• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //  (C) Copyright John Maddock 2006.
2 //  Use, modification and distribution are subject to the
3 //  Boost Software License, Version 1.0. (See accompanying file
4 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5 
6 #ifndef BOOST_MATH_SPECIAL_ERF_HPP
7 #define BOOST_MATH_SPECIAL_ERF_HPP
8 
9 #ifdef _MSC_VER
10 #pragma once
11 #endif
12 
13 #include <boost/math/special_functions/math_fwd.hpp>
14 #include <boost/math/tools/config.hpp>
15 #include <boost/math/special_functions/gamma.hpp>
16 #include <boost/math/tools/roots.hpp>
17 #include <boost/math/policies/error_handling.hpp>
18 #include <boost/math/tools/big_constant.hpp>
19 
20 #if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
21 //
22 // This is the only way we can avoid
23 // warning: non-standard suffix on floating constant [-Wpedantic]
24 // when building with -Wall -pedantic.  Neither __extension__
25 // nor #pragma diagnostic ignored work :(
26 //
27 #pragma GCC system_header
28 #endif
29 
30 namespace boost{ namespace math{
31 
32 namespace detail
33 {
34 
35 //
36 // Asymptotic series for large z:
37 //
38 template <class T>
39 struct erf_asympt_series_t
40 {
erf_asympt_series_tboost::math::detail::erf_asympt_series_t41    erf_asympt_series_t(T z) : xx(2 * -z * z), tk(1)
42    {
43       BOOST_MATH_STD_USING
44       result = -exp(-z * z) / sqrt(boost::math::constants::pi<T>());
45       result /= z;
46    }
47 
48    typedef T result_type;
49 
operator ()boost::math::detail::erf_asympt_series_t50    T operator()()
51    {
52       BOOST_MATH_STD_USING
53       T r = result;
54       result *= tk / xx;
55       tk += 2;
56       if( fabs(r) < fabs(result))
57          result = 0;
58       return r;
59    }
60 private:
61    T result;
62    T xx;
63    int tk;
64 };
65 //
66 // How large z has to be in order to ensure that the series converges:
67 //
68 template <class T>
erf_asymptotic_limit_N(const T &)69 inline float erf_asymptotic_limit_N(const T&)
70 {
71    return (std::numeric_limits<float>::max)();
72 }
erf_asymptotic_limit_N(const boost::integral_constant<int,24> &)73 inline float erf_asymptotic_limit_N(const boost::integral_constant<int, 24>&)
74 {
75    return 2.8F;
76 }
erf_asymptotic_limit_N(const boost::integral_constant<int,53> &)77 inline float erf_asymptotic_limit_N(const boost::integral_constant<int, 53>&)
78 {
79    return 4.3F;
80 }
erf_asymptotic_limit_N(const boost::integral_constant<int,64> &)81 inline float erf_asymptotic_limit_N(const boost::integral_constant<int, 64>&)
82 {
83    return 4.8F;
84 }
erf_asymptotic_limit_N(const boost::integral_constant<int,106> &)85 inline float erf_asymptotic_limit_N(const boost::integral_constant<int, 106>&)
86 {
87    return 6.5F;
88 }
erf_asymptotic_limit_N(const boost::integral_constant<int,113> &)89 inline float erf_asymptotic_limit_N(const boost::integral_constant<int, 113>&)
90 {
91    return 6.8F;
92 }
93 
94 template <class T, class Policy>
erf_asymptotic_limit()95 inline T erf_asymptotic_limit()
96 {
97    typedef typename policies::precision<T, Policy>::type precision_type;
98    typedef boost::integral_constant<int,
99       precision_type::value <= 0 ? 0 :
100       precision_type::value <= 24 ? 24 :
101       precision_type::value <= 53 ? 53 :
102       precision_type::value <= 64 ? 64 :
103       precision_type::value <= 113 ? 113 : 0
104    > tag_type;
105    return erf_asymptotic_limit_N(tag_type());
106 }
107 
108 template <class T, class Policy, class Tag>
erf_imp(T z,bool invert,const Policy & pol,const Tag & t)109 T erf_imp(T z, bool invert, const Policy& pol, const Tag& t)
110 {
111    BOOST_MATH_STD_USING
112 
113    BOOST_MATH_INSTRUMENT_CODE("Generic erf_imp called");
114 
115    if(z < 0)
116    {
117       if(!invert)
118          return -erf_imp(T(-z), invert, pol, t);
119       else
120          return 1 + erf_imp(T(-z), false, pol, t);
121    }
122 
123    T result;
124 
125    if(!invert && (z > detail::erf_asymptotic_limit<T, Policy>()))
126    {
127       detail::erf_asympt_series_t<T> s(z);
128       boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
129       result = boost::math::tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, 1);
130       policies::check_series_iterations<T>("boost::math::erf<%1%>(%1%, %1%)", max_iter, pol);
131    }
132    else
133    {
134       T x = z * z;
135       if(x < 0.6)
136       {
137          // Compute P:
138          result = z * exp(-x);
139          result /= sqrt(boost::math::constants::pi<T>());
140          if(result != 0)
141             result *= 2 * detail::lower_gamma_series(T(0.5f), x, pol);
142       }
143       else if(x < 1.1f)
144       {
145          // Compute Q:
146          invert = !invert;
147          result = tgamma_small_upper_part(T(0.5f), x, pol);
148          result /= sqrt(boost::math::constants::pi<T>());
149       }
150       else if(x > 1 / tools::epsilon<T>())
151       {
152          // http://functions.wolfram.com/06.27.06.0006.02
153          invert = !invert;
154          result = exp(-x) / (constants::root_pi<T>() * z);
155       }
156       else
157       {
158          // Compute Q:
159          invert = !invert;
160          result = z * exp(-x);
161          result /= boost::math::constants::root_pi<T>();
162          result *= upper_gamma_fraction(T(0.5f), x, policies::get_epsilon<T, Policy>());
163       }
164    }
165    if(invert)
166       result = 1 - result;
167    return result;
168 }
169 
170 template <class T, class Policy>
erf_imp(T z,bool invert,const Policy & pol,const boost::integral_constant<int,53> & t)171 T erf_imp(T z, bool invert, const Policy& pol, const boost::integral_constant<int, 53>& t)
172 {
173    BOOST_MATH_STD_USING
174 
175    BOOST_MATH_INSTRUMENT_CODE("53-bit precision erf_imp called");
176 
177    if ((boost::math::isnan)(z))
178       return policies::raise_denorm_error("boost::math::erf<%1%>(%1%)", "Expected a finite argument but got %1%", z, pol);
179 
180    if(z < 0)
