• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2005.
2 //  Distributed under the Boost Software License, Version 1.0. (See accompanying
3 //  file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
4 
5 #ifndef BOOST_MATH_COMPLEX_ASIN_INCLUDED
6 #define BOOST_MATH_COMPLEX_ASIN_INCLUDED
7 
8 #ifndef BOOST_MATH_COMPLEX_DETAILS_INCLUDED
9 #  include <boost/math/complex/details.hpp>
10 #endif
11 #ifndef BOOST_MATH_LOG1P_INCLUDED
12 #  include <boost/math/special_functions/log1p.hpp>
13 #endif
14 #include <boost/assert.hpp>
15 
16 #ifdef BOOST_NO_STDC_NAMESPACE
17 namespace std{ using ::sqrt; using ::fabs; using ::acos; using ::asin; using ::atan; using ::atan2; }
18 #endif
19 
20 namespace boost{ namespace math{
21 
22 template<class T>
asin(const std::complex<T> & z)23 inline std::complex<T> asin(const std::complex<T>& z)
24 {
25    //
26    // This implementation is a transcription of the pseudo-code in:
27    //
28    // "Implementing the complex Arcsine and Arccosine Functions using Exception Handling."
29    // T E Hull, Thomas F Fairgrieve and Ping Tak Peter Tang.
30    // ACM Transactions on Mathematical Software, Vol 23, No 3, Sept 1997.
31    //
32 
33    //
34    // These static constants should really be in a maths constants library,
35    // note that we have tweaked the value of a_crossover as per https://svn.boost.org/trac/boost/ticket/7290:
36    //
37    static const T one = static_cast<T>(1);
38    //static const T two = static_cast<T>(2);
39    static const T half = static_cast<T>(0.5L);
40    static const T a_crossover = static_cast<T>(10);
41    static const T b_crossover = static_cast<T>(0.6417L);
42    static const T s_pi = boost::math::constants::pi<T>();
43    static const T half_pi = s_pi / 2;
44    static const T log_two = boost::math::constants::ln_two<T>();
45    static const T quarter_pi = s_pi / 4;
46 #ifdef BOOST_MSVC
47 #pragma warning(push)
48 #pragma warning(disable:4127)
49 #endif
50    //
51    // Get real and imaginary parts, discard the signs as we can
52    // figure out the sign of the result later:
53    //
54    T x = std::fabs(z.real());
55    T y = std::fabs(z.imag());
56    T real, imag;  // our results
57 
58    //
59    // Begin by handling the special cases for infinities and nan's
60    // specified in C99, most of this is handled by the regular logic
61    // below, but handling it as a special case prevents overflow/underflow
62    // arithmetic which may trip up some machines:
63    //
64    if((boost::math::isnan)(x))
65    {
66       if((boost::math::isnan)(y))
67          return std::complex<T>(x, x);
68       if((boost::math::isinf)(y))
69       {
70          real = x;
71          imag = std::numeric_limits<T>::infinity();
72       }
73       else
74          return std::complex<T>(x, x);
75    }
76    else if((boost::math::isnan)(y))
77    {
78       if(x == 0)
79       {
80          real = 0;
81          imag = y;
82       }
83       else if((boost::math::isinf)(x))
84       {
85          real = y;
86          imag = std::numeric_limits<T>::infinity();
87       }
88       else
89          return std::complex<T>(y, y);
90    }
91    else if((boost::math::isinf)(x))
92    {
93       if((boost::math::isinf)(y))
94       {
95          real = quarter_pi;
96          imag = std::numeric_limits<T>::infinity();
97       }
98       else
99       {
100          real = half_pi;
101          imag = std::numeric_limits<T>::infinity();
102       }
103    }
104    else if((boost::math::isinf)(y))
105    {
106       real = 0;
107       imag = std::numeric_limits<T>::infinity();
108    }
109    else
110    {
111       //
112       // special case for real numbers:
113       //
114       if((y == 0) && (x <= one))
115          return std::complex<T>(std::asin(z.real()), z.imag());
116       //
117       // Figure out if our input is within the "safe area" identified by Hull et al.
