       }
6918 
6919       if (cmp != NULL)
6920          body.emit(assign(state->switch_state.run_default, logic_not(cmp)));
6921       else
6922          body.emit(assign(state->switch_state.run_default, body.constant(true)));
6923 
6924       /* Append default case and all cases after it. */
6925       instructions->append_list(&default_case);
6926       instructions->append_list(&after_default);
6927    }
6928 
6929    /* Case statements do not have r-values. */
6930    return NULL;
6931 }
6932 
6933 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6934 ast_case_statement::hir(exec_list *instructions,
6935                         struct _mesa_glsl_parse_state *state)
6936 {
6937    labels->hir(instructions, state);
6938 
6939    /* Guard case statements depending on fallthru state. */
6940    ir_dereference_variable *const deref_fallthru_guard =
6941       new(state) ir_dereference_variable(state->switch_state.is_fallthru_var);
6942    ir_if *const test_fallthru = new(state) ir_if(deref_fallthru_guard);
6943 
6944    foreach_list_typed (ast_node, stmt, link, & this->stmts)
6945       stmt->hir(& test_fallthru->then_instructions, state);
6946 
6947    instructions->push_tail(test_fallthru);
6948 
6949    /* Case statements do not have r-values. */
6950    return NULL;
6951 }
6952 
6953 
6954 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6955 ast_case_label_list::hir(exec_list *instructions,
6956                          struct _mesa_glsl_parse_state *state)
6957 {
6958    foreach_list_typed (ast_case_label, label, link, & this->labels)
6959       label->hir(instructions, state);
6960 
6961    /* Case labels do not have r-values. */
6962    return NULL;
6963 }
6964 
6965 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)6966 ast_case_label::hir(exec_list *instructions,
6967                     struct _mesa_glsl_parse_state *state)
6968 {
6969    ir_factory body(instructions, state);
6970 
6971    ir_variable *const fallthru_var = state->switch_state.is_fallthru_var;
6972 
6973    /* If not default case, ... */
6974    if (this->test_value != NULL) {
6975       /* Conditionally set fallthru state based on
6976        * comparison of cached test expression value to case label.
6977        */
6978       ir_rvalue *const label_rval = this->test_value->hir(instructions, state);
6979       ir_constant *label_const =
6980          label_rval->constant_expression_value(body.mem_ctx);
6981 
6982       if (!label_const) {
6983          YYLTYPE loc = this->test_value->get_location();
6984 
6985          _mesa_glsl_error(& loc, state,
6986                           "switch statement case label must be a "
6987                           "constant expression");
6988 
6989          /* Stuff a dummy value in to allow processing to continue. */
6990          label_const = body.constant(0);
6991       } else {
6992          hash_entry *entry =
6993                _mesa_hash_table_search(state->switch_state.labels_ht,
6994                                        &label_const->value.u[0]);
6995 
6996          if (entry) {
6997             const struct case_label *const l =
6998                (struct case_label *) entry->data;
6999             const ast_expression *const previous_label = l->ast;
7000             YYLTYPE loc = this->test_value->get_location();
7001 
7002             _mesa_glsl_error(& loc, state, "duplicate case value");
7003 
7004             loc = previous_label->get_location();
7005             _mesa_glsl_error(& loc, state, "this is the previous case label");
7006          } else {
7007             struct case_label *l = ralloc(state->switch_state.labels_ht,
7008                                           struct case_label);
7009 
7010             l->value = label_const->value.u[0];
7011             l->after_default = state->switch_state.previous_default != NULL;
7012             l->ast = this->test_value;
7013 
7014             _mesa_hash_table_insert(state->switch_state.labels_ht,
7015                                     &label_const->value.u[0],
7016                                     l);
7017          }
7018       }
7019 
7020       /* Create an r-value version of the ir_constant label here (after we may
7021        * have created a fake one in error cases) that can be passed to
7022        * apply_implicit_conversion below.
7023        */
7024       ir_rvalue *label = label_const;
7025 
7026       ir_rvalue *deref_test_var =
7027          new(body.mem_ctx) ir_dereference_variable(state->switch_state.test_var);
7028 
7029       /*
7030        * From GLSL 4.40 specification section 6.2 ("Selection"):
7031        *
7032        *     "The type of the init-expression value in a switch statement must
7033        *     be a scalar int or uint. The type of the constant-expression value
7034        *     in a case label also must be a scalar int or uint. When any pair
7035        *     of these values is tested for "equal value" and the types do not
7036        *     match, an implicit conversion will be done to convert the int to a
7037        *     uint (see section 4.1.10 “Implicit Conversions”) before the compare
7038        *     is done."
7039        */
7040       if (label->type != state->switch_state.test_var->type) {
7041          YYLTYPE loc = this->test_value->get_location();
7042 
7043          const glsl_type *type_a = label->type;
7044          const glsl_type *type_b = state->switch_state.test_var->type;
7045 
7046          /* Check if int->uint implicit conversion is supported. */
7047          bool integer_conversion_supported =
7048             glsl_type::int_type->can_implicitly_convert_to(glsl_type::uint_type,
7049                                                            state);
7050 
7051          if ((!type_a->is_integer_32() || !type_b->is_integer_32()) ||
7052               !integer_conversion_supported) {
7053             _mesa_glsl_error(&loc, state, "type mismatch with switch "
7054                              "init-expression and case label (%s != %s)",
7055                              type_a->name, type_b->name);
7056          } else {
7057             /* Conversion of the case label. */
7058             if (type_a->base_type == GLSL_TYPE_INT) {
7059                if (!apply_implicit_conversion(glsl_type::uint_type,
7060                                               label, state))
7061                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
7062             } else {
7063                /* Conversion of the init-expression value. */
7064                if (!apply_implicit_conversion(glsl_type::uint_type,
7065                                               deref_test_var, state))
7066                   _mesa_glsl_error(&loc, state, "implicit type conversion error");
7067             }
7068          }
7069 
7070          /* If the implicit conversion was allowed, the types will already be
7071           * the same.  If the implicit conversion wasn't allowed, smash the
7072           * type of the label anyway.  This will prevent the expression
7073           * constructor (below) from failing an assertion.
7074           */
7075          label->type = deref_test_var->type;
7076       }
7077 
7078       body.emit(assign(fallthru_var,
7079                        logic_or(fallthru_var, equal(label, deref_test_var))));
7080    } else { /* default case */
7081       if (state->switch_state.previous_default) {
7082          YYLTYPE loc = this->get_location();
7083          _mesa_glsl_error(& loc, state,
7084                           "multiple default labels in one switch");
7085 
7086          loc = state->switch_state.previous_default->get_location();
7087          _mesa_glsl_error(& loc, state, "this is the first default label");
7088       }
7089       state->switch_state.previous_default = this;
7090 
7091       /* Set fallthru condition on 'run_default' bool. */
7092       body.emit(assign(fallthru_var,
7093                        logic_or(fallthru_var,
7094                                 state->switch_state.run_default)));
7095    }
7096 
7097    /* Case statements do not have r-values. */
7098    return NULL;
7099 }
7100 
7101 void
condition_to_hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7102 ast_iteration_statement::condition_to_hir(exec_list *instructions,
7103                                           struct _mesa_glsl_parse_state *state)
7104 {
7105    void *ctx = state;
7106 
7107    if (condition != NULL) {
7108       ir_rvalue *const cond =
7109          condition->hir(instructions, state);
7110 
7111       if ((cond == NULL)
7112           || !cond->type->is_boolean() || !cond->type->is_scalar()) {
7113          YYLTYPE loc = condition->get_location();
7114 
7115          _mesa_glsl_error(& loc, state,
7116                           "loop condition must be scalar boolean");
7117       } else {
7118          /* As the first code in the loop body, generate a block that looks
7119           * like 'if (!condition) break;' as the loop termination condition.
7120           */
7121          ir_rvalue *const not_cond =
7122             new(ctx) ir_expression(ir_unop_logic_not, cond);
7123 
7124          ir_if *const if_stmt = new(ctx) ir_if(not_cond);
7125 
7126          ir_jump *const break_stmt =
7127             new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
7128 
7129          if_stmt->then_instructions.push_tail(break_stmt);
7130          instructions->push_tail(if_stmt);
7131       }
7132    }
7133 }
7134 
7135 
7136 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7137 ast_iteration_statement::hir(exec_list *instructions,
7138                              struct _mesa_glsl_parse_state *state)
7139 {
7140    void *ctx = state;
7141 
7142    /* For-loops and while-loops start a new scope, but do-while loops do not.
7143     */
7144    if (mode != ast_do_while)
7145       state->symbols->push_scope();
7146 
7147    if (init_statement != NULL)
7148       init_statement->hir(instructions, state);
7149 
7150    ir_loop *const stmt = new(ctx) ir_loop();
7151    instructions->push_tail(stmt);
7152 
7153    /* Track the current loop nesting. */
7154    ast_iteration_statement *nesting_ast = state->loop_nesting_ast;
7155 
7156    state->loop_nesting_ast = this;
7157 
7158    /* Likewise, indicate that following code is closest to a loop,
7159     * NOT closest to a switch.
7160     */
7161    bool saved_is_switch_innermost = state->switch_state.is_switch_innermost;
7162    state->switch_state.is_switch_innermost = false;
7163 
7164    if (mode != ast_do_while)
7165       condition_to_hir(&stmt->body_instructions, state);
7166 
7167    if (rest_expression != NULL)
7168       rest_expression->hir(&rest_instructions, state);
7169 
7170    if (body != NULL) {
7171       if (mode == ast_do_while)
7172          state->symbols->push_scope();
7173 
7174       body->hir(& stmt->body_instructions, state);
7175 
7176       if (mode == ast_do_while)
7177          state->symbols->pop_scope();
7178    }
7179 
7180    if (rest_expression != NULL)
7181       stmt->body_instructions.append_list(&rest_instructions);
7182 
7183    if (mode == ast_do_while)
7184       condition_to_hir(&stmt->body_instructions, state);
7185 
7186    if (mode != ast_do_while)
7187       state->symbols->pop_scope();
7188 
7189    /* Restore previous nesting before returning. */
7190    state->loop_nesting_ast = nesting_ast;
7191    state->switch_state.is_switch_innermost = saved_is_switch_innermost;
7192 
7193    /* Loops do not have r-values.
7194     */
7195    return NULL;
7196 }
7197 
7198 
7199 /**
7200  * Determine if the given type is valid for establishing a default precision
7201  * qualifier.
7202  *
7203  * From GLSL ES 3.00 section 4.5.4 ("Default Precision Qualifiers"):
7204  *
7205  *     "The precision statement
7206  *
7207  *         precision precision-qualifier type;
7208  *
7209  *     can be used to establish a default precision qualifier. The type field
7210  *     can be either int or float or any of the sampler types, and the
7211  *     precision-qualifier can be lowp, mediump, or highp."