181    {
182       if(!invert)
183          return -erf_imp(T(-z), invert, pol, t);
184       else if(z < -0.5)
185          return 2 - erf_imp(T(-z), invert, pol, t);
186       else
187          return 1 + erf_imp(T(-z), false, pol, t);
188    }
189 
190    T result;
191 
192    //
193    // Big bunch of selection statements now to pick
194    // which implementation to use,
195    // try to put most likely options first:
196    //
197    if(z < 0.5)
198    {
199       //
200       // We're going to calculate erf:
201       //
202       if(z < 1e-10)
203       {
204          if(z == 0)
205          {
206             result = T(0);
207          }
208          else
209          {
210             static const T c = BOOST_MATH_BIG_CONSTANT(T, 53, 0.003379167095512573896158903121545171688);
211             result = static_cast<T>(z * 1.125f + z * c);
212          }
213       }
214       else
215       {
216          // Maximum Deviation Found:                     1.561e-17
217          // Expected Error Term:                         1.561e-17
218          // Maximum Relative Change in Control Points:   1.155e-04
219          // Max Error found at double precision =        2.961182e-17
220 
221          static const T Y = 1.044948577880859375f;
222          static const T P[] = {
223             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0834305892146531832907),
224             BOOST_MATH_BIG_CONSTANT(T, 53, -0.338165134459360935041),
225             BOOST_MATH_BIG_CONSTANT(T, 53, -0.0509990735146777432841),
226             BOOST_MATH_BIG_CONSTANT(T, 53, -0.00772758345802133288487),
227             BOOST_MATH_BIG_CONSTANT(T, 53, -0.000322780120964605683831),
228          };
229          static const T Q[] = {
230             BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
231             BOOST_MATH_BIG_CONSTANT(T, 53, 0.455004033050794024546),
232             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0875222600142252549554),
233             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00858571925074406212772),
234             BOOST_MATH_BIG_CONSTANT(T, 53, 0.000370900071787748000569),
235          };
236          T zz = z * z;
237          result = z * (Y + tools::evaluate_polynomial(P, zz) / tools::evaluate_polynomial(Q, zz));
238       }
239    }
240    else if(invert ? (z < 28) : (z < 5.8f))
241    {
242       //
243       // We'll be calculating erfc:
244       //
245       invert = !invert;
246       if(z < 1.5f)
247       {
248          // Maximum Deviation Found:                     3.702e-17
249          // Expected Error Term:                         3.702e-17
250          // Maximum Relative Change in Control Points:   2.845e-04
251          // Max Error found at double precision =        4.841816e-17
252          static const T Y = 0.405935764312744140625f;
253          static const T P[] = {
254             BOOST_MATH_BIG_CONSTANT(T, 53, -0.098090592216281240205),
255             BOOST_MATH_BIG_CONSTANT(T, 53, 0.178114665841120341155),
256             BOOST_MATH_BIG_CONSTANT(T, 53, 0.191003695796775433986),
257             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0888900368967884466578),
258             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0195049001251218801359),
259             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00180424538297014223957),
260          };
261          static const T Q[] = {
262             BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
263             BOOST_MATH_BIG_CONSTANT(T, 53, 1.84759070983002217845),
264             BOOST_MATH_BIG_CONSTANT(T, 53, 1.42628004845511324508),
265             BOOST_MATH_BIG_CONSTANT(T, 53, 0.578052804889902404909),
266             BOOST_MATH_BIG_CONSTANT(T, 53, 0.12385097467900864233),
267             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0113385233577001411017),
268             BOOST_MATH_BIG_CONSTANT(T, 53, 0.337511472483094676155e-5),
269          };
270          BOOST_MATH_INSTRUMENT_VARIABLE(Y);
271          BOOST_MATH_INSTRUMENT_VARIABLE(P[0]);
272          BOOST_MATH_INSTRUMENT_VARIABLE(Q[0]);
273          BOOST_MATH_INSTRUMENT_VARIABLE(z);
274          result = Y + tools::evaluate_polynomial(P, T(z - 0.5)) / tools::evaluate_polynomial(Q, T(z - 0.5));
275          BOOST_MATH_INSTRUMENT_VARIABLE(result);
276          result *= exp(-z * z) / z;
277          BOOST_MATH_INSTRUMENT_VARIABLE(result);
278       }
279       else if(z < 2.5f)
280       {
281          // Max Error found at double precision =        6.599585e-18
282          // Maximum Deviation Found:                     3.909e-18
283          // Expected Error Term:                         3.909e-18
284          // Maximum Relative Change in Control Points:   9.886e-05
285          static const T Y = 0.50672817230224609375f;
286          static const T P[] = {
287             BOOST_MATH_BIG_CONSTANT(T, 53, -0.0243500476207698441272),
288             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0386540375035707201728),
289             BOOST_MATH_BIG_CONSTANT(T, 53, 0.04394818964209516296),
290             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175679436311802092299),
291             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00323962406290842133584),
292             BOOST_MATH_BIG_CONSTANT(T, 53, 0.000235839115596880717416),
293          };
294          static const T Q[] = {
295             BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
296             BOOST_MATH_BIG_CONSTANT(T, 53, 1.53991494948552447182),
297             BOOST_MATH_BIG_CONSTANT(T, 53, 0.982403709157920235114),
298             BOOST_MATH_BIG_CONSTANT(T, 53, 0.325732924782444448493),
299             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0563921837420478160373),
300             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00410369723978904575884),
301          };
302          result = Y + tools::evaluate_polynomial(P, T(z - 1.5)) / tools::evaluate_polynomial(Q, T(z - 1.5));