118       // This would be more efficient with portable floating point exception handling;
119       // fortunately the quantities M and u identified by Hull et al (figure 3),
120       // match with the max and min methods of numeric_limits<T>.
121       //
122       T safe_max = detail::safe_max(static_cast<T>(8));
123       T safe_min = detail::safe_min(static_cast<T>(4));
124 
125       T xp1 = one + x;
126       T xm1 = x - one;
127 
128       if((x < safe_max) && (x > safe_min) && (y < safe_max) && (y > safe_min))
129       {
130          T yy = y * y;
131          T r = std::sqrt(xp1*xp1 + yy);
132          T s = std::sqrt(xm1*xm1 + yy);
133          T a = half * (r + s);
134          T b = x / a;
135 
136          if(b <= b_crossover)
137          {
138             real = std::asin(b);
139          }
140          else
141          {
142             T apx = a + x;
143             if(x <= one)
144             {
145                real = std::atan(x/std::sqrt(half * apx * (yy /(r + xp1) + (s-xm1))));
146             }
147             else
148             {
149                real = std::atan(x/(y * std::sqrt(half * (apx/(r + xp1) + apx/(s+xm1)))));
150             }
151          }
152 
153          if(a <= a_crossover)
154          {
155             T am1;
156             if(x < one)
157             {
158                am1 = half * (yy/(r + xp1) + yy/(s - xm1));
159             }
160             else
161             {
162                am1 = half * (yy/(r + xp1) + (s + xm1));
163             }
164             imag = boost::math::log1p(am1 + std::sqrt(am1 * (a + one)));
165          }
166          else
167          {
168             imag = std::log(a + std::sqrt(a*a - one));
169          }
170       }
171       else
172       {
173          //
174          // This is the Hull et al exception handling code from Fig 3 of their paper:
175          //
176          if(y <= (std::numeric_limits<T>::epsilon() * std::fabs(xm1)))
177          {
178             if(x < one)
179             {
180                real = std::asin(x);
181                imag = y / std::sqrt(-xp1*xm1);
182             }
183             else
184             {
185                real = half_pi;
186                if(((std::numeric_limits<T>::max)() / xp1) > xm1)
187                {
188                   // xp1 * xm1 won't overflow:
189                   imag = boost::math::log1p(xm1 + std::sqrt(xp1*xm1));
190                }
191                else
192                {
193                   imag = log_two + std::log(x);
194                }
195             }
196          }
197          else if(y <= safe_min)
198          {
199             // There is an assumption in Hull et al's analysis that
200             // if we get here then x == 1.  This is true for all "good"
201             // machines where :
202             //
203             // E^2 > 8*sqrt(u); with:
204             //
205             // E =  std::numeric_limits<T>::epsilon()
206             // u = (std::numeric_limits<T>::min)()
207             //
208             // Hull et al provide alternative code for "bad" machines
209             // but we have no way to test that here, so for now just assert
210             // on the assumption:
211             //
212             BOOST_ASSERT(x == 1);
213             real = half_pi - std::sqrt(y);
214             imag = std::sqrt(y);
215          }
216          else if(std::numeric_limits<T>::epsilon() * y - one >= x)
217          {
218             real = x/y; // This can underflow!
219             imag = log_two + std::log(y);
220          }
221          else if(x > one)
222          {
223             real = std::atan(x/y);
224             T xoy = x/y;
225             imag = log_two + std::log(y) + half * boost::math::log1p(xoy*xoy);
226          }
227          else
228          {
229             T a = std::sqrt(one + y*y);
230             real = x/a; // This can underflow!
231             imag = half * boost::math::log1p(static_cast<T>(2)*y*(y+a));
232          }
233       }
234    }
235 
236    //
237    // Finish off by working out the sign of the result:
238    //
239    if((boost::math::signbit)(z.real()))
240       real = (boost::math::changesign)(real);
241    if((boost::math::signbit)(z.imag()))
242       imag = (boost::math::changesign)(imag);
243 
244    return std::complex<T>(real, imag);
245 #ifdef BOOST_MSVC
246 #pragma warning(pop)
247 #endif
248 }
249 
250 } } // namespaces
251 
252 #endif // BOOST_MATH_COMPLEX_ASIN_INCLUDED
253