7212  *
7213  * GLSL ES 1.00 has similar language.  GLSL 1.30 doesn't allow precision
7214  * qualifiers on sampler types, but this seems like an oversight (since the
7215  * intention of including these in GLSL 1.30 is to allow compatibility with ES
7216  * shaders).  So we allow int, float, and all sampler types regardless of GLSL
7217  * version.
7218  */
7219 static bool
is_valid_default_precision_type(const struct glsl_type * const type)7220 is_valid_default_precision_type(const struct glsl_type *const type)
7221 {
7222    if (type == NULL)
7223       return false;
7224 
7225    switch (type->base_type) {
7226    case GLSL_TYPE_INT:
7227    case GLSL_TYPE_FLOAT:
7228       /* "int" and "float" are valid, but vectors and matrices are not. */
7229       return type->vector_elements == 1 && type->matrix_columns == 1;
7230    case GLSL_TYPE_SAMPLER:
7231    case GLSL_TYPE_IMAGE:
7232    case GLSL_TYPE_ATOMIC_UINT:
7233       return true;
7234    default:
7235       return false;
7236    }
7237 }
7238 
7239 
7240 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7241 ast_type_specifier::hir(exec_list *instructions,
7242                         struct _mesa_glsl_parse_state *state)
7243 {
7244    if (this->default_precision == ast_precision_none && this->structure == NULL)
7245       return NULL;
7246 
7247    YYLTYPE loc = this->get_location();
7248 
7249    /* If this is a precision statement, check that the type to which it is
7250     * applied is either float or int.
7251     *
7252     * From section 4.5.3 of the GLSL 1.30 spec:
7253     *    "The precision statement
7254     *       precision precision-qualifier type;
7255     *    can be used to establish a default precision qualifier. The type
7256     *    field can be either int or float [...].  Any other types or
7257     *    qualifiers will result in an error.
7258     */
7259    if (this->default_precision != ast_precision_none) {
7260       if (!state->check_precision_qualifiers_allowed(&loc))
7261          return NULL;
7262 
7263       if (this->structure != NULL) {
7264          _mesa_glsl_error(&loc, state,
7265                           "precision qualifiers do not apply to structures");
7266          return NULL;
7267       }
7268 
7269       if (this->array_specifier != NULL) {
7270          _mesa_glsl_error(&loc, state,
7271                           "default precision statements do not apply to "
7272                           "arrays");
7273          return NULL;
7274       }
7275 
7276       const struct glsl_type *const type =
7277          state->symbols->get_type(this->type_name);
7278       if (!is_valid_default_precision_type(type)) {
7279          _mesa_glsl_error(&loc, state,
7280                           "default precision statements apply only to "
7281                           "float, int, and opaque types");
7282          return NULL;
7283       }
7284 
7285       if (state->es_shader) {
7286          /* Section 4.5.3 (Default Precision Qualifiers) of the GLSL ES 1.00
7287           * spec says:
7288           *
7289           *     "Non-precision qualified declarations will use the precision
7290           *     qualifier specified in the most recent precision statement
7291           *     that is still in scope. The precision statement has the same
7292           *     scoping rules as variable declarations. If it is declared
7293           *     inside a compound statement, its effect stops at the end of
7294           *     the innermost statement it was declared in. Precision
7295           *     statements in nested scopes override precision statements in
7296           *     outer scopes. Multiple precision statements for the same basic
7297           *     type can appear inside the same scope, with later statements
7298           *     overriding earlier statements within that scope."
7299           *
7300           * Default precision specifications follow the same scope rules as
7301           * variables.  So, we can track the state of the default precision
7302           * qualifiers in the symbol table, and the rules will just work.  This
7303           * is a slight abuse of the symbol table, but it has the semantics
7304           * that we want.
7305           */
7306          state->symbols->add_default_precision_qualifier(this->type_name,
7307                                                          this->default_precision);
7308       }
7309 
7310       /* FINISHME: Translate precision statements into IR. */
7311       return NULL;
7312    }
7313 
7314    /* _mesa_ast_set_aggregate_type() sets the <structure> field so that
7315     * process_record_constructor() can do type-checking on C-style initializer
7316     * expressions of structs, but ast_struct_specifier should only be translated
7317     * to HIR if it is declaring the type of a structure.
7318     *
7319     * The ->is_declaration field is false for initializers of variables
7320     * declared separately from the struct's type definition.
7321     *
7322     *    struct S { ... };              (is_declaration = true)
7323     *    struct T { ... } t = { ... };  (is_declaration = true)
7324     *    S s = { ... };                 (is_declaration = false)
7325     */
7326    if (this->structure != NULL && this->structure->is_declaration)
7327       return this->structure->hir(instructions, state);
7328 
7329    return NULL;
7330 }
7331 
7332 
7333 /**
7334  * Process a structure or interface block tree into an array of structure fields
7335  *
7336  * After parsing, where there are some syntax differnces, structures and
7337  * interface blocks are almost identical.  They are similar enough that the
7338  * AST for each can be processed the same way into a set of
7339  * \c glsl_struct_field to describe the members.
7340  *
7341  * If we're processing an interface block, var_mode should be the type of the
7342  * interface block (ir_var_shader_in, ir_var_shader_out, ir_var_uniform or
7343  * ir_var_shader_storage).  If we're processing a structure, var_mode should be
7344  * ir_var_auto.
7345  *
7346  * \return
7347  * The number of fields processed.  A pointer to the array structure fields is
7348  * stored in \c *fields_ret.
7349  */
7350 static unsigned
ast_process_struct_or_iface_block_members(exec_list * instructions,struct _mesa_glsl_parse_state * state,exec_list * declarations,glsl_struct_field ** fields_ret,bool is_interface,enum glsl_matrix_layout matrix_layout,bool allow_reserved_names,ir_variable_mode var_mode,ast_type_qualifier * layout,unsigned block_stream,unsigned block_xfb_buffer,unsigned block_xfb_offset,unsigned expl_location,unsigned expl_align)7351 ast_process_struct_or_iface_block_members(exec_list *instructions,
7352                                           struct _mesa_glsl_parse_state *state,
7353                                           exec_list *declarations,
7354                                           glsl_struct_field **fields_ret,
7355                                           bool is_interface,
7356                                           enum glsl_matrix_layout matrix_layout,
7357                                           bool allow_reserved_names,
7358                                           ir_variable_mode var_mode,
7359                                           ast_type_qualifier *layout,
7360                                           unsigned block_stream,
7361                                           unsigned block_xfb_buffer,
7362                                           unsigned block_xfb_offset,
7363                                           unsigned expl_location,
7364                                           unsigned expl_align)
7365 {
7366    unsigned decl_count = 0;
7367    unsigned next_offset = 0;
7368 
7369    /* Make an initial pass over the list of fields to determine how
7370     * many there are.  Each element in this list is an ast_declarator_list.
7371     * This means that we actually need to count the number of elements in the
7372     * 'declarations' list in each of the elements.
7373     */
7374    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7375       decl_count += decl_list->declarations.length();
7376    }
7377 
7378    /* Allocate storage for the fields and process the field
7379     * declarations.  As the declarations are processed, try to also convert
7380     * the types to HIR.  This ensures that structure definitions embedded in
7381     * other structure definitions or in interface blocks are processed.
7382     */
7383    glsl_struct_field *const fields = rzalloc_array(state, glsl_struct_field,
7384                                                    decl_count);
7385 
7386    bool first_member = true;
7387    bool first_member_has_explicit_location = false;
7388 
7389    unsigned i = 0;
7390    foreach_list_typed (ast_declarator_list, decl_list, link, declarations) {
7391       const char *type_name;
7392       YYLTYPE loc = decl_list->get_location();
7393 
7394       decl_list->type->specifier->hir(instructions, state);
7395 
7396       /* Section 4.1.8 (Structures) of the GLSL 1.10 spec says:
7397        *
7398        *    "Anonymous structures are not supported; so embedded structures
7399        *    must have a declarator. A name given to an embedded struct is
7400        *    scoped at the same level as the struct it is embedded in."
7401        *
7402        * The same section of the  GLSL 1.20 spec says:
7403        *
7404        *    "Anonymous structures are not supported. Embedded structures are
7405        *    not supported."
7406        *
7407        * The GLSL ES 1.00 and 3.00 specs have similar langauge. So, we allow
7408        * embedded structures in 1.10 only.
7409        */
7410       if (state->language_version != 110 &&
7411           decl_list->type->specifier->structure != NULL)
7412          _mesa_glsl_error(&loc, state,
7413                           "embedded structure declarations are not allowed");
7414 
7415       const glsl_type *decl_type =
7416          decl_list->type->glsl_type(& type_name, state);
7417 
7418       const struct ast_type_qualifier *const qual =
7419          &decl_list->type->qualifier;
7420 
7421       /* From section 4.3.9 of the GLSL 4.40 spec:
7422        *
7423        *    "[In interface blocks] opaque types are not allowed."
7424        *
7425        * It should be impossible for decl_type to be NULL here.  Cases that
7426        * might naturally lead to decl_type being NULL, especially for the
7427        * is_interface case, will have resulted in compilation having
7428        * already halted due to a syntax error.
7429        */
7430       assert(decl_type);
7431 
7432       if (is_interface) {
7433          /* From section 4.3.7 of the ARB_bindless_texture spec:
7434           *
7435           *    "(remove the following bullet from the last list on p. 39,
7436           *     thereby permitting sampler types in interface blocks; image
7437           *     types are also permitted in blocks by this extension)"
7438           *
7439           *     * sampler types are not allowed
7440           */
7441          if (decl_type->contains_atomic() ||
7442              (!state->has_bindless() && decl_type->contains_opaque())) {
7443             _mesa_glsl_error(&loc, state, "uniform/buffer in non-default "
7444                              "interface block contains %s variable",
7445                              state->has_bindless() ? "atomic" : "opaque");
7446          }
7447       } else {
7448          if (decl_type->contains_atomic()) {
7449             /* From section 4.1.7.3 of the GLSL 4.40 spec:
7450              *
7451              *    "Members of structures cannot be declared as atomic counter
7452              *     types."
7453              */
7454             _mesa_glsl_error(&loc, state, "atomic counter in structure");
7455          }
7456 
7457          if (!state->has_bindless() && decl_type->contains_image()) {
7458             /* FINISHME: Same problem as with atomic counters.
7459              * FINISHME: Request clarification from Khronos and add
7460              * FINISHME: spec quotation here.