303          T hi, lo;
304          int expon;
305          hi = floor(ldexp(frexp(z, &expon), 26));
306          hi = ldexp(hi, expon - 26);
307          lo = z - hi;
308          T sq = z * z;
309          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
310          result *= exp(-sq) * exp(-err_sqr) / z;
311       }
312       else if(z < 4.5f)
313       {
314          // Maximum Deviation Found:                     1.512e-17
315          // Expected Error Term:                         1.512e-17
316          // Maximum Relative Change in Control Points:   2.222e-04
317          // Max Error found at double precision =        2.062515e-17
318          static const T Y = 0.5405750274658203125f;
319          static const T P[] = {
320             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00295276716530971662634),
321             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0137384425896355332126),
322             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00840807615555585383007),
323             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00212825620914618649141),
324             BOOST_MATH_BIG_CONSTANT(T, 53, 0.000250269961544794627958),
325             BOOST_MATH_BIG_CONSTANT(T, 53, 0.113212406648847561139e-4),
326          };
327          static const T Q[] = {
328             BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
329             BOOST_MATH_BIG_CONSTANT(T, 53, 1.04217814166938418171),
330             BOOST_MATH_BIG_CONSTANT(T, 53, 0.442597659481563127003),
331             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0958492726301061423444),
332             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0105982906484876531489),
333             BOOST_MATH_BIG_CONSTANT(T, 53, 0.000479411269521714493907),
334          };
335          result = Y + tools::evaluate_polynomial(P, T(z - 3.5)) / tools::evaluate_polynomial(Q, T(z - 3.5));
336          T hi, lo;
337          int expon;
338          hi = floor(ldexp(frexp(z, &expon), 26));
339          hi = ldexp(hi, expon - 26);
340          lo = z - hi;
341          T sq = z * z;
342          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
343          result *= exp(-sq) * exp(-err_sqr) / z;
344       }
345       else
346       {
347          // Max Error found at double precision =        2.997958e-17
348          // Maximum Deviation Found:                     2.860e-17
349          // Expected Error Term:                         2.859e-17
350          // Maximum Relative Change in Control Points:   1.357e-05
351          static const T Y = 0.5579090118408203125f;
352          static const T P[] = {
353             BOOST_MATH_BIG_CONSTANT(T, 53, 0.00628057170626964891937),
354             BOOST_MATH_BIG_CONSTANT(T, 53, 0.0175389834052493308818),
355             BOOST_MATH_BIG_CONSTANT(T, 53, -0.212652252872804219852),
356             BOOST_MATH_BIG_CONSTANT(T, 53, -0.687717681153649930619),
357             BOOST_MATH_BIG_CONSTANT(T, 53, -2.5518551727311523996),
358             BOOST_MATH_BIG_CONSTANT(T, 53, -3.22729451764143718517),
359             BOOST_MATH_BIG_CONSTANT(T, 53, -2.8175401114513378771),
360          };
361          static const T Q[] = {
362             BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
363             BOOST_MATH_BIG_CONSTANT(T, 53, 2.79257750980575282228),
364             BOOST_MATH_BIG_CONSTANT(T, 53, 11.0567237927800161565),
365             BOOST_MATH_BIG_CONSTANT(T, 53, 15.930646027911794143),
366             BOOST_MATH_BIG_CONSTANT(T, 53, 22.9367376522880577224),
367             BOOST_MATH_BIG_CONSTANT(T, 53, 13.5064170191802889145),
368             BOOST_MATH_BIG_CONSTANT(T, 53, 5.48409182238641741584),
369          };
370          result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
371          T hi, lo;
372          int expon;
373          hi = floor(ldexp(frexp(z, &expon), 26));
374          hi = ldexp(hi, expon - 26);
375          lo = z - hi;
376          T sq = z * z;
377          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
378          result *= exp(-sq) * exp(-err_sqr) / z;
379       }
380    }
381    else
382    {
383       //
384       // Any value of z larger than 28 will underflow to zero:
385       //
386       result = 0;
387       invert = !invert;
388    }
389 
390    if(invert)
391    {
392       result = 1 - result;
393    }
394 
395    return result;
396 } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const boost::integral_constant<int, 53>& t)
397 
398 
399 template <class T, class Policy>
erf_imp(T z,bool invert,const Policy & pol,const boost::integral_constant<int,64> & t)400 T erf_imp(T z, bool invert, const Policy& pol, const boost::integral_constant<int, 64>& t)
401 {
402    BOOST_MATH_STD_USING
403 
404    BOOST_MATH_INSTRUMENT_CODE("64-bit precision erf_imp called");
405 
406    if(z < 0)
407    {
408       if(!invert)
409          return -erf_imp(T(-z), invert, pol, t);
410       else if(z < -0.5)
411          return 2 - erf_imp(T(-z), invert, pol, t);
412       else
413          return 1 + erf_imp(T(-z), false, pol, t);
414    }
415 
416    T result;
417 
418    //
419    // Big bunch of selection statements now to pick which
420    // implementation to use, try to put most likely options
421    // first:
422    //
423    if(z < 0.5)
424    {
425       //
426       // We're going to calculate erf:
427       //
428       if(z == 0)
429       {
430          result = 0;
431       }
432       else if(z < 1e-10)
433       {
434          static const T c = BOOST_MATH_BIG_CONSTANT(T, 64, 0.003379167095512573896158903121545171688);
435          result = z * 1.125 + z * c;
436       }
437       else
438       {
439          // Max Error found at long double precision =   1.623299e-20
440          // Maximum Deviation Found:                     4.326e-22
441          // Expected Error Term:                         -4.326e-22
442          // Maximum Relative Change in Control Points:   1.474e-04