7461              */
7462             _mesa_glsl_error(&loc, state, "image in structure");
7463          }
7464       }
7465 
7466       if (qual->flags.q.explicit_binding) {
7467          _mesa_glsl_error(&loc, state,
7468                           "binding layout qualifier cannot be applied "
7469                           "to struct or interface block members");
7470       }
7471 
7472       if (is_interface) {
7473          if (!first_member) {
7474             if (!layout->flags.q.explicit_location &&
7475                 ((first_member_has_explicit_location &&
7476                   !qual->flags.q.explicit_location) ||
7477                  (!first_member_has_explicit_location &&
7478                   qual->flags.q.explicit_location))) {
7479                _mesa_glsl_error(&loc, state,
7480                                 "when block-level location layout qualifier "
7481                                 "is not supplied either all members must "
7482                                 "have a location layout qualifier or all "
7483                                 "members must not have a location layout "
7484                                 "qualifier");
7485             }
7486          } else {
7487             first_member = false;
7488             first_member_has_explicit_location =
7489                qual->flags.q.explicit_location;
7490          }
7491       }
7492 
7493       if (qual->flags.q.std140 ||
7494           qual->flags.q.std430 ||
7495           qual->flags.q.packed ||
7496           qual->flags.q.shared) {
7497          _mesa_glsl_error(&loc, state,
7498                           "uniform/shader storage block layout qualifiers "
7499                           "std140, std430, packed, and shared can only be "
7500                           "applied to uniform/shader storage blocks, not "
7501                           "members");
7502       }
7503 
7504       if (qual->flags.q.constant) {
7505          _mesa_glsl_error(&loc, state,
7506                           "const storage qualifier cannot be applied "
7507                           "to struct or interface block members");
7508       }
7509 
7510       validate_memory_qualifier_for_type(state, &loc, qual, decl_type);
7511       validate_image_format_qualifier_for_type(state, &loc, qual, decl_type);
7512 
7513       /* From Section 4.4.2.3 (Geometry Outputs) of the GLSL 4.50 spec:
7514        *
7515        *   "A block member may be declared with a stream identifier, but
7516        *   the specified stream must match the stream associated with the
7517        *   containing block."
7518        */
7519       if (qual->flags.q.explicit_stream) {
7520          unsigned qual_stream;
7521          if (process_qualifier_constant(state, &loc, "stream",
7522                                         qual->stream, &qual_stream) &&
7523              qual_stream != block_stream) {
7524             _mesa_glsl_error(&loc, state, "stream layout qualifier on "
7525                              "interface block member does not match "
7526                              "the interface block (%u vs %u)", qual_stream,
7527                              block_stream);
7528          }
7529       }
7530 
7531       int xfb_buffer;
7532       unsigned explicit_xfb_buffer = 0;
7533       if (qual->flags.q.explicit_xfb_buffer) {
7534          unsigned qual_xfb_buffer;
7535          if (process_qualifier_constant(state, &loc, "xfb_buffer",
7536                                         qual->xfb_buffer, &qual_xfb_buffer)) {
7537             explicit_xfb_buffer = 1;
7538             if (qual_xfb_buffer != block_xfb_buffer)
7539                _mesa_glsl_error(&loc, state, "xfb_buffer layout qualifier on "
7540                                 "interface block member does not match "
7541                                 "the interface block (%u vs %u)",
7542                                 qual_xfb_buffer, block_xfb_buffer);
7543          }
7544          xfb_buffer = (int) qual_xfb_buffer;
7545       } else {
7546          if (layout)
7547             explicit_xfb_buffer = layout->flags.q.explicit_xfb_buffer;
7548          xfb_buffer = (int) block_xfb_buffer;
7549       }
7550 
7551       int xfb_stride = -1;
7552       if (qual->flags.q.explicit_xfb_stride) {
7553          unsigned qual_xfb_stride;
7554          if (process_qualifier_constant(state, &loc, "xfb_stride",
7555                                         qual->xfb_stride, &qual_xfb_stride)) {
7556             xfb_stride = (int) qual_xfb_stride;
7557          }
7558       }
7559 
7560       if (qual->flags.q.uniform && qual->has_interpolation()) {
7561          _mesa_glsl_error(&loc, state,
7562                           "interpolation qualifiers cannot be used "
7563                           "with uniform interface blocks");
7564       }
7565 
7566       if ((qual->flags.q.uniform || !is_interface) &&
7567           qual->has_auxiliary_storage()) {
7568          _mesa_glsl_error(&loc, state,
7569                           "auxiliary storage qualifiers cannot be used "
7570                           "in uniform blocks or structures.");
7571       }
7572 
7573       if (qual->flags.q.row_major || qual->flags.q.column_major) {
7574          if (!qual->flags.q.uniform && !qual->flags.q.buffer) {
7575             _mesa_glsl_error(&loc, state,
7576                              "row_major and column_major can only be "
7577                              "applied to interface blocks");
7578          } else
7579             validate_matrix_layout_for_type(state, &loc, decl_type, NULL);
7580       }
7581 
7582       foreach_list_typed (ast_declaration, decl, link,
7583                           &decl_list->declarations) {
7584          YYLTYPE loc = decl->get_location();
7585 
7586          if (!allow_reserved_names)
7587             validate_identifier(decl->identifier, loc, state);
7588 
7589          const struct glsl_type *field_type =
7590             process_array_type(&loc, decl_type, decl->array_specifier, state);
7591          validate_array_dimensions(field_type, state, &loc);
7592          fields[i].type = field_type;
7593          fields[i].name = decl->identifier;
7594          fields[i].interpolation =
7595             interpret_interpolation_qualifier(qual, field_type,
7596                                               var_mode, state, &loc);
7597          fields[i].centroid = qual->flags.q.centroid ? 1 : 0;
7598          fields[i].sample = qual->flags.q.sample ? 1 : 0;
7599          fields[i].patch = qual->flags.q.patch ? 1 : 0;
7600          fields[i].offset = -1;
7601          fields[i].explicit_xfb_buffer = explicit_xfb_buffer;
7602          fields[i].xfb_buffer = xfb_buffer;
7603          fields[i].xfb_stride = xfb_stride;
7604 
7605          if (qual->flags.q.explicit_location) {
7606             unsigned qual_location;
7607             if (process_qualifier_constant(state, &loc, "location",
7608                                            qual->location, &qual_location)) {
7609                fields[i].location = qual_location +
7610                   (fields[i].patch ? VARYING_SLOT_PATCH0 : VARYING_SLOT_VAR0);
7611                expl_location = fields[i].location +
7612                   fields[i].type->count_attribute_slots(false);
7613             }
7614          } else {
7615             if (layout && layout->flags.q.explicit_location) {
7616                fields[i].location = expl_location;
7617                expl_location += fields[i].type->count_attribute_slots(false);
7618             } else {
7619                fields[i].location = -1;
7620             }
7621          }
7622 
7623          if (qual->flags.q.explicit_component) {
7624             unsigned qual_component;
7625             if (process_qualifier_constant(state, &loc, "component",
7626                                            qual->component, &qual_component)) {
7627                validate_component_layout_for_type(state, &loc, fields[i].type,
7628                                                   qual_component);
7629                fields[i].component = qual_component;
7630             }
7631          } else {
7632             fields[i].component = -1;
7633          }
7634 
7635          /* Offset can only be used with std430 and std140 layouts an initial
7636           * value of 0 is used for error detection.
7637           */
7638          unsigned align = 0;
7639          unsigned size = 0;
7640          if (layout) {
7641             bool row_major;
7642             if (qual->flags.q.row_major ||
7643                 matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR) {
7644                row_major = true;
7645             } else {
7646                row_major = false;
7647             }
7648 
7649             if(layout->flags.q.std140) {
7650                align = field_type->std140_base_alignment(row_major);
7651                size = field_type->std140_size(row_major);
7652             } else if (layout->flags.q.std430) {
7653                align = field_type->std430_base_alignment(row_major);
7654                size = field_type->std430_size(row_major);
7655             }
7656          }
7657 
7658          if (qual->flags.q.explicit_offset) {
7659             unsigned qual_offset;
7660             if (process_qualifier_constant(state, &loc, "offset",
7661                                            qual->offset, &qual_offset)) {
7662                if (align != 0 && size != 0) {
7663                    if (next_offset > qual_offset)
7664                       _mesa_glsl_error(&loc, state, "layout qualifier "
7665                                        "offset overlaps previous member");
7666 
7667                   if (qual_offset % align) {
7668                      _mesa_glsl_error(&loc, state, "layout qualifier offset "
7669                                       "must be a multiple of the base "
7670                                       "alignment of %s", field_type->name);
7671                   }
7672                   fields[i].offset = qual_offset;
7673                   next_offset = qual_offset + size;
7674                } else {
7675                   _mesa_glsl_error(&loc, state, "offset can only be used "
7676                                    "with std430 and std140 layouts");
7677                }
7678             }
7679          }
7680 
7681          if (qual->flags.q.explicit_align || expl_align != 0) {
7682             unsigned offset = fields[i].offset != -1 ? fields[i].offset :
7683                next_offset;
7684             if (align == 0 || size == 0) {
7685                _mesa_glsl_error(&loc, state, "align can only be used with "
7686                                 "std430 and std140 layouts");
7687             } else if (qual->flags.q.explicit_align) {
7688                unsigned member_align;
7689                if (process_qualifier_constant(state, &loc, "align",
7690                                               qual->align, &member_align)) {
7691                   if (member_align == 0 ||
7692                       member_align & (member_align - 1)) {
7693                      _mesa_glsl_error(&loc, state, "align layout qualifier "
7694                                       "is not a power of 2");
7695                   } else {
7696                      fields[i].offset = glsl_align(offset, member_align);
7697                      next_offset = fields[i].offset + size;
7698                   }
7699                }
7700             } else {
7701                fields[i].offset = glsl_align(offset, expl_align);
7702                next_offset = fields[i].offset + size;
7703             }
7704          } else if (!qual->flags.q.explicit_offset) {
7705             if (align != 0 && size != 0)
7706                next_offset = glsl_align(next_offset, align) + size;
7707          }
7708 
7709          /* From the ARB_enhanced_layouts spec:
7710           *
7711           *    "The given offset applies to the first component of the first
7712           *    member of the qualified entity.  Then, within the qualified
7713           *    entity, subsequent components are each assigned, in order, to
7714           *    the next available offset aligned to a multiple of that
7715           *    component's size.  Aggregate types are flattened down to the
7716           *    component level to get this sequence of components."
7717           */
7718          if (qual->flags.q.explicit_xfb_offset) {
7719             unsigned xfb_offset;
7720             if (process_qualifier_constant(state, &loc, "xfb_offset",
7721                                            qual->offset, &xfb_offset)) {
7722                fields[i].offset = xfb_offset;
7723                block_xfb_offset = fields[i].offset +
7724                   4 * field_type->component_slots();
7725             }
7726          } else {
7727             if (layout && layout->flags.q.explicit_xfb_offset) {
7728                unsigned align = field_type->is_64bit() ? 8 : 4;
7729                fields[i].offset = glsl_align(block_xfb_offset, align);
7730                block_xfb_offset += 4 * field_type->component_slots();
7731             }
7732          }
7733 
7734          /* Propogate row- / column-major information down the fields of the
7735           * structure or interface block.  Structures need this data because
7736           * the structure may contain a structure that contains ... a matrix
7737           * that need the proper layout.
7738           */
7739          if (is_interface && layout &&
7740              (layout->flags.q.uniform || layout->flags.q.buffer) &&
7741              (field_type->without_array()->is_matrix()
7742               || field_type->without_array()->is_struct())) {
7743             /* If no layout is specified for the field, inherit the layout
7744              * from the block.
7745              */
7746             fields[i].matrix_layout = matrix_layout;
7747 
7748             if (qual->flags.q.row_major)
7749                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
7750             else if (qual->flags.q.column_major)
7751                fields[i].matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
7752 
7753             /* If we're processing an uniform or buffer block, the matrix
7754              * layout must be decided by this point.
7755              */
7756             assert(fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_ROW_MAJOR
7757                    || fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_COLUMN_MAJOR);
7758          }
7759 
7760          /* Memory qualifiers are allowed on buffer and image variables, while
7761           * the format qualifier is only accepted for images.
7762           */
7763          if (var_mode == ir_var_shader_storage ||
7764              field_type->without_array()->is_image()) {
7765             /* For readonly and writeonly qualifiers the field definition,
7766              * if set, overwrites the layout qualifier.
7767              */
7768             if (qual->flags.q.read_only || qual->flags.q.write_only) {
7769                fields[i].memory_read_only = qual->flags.q.read_only;
7770                fields[i].memory_write_only = qual->flags.q.write_only;
7771             } else {
7772                fields[i].memory_read_only =
7773                   layout ? layout->flags.q.read_only : 0;
7774                fields[i].memory_write_only =
7775                   layout ? layout->flags.q.write_only : 0;
7776             }
7777 
7778             /* For other qualifiers, we set the flag if either the layout
7779              * qualifier or the field qualifier are set
7780              */
7781             fields[i].memory_coherent = qual->flags.q.coherent ||
7782                                         (layout && layout->flags.q.coherent);
7783             fields[i].memory_volatile = qual->flags.q._volatile ||
7784                                         (layout && layout->flags.q._volatile);
7785             fields[i].memory_restrict = qual->flags.q.restrict_flag ||
7786                                         (layout && layout->flags.q.restrict_flag);
7787 
7788             if (field_type->without_array()->is_image()) {
7789                if (qual->flags.q.explicit_image_format) {
7790                   if (qual->image_base_type !=
7791                       field_type->without_array()->sampled_type) {
7792                      _mesa_glsl_error(&loc, state, "format qualifier doesn't "
7793                                       "match the base data type of the image");
7794                   }
7795 
7796                   fields[i].image_format = qual->image_format;
7797                } else {
7798                   if (!qual->flags.q.write_only) {
7799                      _mesa_glsl_error(&loc, state, "image not qualified with "
7800                                       "`writeonly' must have a format layout "
7801                                       "qualifier");
7802                   }
7803 
7804                   fields[i].image_format = PIPE_FORMAT_NONE;
7805                }
7806             }
7807          }
7808 
7809          /* Precision qualifiers do not hold any meaning in Desktop GLSL */
7810          if (state->es_shader) {
7811             fields[i].precision = select_gles_precision(qual->precision,
7812                                                         field_type,
7813                                                         state,
7814                                                         &loc);
7815          } else {
7816             fields[i].precision = qual->precision;
7817          }
7818 
7819          i++;
7820       }
7821    }
7822 
7823    assert(i == decl_count);
7824 
7825    *fields_ret = fields;
7826    return decl_count;
7827 }
7828 
7829 
7830 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7831 ast_struct_specifier::hir(exec_list *instructions,
7832                           struct _mesa_glsl_parse_state *state)
7833 {
7834    YYLTYPE loc = this->get_location();
7835 
7836    unsigned expl_location = 0;
7837    if (layout && layout->flags.q.explicit_location) {
7838       if (!process_qualifier_constant(state, &loc, "location",
7839                                       layout->location, &expl_location)) {
7840          return NULL;
7841       } else {
7842          expl_location = VARYING_SLOT_VAR0 + expl_location;
7843       }
7844    }
7845 
7846    glsl_struct_field *fields;
7847    unsigned decl_count =
7848       ast_process_struct_or_iface_block_members(instructions,
7849                                                 state,
7850                                                 &this->declarations,
7851                                                 &fields,
7852                                                 false,
7853                                                 GLSL_MATRIX_LAYOUT_INHERITED,
7854                                                 false /* allow_reserved_names */,
7855                                                 ir_var_auto,
7856                                                 layout,
7857                                                 0, /* for interface only */
7858                                                 0, /* for interface only */
7859                                                 0, /* for interface only */
7860                                                 expl_location,
7861                                                 0 /* for interface only */);
7862 
7863    validate_identifier(this->name, loc, state);
7864 
7865    type = glsl_type::get_struct_instance(fields, decl_count, this->name);
7866 
7867    if (!type->is_anonymous() && !state->symbols->add_type(name, type)) {
7868       const glsl_type *match = state->symbols->get_type(name);
7869       /* allow struct matching for desktop GL - older UE4 does this */
7870       if (match != NULL && state->is_version(130, 0) && match->record_compare(type, true, false))
7871          _mesa_glsl_warning(& loc, state, "struct `%s' previously defined", name);
7872       else
7873          _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
7874    } else {
7875       const glsl_type **s = reralloc(state, state->user_structures,
7876                                      const glsl_type *,
7877                                      state->num_user_structures + 1);
7878       if (s != NULL) {
7879          s[state->num_user_structures] = type;
7880          state->user_structures = s;
7881          state->num_user_structures++;
7882       }
7883    }
7884 
7885    /* Structure type definitions do not have r-values.
7886     */
7887    return NULL;
7888 }
7889 
7890 
7891 /**
7892  * Visitor class which detects whether a given interface block has been used.
7893  */
7894 class interface_block_usage_visitor : public ir_hierarchical_visitor
7895 {
7896 public:
interface_block_usage_visitor(ir_variable_mode mode,const glsl_type * block)7897    interface_block_usage_visitor(ir_variable_mode mode, const glsl_type *block)
7898       : mode(mode), block(block), found(false)
7899    {
7900    }
7901 
visit(ir_dereference_variable * ir)7902    virtual ir_visitor_status visit(ir_dereference_variable *ir)
7903    {
7904       if (ir->var->data.mode == mode && ir->var->get_interface_type() == block) {
7905          found = true;
7906          return visit_stop;
7907       }
7908       return visit_continue;
7909    }
7910 
usage_found() const7911    bool usage_found() const
7912    {
7913       return this->found;
7914    }
7915 
7916 private:
7917    ir_variable_mode mode;
7918    const glsl_type *block;
7919    bool found;
7920 };
7921 
7922 static bool
is_unsized_array_last_element(ir_variable * v)7923 is_unsized_array_last_element(ir_variable *v)
7924 {
7925    const glsl_type *interface_type = v->get_interface_type();
7926    int length = interface_type->length;
7927 
7928    assert(v->type->is_unsized_array());
7929 
7930    /* Check if it is the last element of the interface */
7931    if (strcmp(interface_type->fields.structure[length-1].name, v->name) == 0)
7932       return true;
7933    return false;
7934 }
7935 
7936 static void
apply_memory_qualifiers(ir_variable * var,glsl_struct_field field)7937 apply_memory_qualifiers(ir_variable *var, glsl_struct_field field)
7938 {
7939    var->data.memory_read_only = field.memory_read_only;
7940    var->data.memory_write_only = field.memory_write_only;
7941    var->data.memory_coherent = field.memory_coherent;
7942    var->data.memory_volatile = field.memory_volatile;
7943    var->data.memory_restrict = field.memory_restrict;
7944 }
7945 
7946 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)7947 ast_interface_block::hir(exec_list *instructions,
7948                          struct _mesa_glsl_parse_state *state)
7949 {
7950    YYLTYPE loc = this->get_location();
7951 
7952    /* Interface blocks must be declared at global scope */
7953    if (state->current_function != NULL) {
7954       _mesa_glsl_error(&loc, state,
7955                        "Interface block `%s' must be declared "
7956                        "at global scope",
7957                        this->block_name);
7958    }
7959 
7960    /* Validate qualifiers:
7961     *
7962     * - Layout Qualifiers as per the table in Section 4.4
7963     *   ("Layout Qualifiers") of the GLSL 4.50 spec.
7964     *
7965     * - Memory Qualifiers as per Section 4.10 ("Memory Qualifiers") of the
7966     *   GLSL 4.50 spec:
7967     *
7968     *     "Additionally, memory qualifiers may also be used in the declaration
7969     *      of shader storage blocks"
7970     *
7971     * Note the table in Section 4.4 says std430 is allowed on both uniform and
7972     * buffer blocks however Section 4.4.5 (Uniform and Shader Storage Block
7973     * Layout Qualifiers) of the GLSL 4.50 spec says:
7974     *
7975     *    "The std430 qualifier is supported only for shader storage blocks;
7976     *    using std430 on a uniform block will result in a compile-time error."
7977     */
7978    ast_type_qualifier allowed_blk_qualifiers;
7979    allowed_blk_qualifiers.flags.i = 0;
7980    if (this->layout.flags.q.buffer || this->layout.flags.q.uniform) {
7981       allowed_blk_qualifiers.flags.q.shared = 1;
7982       allowed_blk_qualifiers.flags.q.packed = 1;
7983       allowed_blk_qualifiers.flags.q.std140 = 1;
7984       allowed_blk_qualifiers.flags.q.row_major = 1;
7985       allowed_blk_qualifiers.flags.q.column_major = 1;
7986       allowed_blk_qualifiers.flags.q.explicit_align = 1;
7987       allowed_blk_qualifiers.flags.q.explicit_binding = 1;
7988       if (this->layout.flags.q.buffer) {
7989          allowed_blk_qualifiers.flags.q.buffer = 1;
7990          allowed_blk_qualifiers.flags.q.std430 = 1;
7991          allowed_blk_qualifiers.flags.q.coherent = 1;
7992          allowed_blk_qualifiers.flags.q._volatile = 1;
7993          allowed_blk_qualifiers.flags.q.restrict_flag = 1;
7994          allowed_blk_qualifiers.flags.q.read_only = 1;
7995          allowed_blk_qualifiers.flags.q.write_only = 1;
7996       } else {
7997          allowed_blk_qualifiers.flags.q.uniform = 1;
7998       }
7999    } else {
8000       /* Interface block */
8001       assert(this->layout.flags.q.in || this->layout.flags.q.out);
8002 
8003       allowed_blk_qualifiers.flags.q.explicit_location = 1;
8004       if (this->layout.flags.q.out) {
8005          allowed_blk_qualifiers.flags.q.out = 1;
8006          if (state->stage == MESA_SHADER_GEOMETRY ||
8007           state->stage == MESA_SHADER_TESS_CTRL ||
8008           state->stage == MESA_SHADER_TESS_EVAL ||
8009           state->stage == MESA_SHADER_VERTEX ) {
8010             allowed_blk_qualifiers.flags.q.explicit_xfb_offset = 1;
8011             allowed_blk_qualifiers.flags.q.explicit_xfb_buffer = 1;
8012             allowed_blk_qualifiers.flags.q.xfb_buffer = 1;
8013             allowed_blk_qualifiers.flags.q.explicit_xfb_stride = 1;
8014             allowed_blk_qualifiers.flags.q.xfb_stride = 1;
8015             if (state->stage == MESA_SHADER_GEOMETRY) {
8016                allowed_blk_qualifiers.flags.q.stream = 1;
8017                allowed_blk_qualifiers.flags.q.explicit_stream = 1;
8018             }
8019             if (state->stage == MESA_SHADER_TESS_CTRL) {
8020                allowed_blk_qualifiers.flags.q.patch = 1;
8021             }
8022          }
8023       } else {
8024          allowed_blk_qualifiers.flags.q.in = 1;
8025          if (state->stage == MESA_SHADER_TESS_EVAL) {
8026             allowed_blk_qualifiers.flags.q.patch = 1;
8027          }
8028       }
8029    }
8030 
8031    this->layout.validate_flags(&loc, state, allowed_blk_qualifiers,
8032                                "invalid qualifier for block",
8033                                this->block_name);
8034 
8035    enum glsl_interface_packing packing;
8036    if (this->layout.flags.q.std140) {
8037       packing = GLSL_INTERFACE_PACKING_STD140;
8038    } else if (this->layout.flags.q.packed) {
8039       packing = GLSL_INTERFACE_PACKING_PACKED;
8040    } else if (this->layout.flags.q.std430) {
8041       packing = GLSL_INTERFACE_PACKING_STD430;
8042    } else {
8043       /* The default layout is shared.