443          static const T Y = 1.044948577880859375f;
444          static const T P[] = {
445             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0834305892146531988966),
446             BOOST_MATH_BIG_CONSTANT(T, 64, -0.338097283075565413695),
447             BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509602734406067204596),
448             BOOST_MATH_BIG_CONSTANT(T, 64, -0.00904906346158537794396),
449             BOOST_MATH_BIG_CONSTANT(T, 64, -0.000489468651464798669181),
450             BOOST_MATH_BIG_CONSTANT(T, 64, -0.200305626366151877759e-4),
451          };
452          static const T Q[] = {
453             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
454             BOOST_MATH_BIG_CONSTANT(T, 64, 0.455817300515875172439),
455             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0916537354356241792007),
456             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0102722652675910031202),
457             BOOST_MATH_BIG_CONSTANT(T, 64, 0.000650511752687851548735),
458             BOOST_MATH_BIG_CONSTANT(T, 64, 0.189532519105655496778e-4),
459          };
460          result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z)));
461       }
462    }
463    else if(invert ? (z < 110) : (z < 6.4f))
464    {
465       //
466       // We'll be calculating erfc:
467       //
468       invert = !invert;
469       if(z < 1.5)
470       {
471          // Max Error found at long double precision =   3.239590e-20
472          // Maximum Deviation Found:                     2.241e-20
473          // Expected Error Term:                         -2.241e-20
474          // Maximum Relative Change in Control Points:   5.110e-03
475          static const T Y = 0.405935764312744140625f;
476          static const T P[] = {
477             BOOST_MATH_BIG_CONSTANT(T, 64, -0.0980905922162812031672),
478             BOOST_MATH_BIG_CONSTANT(T, 64, 0.159989089922969141329),
479             BOOST_MATH_BIG_CONSTANT(T, 64, 0.222359821619935712378),
480             BOOST_MATH_BIG_CONSTANT(T, 64, 0.127303921703577362312),
481             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0384057530342762400273),
482             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00628431160851156719325),
483             BOOST_MATH_BIG_CONSTANT(T, 64, 0.000441266654514391746428),
484             BOOST_MATH_BIG_CONSTANT(T, 64, 0.266689068336295642561e-7),
485          };
486          static const T Q[] = {
487             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
488             BOOST_MATH_BIG_CONSTANT(T, 64, 2.03237474985469469291),
489             BOOST_MATH_BIG_CONSTANT(T, 64, 1.78355454954969405222),
490             BOOST_MATH_BIG_CONSTANT(T, 64, 0.867940326293760578231),
491             BOOST_MATH_BIG_CONSTANT(T, 64, 0.248025606990021698392),
492             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0396649631833002269861),
493             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00279220237309449026796),
494          };
495          result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f));
496          T hi, lo;
497          int expon;
498          hi = floor(ldexp(frexp(z, &expon), 32));
499          hi = ldexp(hi, expon - 32);
500          lo = z - hi;
501          T sq = z * z;
502          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
503          result *= exp(-sq) * exp(-err_sqr) / z;
504       }
505       else if(z < 2.5)
506       {
507          // Max Error found at long double precision =   3.686211e-21
508          // Maximum Deviation Found:                     1.495e-21
509          // Expected Error Term:                         -1.494e-21
510          // Maximum Relative Change in Control Points:   1.793e-04
511          static const T Y = 0.50672817230224609375f;
512          static const T P[] = {
513             BOOST_MATH_BIG_CONSTANT(T, 64, -0.024350047620769840217),
514             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0343522687935671451309),
515             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0505420824305544949541),
516             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0257479325917757388209),
517             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00669349844190354356118),
518             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00090807914416099524444),
519             BOOST_MATH_BIG_CONSTANT(T, 64, 0.515917266698050027934e-4),
520          };
521          static const T Q[] = {
522             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
523             BOOST_MATH_BIG_CONSTANT(T, 64, 1.71657861671930336344),
524             BOOST_MATH_BIG_CONSTANT(T, 64, 1.26409634824280366218),
525             BOOST_MATH_BIG_CONSTANT(T, 64, 0.512371437838969015941),
526             BOOST_MATH_BIG_CONSTANT(T, 64, 0.120902623051120950935),
527             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0158027197831887485261),
528             BOOST_MATH_BIG_CONSTANT(T, 64, 0.000897871370778031611439),
529          };
530          result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f));
531          T hi, lo;
532          int expon;
533          hi = floor(ldexp(frexp(z, &expon), 32));
534          hi = ldexp(hi, expon - 32);
535          lo = z - hi;
536          T sq = z * z;
537          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
538          result *= exp(-sq) * exp(-err_sqr) / z;
539       }
540       else if(z < 4.5)
541       {
542          // Maximum Deviation Found:                     1.107e-20
543          // Expected Error Term:                         -1.106e-20
544          // Maximum Relative Change in Control Points:   1.709e-04
545          // Max Error found at long double precision =   1.446908e-20
546          static const T Y  = 0.5405750274658203125f;
547          static const T P[] = {
548             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0029527671653097284033),