8044        */
8045       packing = GLSL_INTERFACE_PACKING_SHARED;
8046    }
8047 
8048    ir_variable_mode var_mode;
8049    const char *iface_type_name;
8050    if (this->layout.flags.q.in) {
8051       var_mode = ir_var_shader_in;
8052       iface_type_name = "in";
8053    } else if (this->layout.flags.q.out) {
8054       var_mode = ir_var_shader_out;
8055       iface_type_name = "out";
8056    } else if (this->layout.flags.q.uniform) {
8057       var_mode = ir_var_uniform;
8058       iface_type_name = "uniform";
8059    } else if (this->layout.flags.q.buffer) {
8060       var_mode = ir_var_shader_storage;
8061       iface_type_name = "buffer";
8062    } else {
8063       var_mode = ir_var_auto;
8064       iface_type_name = "UNKNOWN";
8065       assert(!"interface block layout qualifier not found!");
8066    }
8067 
8068    enum glsl_matrix_layout matrix_layout = GLSL_MATRIX_LAYOUT_INHERITED;
8069    if (this->layout.flags.q.row_major)
8070       matrix_layout = GLSL_MATRIX_LAYOUT_ROW_MAJOR;
8071    else if (this->layout.flags.q.column_major)
8072       matrix_layout = GLSL_MATRIX_LAYOUT_COLUMN_MAJOR;
8073 
8074    bool redeclaring_per_vertex = strcmp(this->block_name, "gl_PerVertex") == 0;
8075    exec_list declared_variables;
8076    glsl_struct_field *fields;
8077 
8078    /* For blocks that accept memory qualifiers (i.e. shader storage), verify
8079     * that we don't have incompatible qualifiers
8080     */
8081    if (this->layout.flags.q.read_only && this->layout.flags.q.write_only) {
8082       _mesa_glsl_error(&loc, state,
8083                        "Interface block sets both readonly and writeonly");
8084    }
8085 
8086    unsigned qual_stream;
8087    if (!process_qualifier_constant(state, &loc, "stream", this->layout.stream,
8088                                    &qual_stream) ||
8089        !validate_stream_qualifier(&loc, state, qual_stream)) {
8090       /* If the stream qualifier is invalid it doesn't make sense to continue
8091        * on and try to compare stream layouts on member variables against it
8092        * so just return early.
8093        */
8094       return NULL;
8095    }
8096 
8097    unsigned qual_xfb_buffer;
8098    if (!process_qualifier_constant(state, &loc, "xfb_buffer",
8099                                    layout.xfb_buffer, &qual_xfb_buffer) ||
8100        !validate_xfb_buffer_qualifier(&loc, state, qual_xfb_buffer)) {
8101       return NULL;
8102    }
8103 
8104    unsigned qual_xfb_offset = 0;
8105    if (layout.flags.q.explicit_xfb_offset) {
8106       if (!process_qualifier_constant(state, &loc, "xfb_offset",
8107                                       layout.offset, &qual_xfb_offset)) {
8108          return NULL;
8109       }
8110    }
8111 
8112    unsigned qual_xfb_stride = 0;
8113    if (layout.flags.q.explicit_xfb_stride) {
8114       if (!process_qualifier_constant(state, &loc, "xfb_stride",
8115                                       layout.xfb_stride, &qual_xfb_stride)) {
8116          return NULL;
8117       }
8118    }
8119 
8120    unsigned expl_location = 0;
8121    if (layout.flags.q.explicit_location) {
8122       if (!process_qualifier_constant(state, &loc, "location",
8123                                       layout.location, &expl_location)) {
8124          return NULL;
8125       } else {
8126          expl_location += this->layout.flags.q.patch ? VARYING_SLOT_PATCH0
8127                                                      : VARYING_SLOT_VAR0;
8128       }
8129    }
8130 
8131    unsigned expl_align = 0;
8132    if (layout.flags.q.explicit_align) {
8133       if (!process_qualifier_constant(state, &loc, "align",
8134                                       layout.align, &expl_align)) {
8135          return NULL;
8136       } else {
8137          if (expl_align == 0 || expl_align & (expl_align - 1)) {
8138             _mesa_glsl_error(&loc, state, "align layout qualifier is not a "
8139                              "power of 2.");
8140             return NULL;
8141          }
8142       }
8143    }
8144 
8145    unsigned int num_variables =
8146       ast_process_struct_or_iface_block_members(&declared_variables,
8147                                                 state,
8148                                                 &this->declarations,
8149                                                 &fields,
8150                                                 true,
8151                                                 matrix_layout,
8152                                                 redeclaring_per_vertex,
8153                                                 var_mode,
8154                                                 &this->layout,
8155                                                 qual_stream,
8156                                                 qual_xfb_buffer,
8157                                                 qual_xfb_offset,
8158                                                 expl_location,
8159                                                 expl_align);
8160 
8161    if (!redeclaring_per_vertex) {
8162       validate_identifier(this->block_name, loc, state);
8163 
8164       /* From section 4.3.9 ("Interface Blocks") of the GLSL 4.50 spec:
8165        *
8166        *     "Block names have no other use within a shader beyond interface
8167        *     matching; it is a compile-time error to use a block name at global
8168        *     scope for anything other than as a block name."
8169        */
8170       ir_variable *var = state->symbols->get_variable(this->block_name);
8171       if (var && !var->type->is_interface()) {
8172          _mesa_glsl_error(&loc, state, "Block name `%s' is "
8173                           "already used in the scope.",
8174                           this->block_name);
8175       }
8176    }
8177 
8178    const glsl_type *earlier_per_vertex = NULL;
8179    if (redeclaring_per_vertex) {
8180       /* Find the previous declaration of gl_PerVertex.  If we're redeclaring
8181        * the named interface block gl_in, we can find it by looking at the
8182        * previous declaration of gl_in.  Otherwise we can find it by looking
8183        * at the previous decalartion of any of the built-in outputs,
8184        * e.g. gl_Position.
8185        *
8186        * Also check that the instance name and array-ness of the redeclaration
8187        * are correct.
8188        */
8189       switch (var_mode) {
8190       case ir_var_shader_in:
8191          if (ir_variable *earlier_gl_in =
8192              state->symbols->get_variable("gl_in")) {
8193             earlier_per_vertex = earlier_gl_in->get_interface_type();
8194          } else {
8195             _mesa_glsl_error(&loc, state,
8196                              "redeclaration of gl_PerVertex input not allowed "
8197                              "in the %s shader",
8198                              _mesa_shader_stage_to_string(state->stage));
8199          }
8200          if (this->instance_name == NULL ||
8201              strcmp(this->instance_name, "gl_in") != 0 || this->array_specifier == NULL ||
8202              !this->array_specifier->is_single_dimension()) {
8203             _mesa_glsl_error(&loc, state,
8204                              "gl_PerVertex input must be redeclared as "
8205                              "gl_in[]");
8206          }
8207          break;
8208       case ir_var_shader_out:
8209          if (ir_variable *earlier_gl_Position =
8210              state->symbols->get_variable("gl_Position")) {
8211             earlier_per_vertex = earlier_gl_Position->get_interface_type();
8212          } else if (ir_variable *earlier_gl_out =
8213                state->symbols->get_variable("gl_out")) {
8214             earlier_per_vertex = earlier_gl_out->get_interface_type();
8215          } else {
8216             _mesa_glsl_error(&loc, state,
8217                              "redeclaration of gl_PerVertex output not "
8218                              "allowed in the %s shader",
8219                              _mesa_shader_stage_to_string(state->stage));
8220          }
8221          if (state->stage == MESA_SHADER_TESS_CTRL) {
8222             if (this->instance_name == NULL ||
8223                 strcmp(this->instance_name, "gl_out") != 0 || this->array_specifier == NULL) {
8224                _mesa_glsl_error(&loc, state,
8225                                 "gl_PerVertex output must be redeclared as "
8226                                 "gl_out[]");
8227             }
8228          } else {
8229             if (this->instance_name != NULL) {
8230                _mesa_glsl_error(&loc, state,
8231                                 "gl_PerVertex output may not be redeclared with "
8232                                 "an instance name");
8233             }
8234          }
8235          break;
8236       default:
8237          _mesa_glsl_error(&loc, state,
8238                           "gl_PerVertex must be declared as an input or an "
8239                           "output");
8240          break;
8241       }
8242 
8243       if (earlier_per_vertex == NULL) {
8244          /* An error has already been reported.  Bail out to avoid null
8245           * dereferences later in this function.
8246           */
8247          return NULL;
8248       }
8249 
8250       /* Copy locations from the old gl_PerVertex interface block. */
8251       for (unsigned i = 0; i < num_variables; i++) {
8252          int j = earlier_per_vertex->field_index(fields[i].name);
8253          if (j == -1) {
8254             _mesa_glsl_error(&loc, state,
8255                              "redeclaration of gl_PerVertex must be a subset "
8256                              "of the built-in members of gl_PerVertex");
8257          } else {
8258             fields[i].location =
8259                earlier_per_vertex->fields.structure[j].location;
8260             fields[i].offset =
8261                earlier_per_vertex->fields.structure[j].offset;
8262             fields[i].interpolation =
8263                earlier_per_vertex->fields.structure[j].interpolation;
8264             fields[i].centroid =
8265                earlier_per_vertex->fields.structure[j].centroid;
8266             fields[i].sample =
8267                earlier_per_vertex->fields.structure[j].sample;
8268             fields[i].patch =
8269                earlier_per_vertex->fields.structure[j].patch;
8270             fields[i].precision =
8271                earlier_per_vertex->fields.structure[j].precision;
8272             fields[i].explicit_xfb_buffer =
8273                earlier_per_vertex->fields.structure[j].explicit_xfb_buffer;
8274             fields[i].xfb_buffer =
8275                earlier_per_vertex->fields.structure[j].xfb_buffer;
8276             fields[i].xfb_stride =
8277                earlier_per_vertex->fields.structure[j].xfb_stride;
8278          }
8279       }
8280 
8281       /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10
8282        * spec:
8283        *
8284        *     If a built-in interface block is redeclared, it must appear in
8285        *     the shader before any use of any member included in the built-in
8286        *     declaration, or a compilation error will result.
8287        *
8288        * This appears to be a clarification to the behaviour established for
8289        * gl_PerVertex by GLSL 1.50, therefore we implement this behaviour
8290        * regardless of GLSL version.
8291        */
8292       interface_block_usage_visitor v(var_mode, earlier_per_vertex);
8293       v.run(instructions);
8294       if (v.usage_found()) {
8295          _mesa_glsl_error(&loc, state,
8296                           "redeclaration of a built-in interface block must "
8297                           "appear before any use of any member of the "
8298                           "interface block");
8299       }
8300    }
8301 
8302    const glsl_type *block_type =
8303       glsl_type::get_interface_instance(fields,
8304                                         num_variables,
8305                                         packing,
8306                                         matrix_layout ==
8307                                            GLSL_MATRIX_LAYOUT_ROW_MAJOR,
8308                                         this->block_name);
8309 
8310    unsigned component_size = block_type->contains_double() ? 8 : 4;
8311    int xfb_offset =
8312       layout.flags.q.explicit_xfb_offset ? (int) qual_xfb_offset : -1;
8313    validate_xfb_offset_qualifier(&loc, state, xfb_offset, block_type,
8314                                  component_size);
8315 
8316    if (!state->symbols->add_interface(block_type->name, block_type, var_mode)) {
8317       YYLTYPE loc = this->get_location();
8318       _mesa_glsl_error(&loc, state, "interface block `%s' with type `%s' "
8319                        "already taken in the current scope",
8320                        this->block_name, iface_type_name);
8321    }
8322 
8323    /* Since interface blocks cannot contain statements, it should be
8324     * impossible for the block to generate any instructions.
8325     */
8326    assert(declared_variables.is_empty());
8327 
8328    /* From section 4.3.4 (Inputs) of the GLSL 1.50 spec:
8329     *
8330     *     Geometry shader input variables get the per-vertex values written
8331     *     out by vertex shader output variables of the same names. Since a
8332     *     geometry shader operates on a set of vertices, each input varying
8333     *     variable (or input block, see interface blocks below) needs to be
8334     *     declared as an array.
8335     */
8336    if (state->stage == MESA_SHADER_GEOMETRY && this->array_specifier == NULL &&
8337        var_mode == ir_var_shader_in) {
8338       _mesa_glsl_error(&loc, state, "geometry shader inputs must be arrays");
8339    } else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8340                state->stage == MESA_SHADER_TESS_EVAL) &&
8341               !this->layout.flags.q.patch &&
8342               this->array_specifier == NULL &&
8343               var_mode == ir_var_shader_in) {
8344       _mesa_glsl_error(&loc, state, "per-vertex tessellation shader inputs must be arrays");
8345    } else if (state->stage == MESA_SHADER_TESS_CTRL &&
8346               !this->layout.flags.q.patch &&
8347               this->array_specifier == NULL &&
8348               var_mode == ir_var_shader_out) {
8349       _mesa_glsl_error(&loc, state, "tessellation control shader outputs must be arrays");
8350    }
8351 
8352 
8353    /* Page 39 (page 45 of the PDF) of section 4.3.7 in the GLSL ES 3.00 spec
8354     * says:
8355     *
8356     *     "If an instance name (instance-name) is used, then it puts all the
8357     *     members inside a scope within its own name space, accessed with the
8358     *     field selector ( . ) operator (analogously to structures)."
8359     */
8360    if (this->instance_name) {
8361       if (redeclaring_per_vertex) {
8362          /* When a built-in in an unnamed interface block is redeclared,
8363           * get_variable_being_redeclared() calls
8364           * check_builtin_array_max_size() to make sure that built-in array
8365           * variables aren't redeclared to illegal sizes.  But we're looking
8366           * at a redeclaration of a named built-in interface block.  So we
8367           * have to manually call check_builtin_array_max_size() for all parts
8368           * of the interface that are arrays.
8369           */
8370          for (unsigned i = 0; i < num_variables; i++) {
8371             if (fields[i].type->is_array()) {
8372                const unsigned size = fields[i].type->array_size();
8373                check_builtin_array_max_size(fields[i].name, size, loc, state);
8374             }
8375          }
8376       } else {
8377          validate_identifier(this->instance_name, loc, state);
8378       }
8379 
8380       ir_variable *var;
8381 
8382       if (this->array_specifier != NULL) {
8383          const glsl_type *block_array_type =
8384             process_array_type(&loc, block_type, this->array_specifier, state);
8385 
8386          /* Section 4.3.7 (Interface Blocks) of the GLSL 1.50 spec says:
8387           *
8388           *     For uniform blocks declared an array, each individual array
8389           *     element corresponds to a separate buffer object backing one
8390           *     instance of the block. As the array size indicates the number
8391           *     of buffer objects needed, uniform block array declarations
8392           *     must specify an array size.
8393           *
8394           * And a few paragraphs later:
8395           *
8396           *     Geometry shader input blocks must be declared as arrays and
8397           *     follow the array declaration and linking rules for all
8398           *     geometry shader inputs. All other input and output block
8399           *     arrays must specify an array size.
8400           *
8401           * The same applies to tessellation shaders.
8402           *
8403           * The upshot of this is that the only circumstance where an
8404           * interface array size *doesn't* need to be specified is on a
8405           * geometry shader input, tessellation control shader input,
8406           * tessellation control shader output, and tessellation evaluation
8407           * shader input.
8408           */
8409          if (block_array_type->is_unsized_array()) {
8410             bool allow_inputs = state->stage == MESA_SHADER_GEOMETRY ||
8411                                 state->stage == MESA_SHADER_TESS_CTRL ||
8412                                 state->stage == MESA_SHADER_TESS_EVAL;
8413             bool allow_outputs = state->stage == MESA_SHADER_TESS_CTRL;
8414 
8415             if (this->layout.flags.q.in) {
8416                if (!allow_inputs)
8417                   _mesa_glsl_error(&loc, state,
8418                                    "unsized input block arrays not allowed in "
8419                                    "%s shader",
8420                                    _mesa_shader_stage_to_string(state->stage));
8421             } else if (this->layout.flags.q.out) {
8422                if (!allow_outputs)
8423                   _mesa_glsl_error(&loc, state,
8424                                    "unsized output block arrays not allowed in "
8425                                    "%s shader",
8426                                    _mesa_shader_stage_to_string(state->stage));
8427             } else {
8428                /* by elimination, this is a uniform block array */
8429                _mesa_glsl_error(&loc, state,
8430                                 "unsized uniform block arrays not allowed in "
8431                                 "%s shader",
8432                                 _mesa_shader_stage_to_string(state->stage));
8433             }
8434          }
8435 
8436          /* From section 4.3.9 (Interface Blocks) of the GLSL ES 3.10 spec:
8437           *
8438           *     * Arrays of arrays of blocks are not allowed
8439           */
8440          if (state->es_shader && block_array_type->is_array() &&
8441              block_array_type->fields.array->is_array()) {
8442             _mesa_glsl_error(&loc, state,
8443                              "arrays of arrays interface blocks are "
8444                              "not allowed");
8445          }
8446 
8447          var = new(state) ir_variable(block_array_type,
8448                                       this->instance_name,
8449                                       var_mode);
8450       } else {
8451          var = new(state) ir_variable(block_type,
8452                                       this->instance_name,
8453                                       var_mode);
8454       }
8455 
8456       var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8457          ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8458 
8459       if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8460          var->data.read_only = true;
8461 
8462       var->data.patch = this->layout.flags.q.patch;
8463 
8464       if (state->stage == MESA_SHADER_GEOMETRY && var_mode == ir_var_shader_in)
8465          handle_geometry_shader_input_decl(state, loc, var);
8466       else if ((state->stage == MESA_SHADER_TESS_CTRL ||
8467            state->stage == MESA_SHADER_TESS_EVAL) && var_mode == ir_var_shader_in)
8468          handle_tess_shader_input_decl(state, loc, var);
8469       else if (state->stage == MESA_SHADER_TESS_CTRL && var_mode == ir_var_shader_out)
8470          handle_tess_ctrl_shader_output_decl(state, loc, var);
8471 
8472       for (unsigned i = 0; i < num_variables; i++) {
8473          if (var->data.mode == ir_var_shader_storage)
8474             apply_memory_qualifiers(var, fields[i]);
8475       }
8476 
8477       if (ir_variable *earlier =
8478           state->symbols->get_variable(this->instance_name)) {
8479          if (!redeclaring_per_vertex) {
8480             _mesa_glsl_error(&loc, state, "`%s' redeclared",
8481                              this->instance_name);
8482          }
8483          earlier->data.how_declared = ir_var_declared_normally;
8484          earlier->type = var->type;
8485          earlier->reinit_interface_type(block_type);
8486          delete var;
8487       } else {
8488          if (this->layout.flags.q.explicit_binding) {
8489             apply_explicit_binding(state, &loc, var, var->type,
8490                                    &this->layout);
8491          }
8492 
8493          var->data.stream = qual_stream;
8494          if (layout.flags.q.explicit_location) {
8495             var->data.location = expl_location;
8496             var->data.explicit_location = true;
8497          }
8498 
8499          state->symbols->add_variable(var);
8500          instructions->push_tail(var);
8501       }
8502    } else {
8503       /* In order to have an array size, the block must also be declared with
8504        * an instance name.