549             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0141853245895495604051),
550             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0104959584626432293901),
551             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00343963795976100077626),
552             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00059065441194877637899),
553             BOOST_MATH_BIG_CONSTANT(T, 64, 0.523435380636174008685e-4),
554             BOOST_MATH_BIG_CONSTANT(T, 64, 0.189896043050331257262e-5),
555          };
556          static const T Q[] = {
557             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
558             BOOST_MATH_BIG_CONSTANT(T, 64, 1.19352160185285642574),
559             BOOST_MATH_BIG_CONSTANT(T, 64, 0.603256964363454392857),
560             BOOST_MATH_BIG_CONSTANT(T, 64, 0.165411142458540585835),
561             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0259729870946203166468),
562             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00221657568292893699158),
563             BOOST_MATH_BIG_CONSTANT(T, 64, 0.804149464190309799804e-4),
564          };
565          result = Y + tools::evaluate_polynomial(P, T(z - 3.5f)) / tools::evaluate_polynomial(Q, T(z - 3.5f));
566          T hi, lo;
567          int expon;
568          hi = floor(ldexp(frexp(z, &expon), 32));
569          hi = ldexp(hi, expon - 32);
570          lo = z - hi;
571          T sq = z * z;
572          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
573          result *= exp(-sq) * exp(-err_sqr) / z;
574       }
575       else
576       {
577          // Max Error found at long double precision =   7.961166e-21
578          // Maximum Deviation Found:                     6.677e-21
579          // Expected Error Term:                         6.676e-21
580          // Maximum Relative Change in Control Points:   2.319e-05
581          static const T Y = 0.55825519561767578125f;
582          static const T P[] = {
583             BOOST_MATH_BIG_CONSTANT(T, 64, 0.00593438793008050214106),
584             BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280666231009089713937),
585             BOOST_MATH_BIG_CONSTANT(T, 64, -0.141597835204583050043),
586             BOOST_MATH_BIG_CONSTANT(T, 64, -0.978088201154300548842),
587             BOOST_MATH_BIG_CONSTANT(T, 64, -5.47351527796012049443),
588             BOOST_MATH_BIG_CONSTANT(T, 64, -13.8677304660245326627),
589             BOOST_MATH_BIG_CONSTANT(T, 64, -27.1274948720539821722),
590             BOOST_MATH_BIG_CONSTANT(T, 64, -29.2545152747009461519),
591             BOOST_MATH_BIG_CONSTANT(T, 64, -16.8865774499799676937),
592          };
593          static const T Q[] = {
594             BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
595             BOOST_MATH_BIG_CONSTANT(T, 64, 4.72948911186645394541),
596             BOOST_MATH_BIG_CONSTANT(T, 64, 23.6750543147695749212),
597             BOOST_MATH_BIG_CONSTANT(T, 64, 60.0021517335693186785),
598             BOOST_MATH_BIG_CONSTANT(T, 64, 131.766251645149522868),
599             BOOST_MATH_BIG_CONSTANT(T, 64, 178.167924971283482513),
600             BOOST_MATH_BIG_CONSTANT(T, 64, 182.499390505915222699),
601             BOOST_MATH_BIG_CONSTANT(T, 64, 104.365251479578577989),
602             BOOST_MATH_BIG_CONSTANT(T, 64, 30.8365511891224291717),
603          };
604          result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
605          T hi, lo;
606          int expon;
607          hi = floor(ldexp(frexp(z, &expon), 32));
608          hi = ldexp(hi, expon - 32);
609          lo = z - hi;
610          T sq = z * z;
611          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
612          result *= exp(-sq) * exp(-err_sqr) / z;
613       }
614    }
615    else
616    {
617       //
618       // Any value of z larger than 110 will underflow to zero:
619       //
620       result = 0;
621       invert = !invert;
622    }
623 
624    if(invert)
625    {
626       result = 1 - result;
627    }
628 
629    return result;
630 } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const boost::integral_constant<int, 64>& t)
631 
632 
633 template <class T, class Policy>
erf_imp(T z,bool invert,const Policy & pol,const boost::integral_constant<int,113> & t)634 T erf_imp(T z, bool invert, const Policy& pol, const boost::integral_constant<int, 113>& t)
635 {
636    BOOST_MATH_STD_USING
637 
638    BOOST_MATH_INSTRUMENT_CODE("113-bit precision erf_imp called");
639 
640    if(z < 0)
641    {
642       if(!invert)
643          return -erf_imp(T(-z), invert, pol, t);
644       else if(z < -0.5)
645          return 2 - erf_imp(T(-z), invert, pol, t);
646       else
647          return 1 + erf_imp(T(-z), false, pol, t);
648    }
649 
650    T result;
651 
652    //
653    // Big bunch of selection statements now to pick which
654    // implementation to use, try to put most likely options
655    // first:
656    //
657    if(z < 0.5)
658    {
659       //
660       // We're going to calculate erf:
661       //
662       if(z == 0)
663       {
664          result = 0;
665       }
666       else if(z < 1e-20)
667       {
668          static const T c = BOOST_MATH_BIG_CONSTANT(T, 113, 0.003379167095512573896158903121545171688);
669          result = z * 1.125 + z * c;
670       }
671       else
672       {
673          // Max Error found at long double precision =   2.342380e-35
674          // Maximum Deviation Found:                     6.124e-36
675          // Expected Error Term:                         -6.124e-36
676          // Maximum Relative Change in Control Points:   3.492e-10
677          static const T Y = 1.0841522216796875f;
678          static const T P[] = {
679             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0442269454158250738961589031215451778),
680             BOOST_MATH_BIG_CONSTANT(T, 113, -0.35549265736002144875335323556961233),
681             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0582179564566667896225454670863270393),