8505        */
8506       assert(this->array_specifier == NULL);
8507 
8508       for (unsigned i = 0; i < num_variables; i++) {
8509          ir_variable *var =
8510             new(state) ir_variable(fields[i].type,
8511                                    ralloc_strdup(state, fields[i].name),
8512                                    var_mode);
8513          var->data.interpolation = fields[i].interpolation;
8514          var->data.centroid = fields[i].centroid;
8515          var->data.sample = fields[i].sample;
8516          var->data.patch = fields[i].patch;
8517          var->data.stream = qual_stream;
8518          var->data.location = fields[i].location;
8519 
8520          if (fields[i].location != -1)
8521             var->data.explicit_location = true;
8522 
8523          var->data.explicit_xfb_buffer = fields[i].explicit_xfb_buffer;
8524          var->data.xfb_buffer = fields[i].xfb_buffer;
8525 
8526          if (fields[i].offset != -1)
8527             var->data.explicit_xfb_offset = true;
8528          var->data.offset = fields[i].offset;
8529 
8530          var->init_interface_type(block_type);
8531 
8532          if (var_mode == ir_var_shader_in || var_mode == ir_var_uniform)
8533             var->data.read_only = true;
8534 
8535          /* Precision qualifiers do not have any meaning in Desktop GLSL */
8536          if (state->es_shader) {
8537             var->data.precision =
8538                select_gles_precision(fields[i].precision, fields[i].type,
8539                                      state, &loc);
8540          }
8541 
8542          if (fields[i].matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED) {
8543             var->data.matrix_layout = matrix_layout == GLSL_MATRIX_LAYOUT_INHERITED
8544                ? GLSL_MATRIX_LAYOUT_COLUMN_MAJOR : matrix_layout;
8545          } else {
8546             var->data.matrix_layout = fields[i].matrix_layout;
8547          }
8548 
8549          if (var->data.mode == ir_var_shader_storage)
8550             apply_memory_qualifiers(var, fields[i]);
8551 
8552          /* Examine var name here since var may get deleted in the next call */
8553          bool var_is_gl_id = is_gl_identifier(var->name);
8554 
8555          if (redeclaring_per_vertex) {
8556             bool is_redeclaration;
8557             var =
8558                get_variable_being_redeclared(&var, loc, state,
8559                                              true /* allow_all_redeclarations */,
8560                                              &is_redeclaration);
8561             if (!var_is_gl_id || !is_redeclaration) {
8562                _mesa_glsl_error(&loc, state,
8563                                 "redeclaration of gl_PerVertex can only "
8564                                 "include built-in variables");
8565             } else if (var->data.how_declared == ir_var_declared_normally) {
8566                _mesa_glsl_error(&loc, state,
8567                                 "`%s' has already been redeclared",
8568                                 var->name);
8569             } else {
8570                var->data.how_declared = ir_var_declared_in_block;
8571                var->reinit_interface_type(block_type);
8572             }
8573             continue;
8574          }
8575 
8576          if (state->symbols->get_variable(var->name) != NULL)
8577             _mesa_glsl_error(&loc, state, "`%s' redeclared", var->name);
8578 
8579          /* Propagate the "binding" keyword into this UBO/SSBO's fields.
8580           * The UBO declaration itself doesn't get an ir_variable unless it
8581           * has an instance name.  This is ugly.
8582           */
8583          if (this->layout.flags.q.explicit_binding) {
8584             apply_explicit_binding(state, &loc, var,
8585                                    var->get_interface_type(), &this->layout);
8586          }
8587 
8588          if (var->type->is_unsized_array()) {
8589             if (var->is_in_shader_storage_block() &&
8590                 is_unsized_array_last_element(var)) {
8591                var->data.from_ssbo_unsized_array = true;
8592             } else {
8593                /* From GLSL ES 3.10 spec, section 4.1.9 "Arrays":
8594                 *
8595                 * "If an array is declared as the last member of a shader storage
8596                 * block and the size is not specified at compile-time, it is
8597                 * sized at run-time. In all other cases, arrays are sized only
8598                 * at compile-time."
8599                 *
8600                 * In desktop GLSL it is allowed to have unsized-arrays that are
8601                 * not last, as long as we can determine that they are implicitly
8602                 * sized.
8603                 */
8604                if (state->es_shader) {
8605                   _mesa_glsl_error(&loc, state, "unsized array `%s' "
8606                                    "definition: only last member of a shader "
8607                                    "storage block can be defined as unsized "
8608                                    "array", fields[i].name);
8609                }
8610             }
8611          }
8612 
8613          state->symbols->add_variable(var);
8614          instructions->push_tail(var);
8615       }
8616 
8617       if (redeclaring_per_vertex && block_type != earlier_per_vertex) {
8618          /* From section 7.1 ("Built-in Language Variables") of the GLSL 4.10 spec:
8619           *
8620           *     It is also a compilation error ... to redeclare a built-in
8621           *     block and then use a member from that built-in block that was
8622           *     not included in the redeclaration.
8623           *
8624           * This appears to be a clarification to the behaviour established
8625           * for gl_PerVertex by GLSL 1.50, therefore we implement this
8626           * behaviour regardless of GLSL version.
8627           *
8628           * To prevent the shader from using a member that was not included in
8629           * the redeclaration, we disable any ir_variables that are still
8630           * associated with the old declaration of gl_PerVertex (since we've
8631           * already updated all of the variables contained in the new
8632           * gl_PerVertex to point to it).
8633           *
8634           * As a side effect this will prevent
8635           * validate_intrastage_interface_blocks() from getting confused and
8636           * thinking there are conflicting definitions of gl_PerVertex in the
8637           * shader.
8638           */
8639          foreach_in_list_safe(ir_instruction, node, instructions) {
8640             ir_variable *const var = node->as_variable();
8641             if (var != NULL &&
8642                 var->get_interface_type() == earlier_per_vertex &&
8643                 var->data.mode == var_mode) {
8644                if (var->data.how_declared == ir_var_declared_normally) {
8645                   _mesa_glsl_error(&loc, state,
8646                                    "redeclaration of gl_PerVertex cannot "
8647                                    "follow a redeclaration of `%s'",
8648                                    var->name);
8649                }
8650                state->symbols->disable_variable(var->name);
8651                var->remove();
8652             }
8653          }
8654       }
8655    }
8656 
8657    return NULL;
8658 }
8659 
8660 
8661 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8662 ast_tcs_output_layout::hir(exec_list *instructions,
8663                            struct _mesa_glsl_parse_state *state)
8664 {
8665    YYLTYPE loc = this->get_location();
8666 
8667    unsigned num_vertices;
8668    if (!state->out_qualifier->vertices->
8669           process_qualifier_constant(state, "vertices", &num_vertices,
8670                                      false)) {
8671       /* return here to stop cascading incorrect error messages */
8672      return NULL;
8673    }
8674 
8675    /* If any shader outputs occurred before this declaration and specified an
8676     * array size, make sure the size they specified is consistent with the
8677     * primitive type.
8678     */
8679    if (state->tcs_output_size != 0 && state->tcs_output_size != num_vertices) {
8680       _mesa_glsl_error(&loc, state,
8681                        "this tessellation control shader output layout "
8682                        "specifies %u vertices, but a previous output "
8683                        "is declared with size %u",
8684                        num_vertices, state->tcs_output_size);
8685       return NULL;
8686    }
8687 
8688    state->tcs_output_vertices_specified = true;
8689 
8690    /* If any shader outputs occurred before this declaration and did not
8691     * specify an array size, their size is determined now.
8692     */
8693    foreach_in_list (ir_instruction, node, instructions) {
8694       ir_variable *var = node->as_variable();
8695       if (var == NULL || var->data.mode != ir_var_shader_out)
8696          continue;
8697 
8698       /* Note: Not all tessellation control shader output are arrays. */
8699       if (!var->type->is_unsized_array() || var->data.patch)
8700          continue;
8701 
8702       if (var->data.max_array_access >= (int)num_vertices) {
8703          _mesa_glsl_error(&loc, state,
8704                           "this tessellation control shader output layout "
8705                           "specifies %u vertices, but an access to element "
8706                           "%u of output `%s' already exists", num_vertices,
8707                           var->data.max_array_access, var->name);
8708       } else {
8709          var->type = glsl_type::get_array_instance(var->type->fields.array,
8710                                                    num_vertices);
8711       }
8712    }
8713 
8714    return NULL;
8715 }
8716 
8717 
8718 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8719 ast_gs_input_layout::hir(exec_list *instructions,
8720                          struct _mesa_glsl_parse_state *state)
8721 {
8722    YYLTYPE loc = this->get_location();
8723 
8724    /* Should have been prevented by the parser. */
8725    assert(!state->gs_input_prim_type_specified
8726           || state->in_qualifier->prim_type == this->prim_type);
8727 
8728    /* If any shader inputs occurred before this declaration and specified an
8729     * array size, make sure the size they specified is consistent with the
8730     * primitive type.
8731     */
8732    unsigned num_vertices = vertices_per_prim(this->prim_type);
8733    if (state->gs_input_size != 0 && state->gs_input_size != num_vertices) {
8734       _mesa_glsl_error(&loc, state,
8735                        "this geometry shader input layout implies %u vertices"
8736                        " per primitive, but a previous input is declared"
8737                        " with size %u", num_vertices, state->gs_input_size);
8738       return NULL;
8739    }
8740 
8741    state->gs_input_prim_type_specified = true;
8742 
8743    /* If any shader inputs occurred before this declaration and did not
8744     * specify an array size, their size is determined now.
8745     */
8746    foreach_in_list(ir_instruction, node, instructions) {
8747       ir_variable *var = node->as_variable();
8748       if (var == NULL || var->data.mode != ir_var_shader_in)
8749          continue;
8750 
8751       /* Note: gl_PrimitiveIDIn has mode ir_var_shader_in, but it's not an
8752        * array; skip it.
8753        */
8754 
8755       if (var->type->is_unsized_array()) {
8756          if (var->data.max_array_access >= (int)num_vertices) {
8757             _mesa_glsl_error(&loc, state,
8758                              "this geometry shader input layout implies %u"
8759                              " vertices, but an access to element %u of input"
8760                              " `%s' already exists", num_vertices,
8761                              var->data.max_array_access, var->name);
8762          } else {
8763             var->type = glsl_type::get_array_instance(var->type->fields.array,
8764                                                       num_vertices);
8765          }
8766       }
8767    }
8768 
8769    return NULL;
8770 }
8771 
8772 
8773 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)8774 ast_cs_input_layout::hir(exec_list *instructions,
8775                          struct _mesa_glsl_parse_state *state)
8776 {
8777    YYLTYPE loc = this->get_location();
8778 
8779    /* From the ARB_compute_shader specification:
8780     *
8781     *     If the local size of the shader in any dimension is greater
8782     *     than the maximum size supported by the implementation for that
8783     *     dimension, a compile-time error results.
8784     *
8785     * It is not clear from the spec how the error should be reported if
8786     * the total size of the work group exceeds
8787     * MAX_COMPUTE_WORK_GROUP_INVOCATIONS, but it seems reasonable to
8788     * report it at compile time as well.