682             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0112694696904802304229950538453123925),
683             BOOST_MATH_BIG_CONSTANT(T, 113, -0.000805730648981801146251825329609079099),
684             BOOST_MATH_BIG_CONSTANT(T, 113, -0.566304966591936566229702842075966273e-4),
685             BOOST_MATH_BIG_CONSTANT(T, 113, -0.169655010425186987820201021510002265e-5),
686             BOOST_MATH_BIG_CONSTANT(T, 113, -0.344448249920445916714548295433198544e-7),
687          };
688          static const T Q[] = {
689             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
690             BOOST_MATH_BIG_CONSTANT(T, 113, 0.466542092785657604666906909196052522),
691             BOOST_MATH_BIG_CONSTANT(T, 113, 0.100005087012526447295176964142107611),
692             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0128341535890117646540050072234142603),
693             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00107150448466867929159660677016658186),
694             BOOST_MATH_BIG_CONSTANT(T, 113, 0.586168368028999183607733369248338474e-4),
695             BOOST_MATH_BIG_CONSTANT(T, 113, 0.196230608502104324965623171516808796e-5),
696             BOOST_MATH_BIG_CONSTANT(T, 113, 0.313388521582925207734229967907890146e-7),
697          };
698          result = z * (Y + tools::evaluate_polynomial(P, T(z * z)) / tools::evaluate_polynomial(Q, T(z * z)));
699       }
700    }
701    else if(invert ? (z < 110) : (z < 8.65f))
702    {
703       //
704       // We'll be calculating erfc:
705       //
706       invert = !invert;
707       if(z < 1)
708       {
709          // Max Error found at long double precision =   3.246278e-35
710          // Maximum Deviation Found:                     1.388e-35
711          // Expected Error Term:                         1.387e-35
712          // Maximum Relative Change in Control Points:   6.127e-05
713          static const T Y = 0.371877193450927734375f;
714          static const T P[] = {
715             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0640320213544647969396032886581290455),
716             BOOST_MATH_BIG_CONSTANT(T, 113, 0.200769874440155895637857443946706731),
717             BOOST_MATH_BIG_CONSTANT(T, 113, 0.378447199873537170666487408805779826),
718             BOOST_MATH_BIG_CONSTANT(T, 113, 0.30521399466465939450398642044975127),
719             BOOST_MATH_BIG_CONSTANT(T, 113, 0.146890026406815277906781824723458196),
720             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0464837937749539978247589252732769567),
721             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00987895759019540115099100165904822903),
722             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00137507575429025512038051025154301132),
723             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0001144764551085935580772512359680516),
724             BOOST_MATH_BIG_CONSTANT(T, 113, 0.436544865032836914773944382339900079e-5),
725          };
726          static const T Q[] = {
727             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
728             BOOST_MATH_BIG_CONSTANT(T, 113, 2.47651182872457465043733800302427977),
729             BOOST_MATH_BIG_CONSTANT(T, 113, 2.78706486002517996428836400245547955),
730             BOOST_MATH_BIG_CONSTANT(T, 113, 1.87295924621659627926365005293130693),
731             BOOST_MATH_BIG_CONSTANT(T, 113, 0.829375825174365625428280908787261065),
732             BOOST_MATH_BIG_CONSTANT(T, 113, 0.251334771307848291593780143950311514),
733             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0522110268876176186719436765734722473),
734             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00718332151250963182233267040106902368),
735             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000595279058621482041084986219276392459),
736             BOOST_MATH_BIG_CONSTANT(T, 113, 0.226988669466501655990637599399326874e-4),
737             BOOST_MATH_BIG_CONSTANT(T, 113, 0.270666232259029102353426738909226413e-10),
738          };
739          result = Y + tools::evaluate_polynomial(P, T(z - 0.5f)) / tools::evaluate_polynomial(Q, T(z - 0.5f));
740          T hi, lo;
741          int expon;
742          hi = floor(ldexp(frexp(z, &expon), 56));
743          hi = ldexp(hi, expon - 56);
744          lo = z - hi;
745          T sq = z * z;
746          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
747          result *= exp(-sq) * exp(-err_sqr) / z;
748       }
749       else if(z < 1.5)
750       {
751          // Max Error found at long double precision =   2.215785e-35
752          // Maximum Deviation Found:                     1.539e-35
753          // Expected Error Term:                         1.538e-35
754          // Maximum Relative Change in Control Points:   6.104e-05
755          static const T Y = 0.45658016204833984375f;
756          static const T P[] = {
757             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0289965858925328393392496555094848345),
758             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0868181194868601184627743162571779226),
759             BOOST_MATH_BIG_CONSTANT(T, 113, 0.169373435121178901746317404936356745),
760             BOOST_MATH_BIG_CONSTANT(T, 113, 0.13350446515949251201104889028133486),
761             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0617447837290183627136837688446313313),
762             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0185618495228251406703152962489700468),
763             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00371949406491883508764162050169531013),
764             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000485121708792921297742105775823900772),
765             BOOST_MATH_BIG_CONSTANT(T, 113, 0.376494706741453489892108068231400061e-4),
766             BOOST_MATH_BIG_CONSTANT(T, 113, 0.133166058052466262415271732172490045e-5),
767          };
768          static const T Q[] = {
769             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
770             BOOST_MATH_BIG_CONSTANT(T, 113, 2.32970330146503867261275580968135126),
771             BOOST_MATH_BIG_CONSTANT(T, 113, 2.46325715420422771961250513514928746),
772             BOOST_MATH_BIG_CONSTANT(T, 113, 1.55307882560757679068505047390857842),
773             BOOST_MATH_BIG_CONSTANT(T, 113, 0.644274289865972449441174485441409076),
774             BOOST_MATH_BIG_CONSTANT(T, 113, 0.182609091063258208068606847453955649),
775             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0354171651271241474946129665801606795),
776             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00454060370165285246451879969534083997),
777             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000349871943711566546821198612518656486),
778             BOOST_MATH_BIG_CONSTANT(T, 113, 0.123749319840299552925421880481085392e-4),
779          };
780          result = Y + tools::evaluate_polynomial(P, T(z - 1.0f)) / tools::evaluate_polynomial(Q, T(z - 1.0f));
781          T hi, lo;
782          int expon;
783          hi = floor(ldexp(frexp(z, &expon), 56));
784          hi = ldexp(hi, expon - 56);
785          lo = z - hi;
786          T sq = z * z;
787          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
788          result *= exp(-sq) * exp(-err_sqr) / z;
789       }
790       else if(z < 2.25)
791       {
792          // Maximum Deviation Found:                     1.418e-35
793          // Expected Error Term:                         1.418e-35
794          // Maximum Relative Change in Control Points:   1.316e-04
795          // Max Error found at long double precision =   1.998462e-35
796          static const T Y = 0.50250148773193359375f;
797          static const T P[] = {
798             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0201233630504573402185161184151016606),
799             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0331864357574860196516686996302305002),
800             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0716562720864787193337475444413405461),
801             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0545835322082103985114927569724880658),
802             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0236692635189696678976549720784989593),
803             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00656970902163248872837262539337601845),
804             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00120282643299089441390490459256235021),
805             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000142123229065182650020762792081622986),
806             BOOST_MATH_BIG_CONSTANT(T, 113, 0.991531438367015135346716277792989347e-5),
807             BOOST_MATH_BIG_CONSTANT(T, 113, 0.312857043762117596999398067153076051e-6),
808          };
809          static const T Q[] = {
810             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
811             BOOST_MATH_BIG_CONSTANT(T, 113, 2.13506082409097783827103424943508554),
812             BOOST_MATH_BIG_CONSTANT(T, 113, 2.06399257267556230937723190496806215),
813             BOOST_MATH_BIG_CONSTANT(T, 113, 1.18678481279932541314830499880691109),
814             BOOST_MATH_BIG_CONSTANT(T, 113, 0.447733186643051752513538142316799562),
815             BOOST_MATH_BIG_CONSTANT(T, 113, 0.11505680005657879437196953047542148),
816             BOOST_MATH_BIG_CONSTANT(T, 113, 0.020163993632192726170219663831914034),
817             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00232708971840141388847728782209730585),
818             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000160733201627963528519726484608224112),
819             BOOST_MATH_BIG_CONSTANT(T, 113, 0.507158721790721802724402992033269266e-5),
820             BOOST_MATH_BIG_CONSTANT(T, 113, 0.18647774409821470950544212696270639e-12),
821          };
822          result = Y + tools::evaluate_polynomial(P, T(z - 1.5f)) / tools::evaluate_polynomial(Q, T(z - 1.5f));
823          T hi, lo;
824          int expon;
825          hi = floor(ldexp(frexp(z, &expon), 56));
826          hi = ldexp(hi, expon - 56);
827          lo = z - hi;
828          T sq = z * z;
829          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
830          result *= exp(-sq) * exp(-err_sqr) / z;
831       }
832       else if (z < 3)
833       {
834          // Maximum Deviation Found:                     3.575e-36
835          // Expected Error Term:                         3.575e-36
836          // Maximum Relative Change in Control Points:   7.103e-05
837          // Max Error found at long double precision =   5.794737e-36
838          static const T Y = 0.52896785736083984375f;
839          static const T P[] = {
840             BOOST_MATH_BIG_CONSTANT(T, 113, -0.00902152521745813634562524098263360074),
841             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0145207142776691539346923710537580927),
842             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0301681239582193983824211995978678571),
843             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0215548540823305814379020678660434461),
844             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00864683476267958365678294164340749949),
845             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00219693096885585491739823283511049902),
846             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000364961639163319762492184502159894371),
847             BOOST_MATH_BIG_CONSTANT(T, 113, 0.388174251026723752769264051548703059e-4),
848             BOOST_MATH_BIG_CONSTANT(T, 113, 0.241918026931789436000532513553594321e-5),
849             BOOST_MATH_BIG_CONSTANT(T, 113, 0.676586625472423508158937481943649258e-7),
850          };
851          static const T Q[] = {
852             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