8789     */
8790    GLuint64 total_invocations = 1;
8791    unsigned qual_local_size[3];
8792    for (int i = 0; i < 3; i++) {
8793 
8794       char *local_size_str = ralloc_asprintf(NULL, "invalid local_size_%c",
8795                                              'x' + i);
8796       /* Infer a local_size of 1 for unspecified dimensions */
8797       if (this->local_size[i] == NULL) {
8798          qual_local_size[i] = 1;
8799       } else if (!this->local_size[i]->
8800              process_qualifier_constant(state, local_size_str,
8801                                         &qual_local_size[i], false)) {
8802          ralloc_free(local_size_str);
8803          return NULL;
8804       }
8805       ralloc_free(local_size_str);
8806 
8807       if (qual_local_size[i] > state->ctx->Const.MaxComputeWorkGroupSize[i]) {
8808          _mesa_glsl_error(&loc, state,
8809                           "local_size_%c exceeds MAX_COMPUTE_WORK_GROUP_SIZE"
8810                           " (%d)", 'x' + i,
8811                           state->ctx->Const.MaxComputeWorkGroupSize[i]);
8812          break;
8813       }
8814       total_invocations *= qual_local_size[i];
8815       if (total_invocations >
8816           state->ctx->Const.MaxComputeWorkGroupInvocations) {
8817          _mesa_glsl_error(&loc, state,
8818                           "product of local_sizes exceeds "
8819                           "MAX_COMPUTE_WORK_GROUP_INVOCATIONS (%d)",
8820                           state->ctx->Const.MaxComputeWorkGroupInvocations);
8821          break;
8822       }
8823    }
8824 
8825    /* If any compute input layout declaration preceded this one, make sure it
8826     * was consistent with this one.
8827     */
8828    if (state->cs_input_local_size_specified) {
8829       for (int i = 0; i < 3; i++) {
8830          if (state->cs_input_local_size[i] != qual_local_size[i]) {
8831             _mesa_glsl_error(&loc, state,
8832                              "compute shader input layout does not match"
8833                              " previous declaration");
8834             return NULL;
8835          }
8836       }
8837    }
8838 
8839    /* The ARB_compute_variable_group_size spec says:
8840     *
8841     *     If a compute shader including a *local_size_variable* qualifier also
8842     *     declares a fixed local group size using the *local_size_x*,
8843     *     *local_size_y*, or *local_size_z* qualifiers, a compile-time error
8844     *     results
8845     */
8846    if (state->cs_input_local_size_variable_specified) {
8847       _mesa_glsl_error(&loc, state,
8848                        "compute shader can't include both a variable and a "
8849                        "fixed local group size");
8850       return NULL;
8851    }
8852 
8853    state->cs_input_local_size_specified = true;
8854    for (int i = 0; i < 3; i++)
8855       state->cs_input_local_size[i] = qual_local_size[i];
8856 
8857    /* We may now declare the built-in constant gl_WorkGroupSize (see
8858     * builtin_variable_generator::generate_constants() for why we didn't
8859     * declare it earlier).
8860     */
8861    ir_variable *var = new(state->symbols)
8862       ir_variable(glsl_type::uvec3_type, "gl_WorkGroupSize", ir_var_auto);
8863    var->data.how_declared = ir_var_declared_implicitly;
8864    var->data.read_only = true;
8865    instructions->push_tail(var);
8866    state->symbols->add_variable(var);
8867    ir_constant_data data;
8868    memset(&data, 0, sizeof(data));
8869    for (int i = 0; i < 3; i++)
8870       data.u[i] = qual_local_size[i];
8871    var->constant_value = new(var) ir_constant(glsl_type::uvec3_type, &data);
8872    var->constant_initializer =
8873       new(var) ir_constant(glsl_type::uvec3_type, &data);
8874    var->data.has_initializer = true;
8875    var->data.is_implicit_initializer = false;
8876 
8877    return NULL;
8878 }
8879 
8880 
8881 static void
detect_conflicting_assignments(struct _mesa_glsl_parse_state * state,exec_list * instructions)8882 detect_conflicting_assignments(struct _mesa_glsl_parse_state *state,
8883                                exec_list *instructions)
8884 {
8885    bool gl_FragColor_assigned = false;
8886    bool gl_FragData_assigned = false;
8887    bool gl_FragSecondaryColor_assigned = false;
8888    bool gl_FragSecondaryData_assigned = false;
8889    bool user_defined_fs_output_assigned = false;
8890    ir_variable *user_defined_fs_output = NULL;
8891 
8892    /* It would be nice to have proper location information. */
8893    YYLTYPE loc;
8894    memset(&loc, 0, sizeof(loc));
8895 
8896    foreach_in_list(ir_instruction, node, instructions) {
8897       ir_variable *var = node->as_variable();
8898 
8899       if (!var || !var->data.assigned)
8900          continue;
8901 
8902       if (strcmp(var->name, "gl_FragColor") == 0) {
8903          gl_FragColor_assigned = true;
8904          if (!var->constant_initializer && state->zero_init) {
8905             const ir_constant_data data = { { 0 } };
8906             var->data.has_initializer = true;
8907             var->data.is_implicit_initializer = true;
8908             var->constant_initializer = new(var) ir_constant(var->type, &data);
8909          }
8910       }
8911       else if (strcmp(var->name, "gl_FragData") == 0)
8912          gl_FragData_assigned = true;
8913         else if (strcmp(var->name, "gl_SecondaryFragColorEXT") == 0)
8914          gl_FragSecondaryColor_assigned = true;
8915         else if (strcmp(var->name, "gl_SecondaryFragDataEXT") == 0)
8916          gl_FragSecondaryData_assigned = true;
8917       else if (!is_gl_identifier(var->name)) {
8918          if (state->stage == MESA_SHADER_FRAGMENT &&
8919              var->data.mode == ir_var_shader_out) {
8920             user_defined_fs_output_assigned = true;
8921             user_defined_fs_output = var;
8922          }
8923       }
8924    }
8925 
8926    /* From the GLSL 1.30 spec:
8927     *
8928     *     "If a shader statically assigns a value to gl_FragColor, it
8929     *      may not assign a value to any element of gl_FragData. If a
8930     *      shader statically writes a value to any element of
8931     *      gl_FragData, it may not assign a value to
8932     *      gl_FragColor. That is, a shader may assign values to either
8933     *      gl_FragColor or gl_FragData, but not both. Multiple shaders
8934     *      linked together must also consistently write just one of
8935     *      these variables.  Similarly, if user declared output
8936     *      variables are in use (statically assigned to), then the
8937     *      built-in variables gl_FragColor and gl_FragData may not be
8938     *      assigned to. These incorrect usages all generate compile
8939     *      time errors."
8940     */
8941    if (gl_FragColor_assigned && gl_FragData_assigned) {
8942       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8943                        "`gl_FragColor' and `gl_FragData'");
8944    } else if (gl_FragColor_assigned && user_defined_fs_output_assigned) {
8945       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8946                        "`gl_FragColor' and `%s'",
8947                        user_defined_fs_output->name);
8948    } else if (gl_FragSecondaryColor_assigned && gl_FragSecondaryData_assigned) {
8949       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8950                        "`gl_FragSecondaryColorEXT' and"
8951                        " `gl_FragSecondaryDataEXT'");
8952    } else if (gl_FragColor_assigned && gl_FragSecondaryData_assigned) {
8953       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8954                        "`gl_FragColor' and"
8955                        " `gl_FragSecondaryDataEXT'");
8956    } else if (gl_FragData_assigned && gl_FragSecondaryColor_assigned) {
8957       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8958                        "`gl_FragData' and"
8959                        " `gl_FragSecondaryColorEXT'");
8960    } else if (gl_FragData_assigned && user_defined_fs_output_assigned) {
8961       _mesa_glsl_error(&loc, state, "fragment shader writes to both "
8962                        "`gl_FragData' and `%s'",
8963                        user_defined_fs_output->name);
8964    }
8965 
8966    if ((gl_FragSecondaryColor_assigned || gl_FragSecondaryData_assigned) &&
8967        !state->EXT_blend_func_extended_enable) {
8968       _mesa_glsl_error(&loc, state,
8969                        "Dual source blending requires EXT_blend_func_extended");
8970    }
8971 }
8972 
8973 static void
verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state * state)8974 verify_subroutine_associated_funcs(struct _mesa_glsl_parse_state *state)
8975 {
8976    YYLTYPE loc;
8977    memset(&loc, 0, sizeof(loc));
8978 
8979    /* Section 6.1.2 (Subroutines) of the GLSL 4.00 spec says:
8980     *
8981     *   "A program will fail to compile or link if any shader
8982     *    or stage contains two or more functions with the same
8983     *    name if the name is associated with a subroutine type."
8984     */
8985 
8986    for (int i = 0; i < state->num_subroutines; i++) {
8987       unsigned definitions = 0;
8988       ir_function *fn = state->subroutines[i];
8989       /* Calculate number of function definitions with the same name */
8990       foreach_in_list(ir_function_signature, sig, &fn->signatures) {
8991          if (sig->is_defined) {
8992             if (++definitions > 1) {
8993                _mesa_glsl_error(&loc, state,
8994                      "%s shader contains two or more function "
8995                      "definitions with name `%s', which is "
8996                      "associated with a subroutine type.\n",
8997                      _mesa_shader_stage_to_string(state->stage),
8998                      fn->name);
8999                return;
9000             }
9001          }
9002       }
9003    }
9004 }
9005 
9006 static void
remove_per_vertex_blocks(exec_list * instructions,_mesa_glsl_parse_state * state,ir_variable_mode mode)9007 remove_per_vertex_blocks(exec_list *instructions,
9008                          _mesa_glsl_parse_state *state, ir_variable_mode mode)
9009 {
9010    /* Find the gl_PerVertex interface block of the appropriate (in/out) mode,
9011     * if it exists in this shader type.
9012     */
9013    const glsl_type *per_vertex = NULL;
9014    switch (mode) {
9015    case ir_var_shader_in:
9016       if (ir_variable *gl_in = state->symbols->get_variable("gl_in"))
9017          per_vertex = gl_in->get_interface_type();
9018       break;
9019    case ir_var_shader_out:
9020       if (ir_variable *gl_Position =
9021           state->symbols->get_variable("gl_Position")) {
9022          per_vertex = gl_Position->get_interface_type();
9023       }
9024       break;
9025    default:
9026       assert(!"Unexpected mode");
9027       break;
9028    }
9029 
9030    /* If we didn't find a built-in gl_PerVertex interface block, then we don't
9031     * need to do anything.
9032     */
9033    if (per_vertex == NULL)
9034       return;
9035 
9036    /* If the interface block is used by the shader, then we don't need to do
9037     * anything.
9038     */
9039    interface_block_usage_visitor v(mode, per_vertex);
9040    v.run(instructions);
9041    if (v.usage_found())
9042       return;
9043 
9044    /* Remove any ir_variable declarations that refer to the interface block
9045     * we're removing.
9046     */
9047    foreach_in_list_safe(ir_instruction, node, instructions) {
9048       ir_variable *const var = node->as_variable();
9049       if (var != NULL && var->get_interface_type() == per_vertex &&
9050           var->data.mode == mode) {
9051          state->symbols->disable_variable(var->name);
9052          var->remove();
9053       }
9054    }
9055 }
9056 
9057 ir_rvalue *
hir(exec_list *,struct _mesa_glsl_parse_state * state)9058 ast_warnings_toggle::hir(exec_list *,
9059                          struct _mesa_glsl_parse_state *state)
9060 {
9061    state->warnings_enabled = enable;
9062    return NULL;
9063 }
9064