853             BOOST_MATH_BIG_CONSTANT(T, 113, 1.93669171363907292305550231764920001),
854             BOOST_MATH_BIG_CONSTANT(T, 113, 1.69468476144051356810672506101377494),
855             BOOST_MATH_BIG_CONSTANT(T, 113, 0.880023580986436640372794392579985511),
856             BOOST_MATH_BIG_CONSTANT(T, 113, 0.299099106711315090710836273697708402),
857             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0690593962363545715997445583603382337),
858             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0108427016361318921960863149875360222),
859             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00111747247208044534520499324234317695),
860             BOOST_MATH_BIG_CONSTANT(T, 113, 0.686843205749767250666787987163701209e-4),
861             BOOST_MATH_BIG_CONSTANT(T, 113, 0.192093541425429248675532015101904262e-5),
862          };
863          result = Y + tools::evaluate_polynomial(P, T(z - 2.25f)) / tools::evaluate_polynomial(Q, T(z - 2.25f));
864          T hi, lo;
865          int expon;
866          hi = floor(ldexp(frexp(z, &expon), 56));
867          hi = ldexp(hi, expon - 56);
868          lo = z - hi;
869          T sq = z * z;
870          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
871          result *= exp(-sq) * exp(-err_sqr) / z;
872       }
873       else if(z < 3.5)
874       {
875          // Maximum Deviation Found:                     8.126e-37
876          // Expected Error Term:                         -8.126e-37
877          // Maximum Relative Change in Control Points:   1.363e-04
878          // Max Error found at long double precision =   1.747062e-36
879          static const T Y = 0.54037380218505859375f;
880          static const T P[] = {
881             BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033703486408887424921155540591370375),
882             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0104948043110005245215286678898115811),
883             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0148530118504000311502310457390417795),
884             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00816693029245443090102738825536188916),
885             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00249716579989140882491939681805594585),
886             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0004655591010047353023978045800916647),
887             BOOST_MATH_BIG_CONSTANT(T, 113, 0.531129557920045295895085236636025323e-4),
888             BOOST_MATH_BIG_CONSTANT(T, 113, 0.343526765122727069515775194111741049e-5),
889             BOOST_MATH_BIG_CONSTANT(T, 113, 0.971120407556888763695313774578711839e-7),
890          };
891          static const T Q[] = {
892             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
893             BOOST_MATH_BIG_CONSTANT(T, 113, 1.59911256167540354915906501335919317),
894             BOOST_MATH_BIG_CONSTANT(T, 113, 1.136006830764025173864831382946934),
895             BOOST_MATH_BIG_CONSTANT(T, 113, 0.468565867990030871678574840738423023),
896             BOOST_MATH_BIG_CONSTANT(T, 113, 0.122821824954470343413956476900662236),
897             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0209670914950115943338996513330141633),
898             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00227845718243186165620199012883547257),
899             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000144243326443913171313947613547085553),
900             BOOST_MATH_BIG_CONSTANT(T, 113, 0.407763415954267700941230249989140046e-5),
901          };
902          result = Y + tools::evaluate_polynomial(P, T(z - 3.0f)) / tools::evaluate_polynomial(Q, T(z - 3.0f));
903          T hi, lo;
904          int expon;
905          hi = floor(ldexp(frexp(z, &expon), 56));
906          hi = ldexp(hi, expon - 56);
907          lo = z - hi;
908          T sq = z * z;
909          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
910          result *= exp(-sq) * exp(-err_sqr) / z;
911       }
912       else if(z < 5.5)
913       {
914          // Maximum Deviation Found:                     5.804e-36
915          // Expected Error Term:                         -5.803e-36
916          // Maximum Relative Change in Control Points:   2.475e-05
917          // Max Error found at long double precision =   1.349545e-35
918          static const T Y = 0.55000019073486328125f;
919          static const T P[] = {
920             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00118142849742309772151454518093813615),
921             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0072201822885703318172366893469382745),
922             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0078782276276860110721875733778481505),
923             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00418229166204362376187593976656261146),
924             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00134198400587769200074194304298642705),
925             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000283210387078004063264777611497435572),
926             BOOST_MATH_BIG_CONSTANT(T, 113, 0.405687064094911866569295610914844928e-4),
927             BOOST_MATH_BIG_CONSTANT(T, 113, 0.39348283801568113807887364414008292e-5),
928             BOOST_MATH_BIG_CONSTANT(T, 113, 0.248798540917787001526976889284624449e-6),
929             BOOST_MATH_BIG_CONSTANT(T, 113, 0.929502490223452372919607105387474751e-8),
930             BOOST_MATH_BIG_CONSTANT(T, 113, 0.156161469668275442569286723236274457e-9),
931          };
932          static const T Q[] = {
933             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
934             BOOST_MATH_BIG_CONSTANT(T, 113, 1.52955245103668419479878456656709381),
935             BOOST_MATH_BIG_CONSTANT(T, 113, 1.06263944820093830054635017117417064),
936             BOOST_MATH_BIG_CONSTANT(T, 113, 0.441684612681607364321013134378316463),
937             BOOST_MATH_BIG_CONSTANT(T, 113, 0.121665258426166960049773715928906382),
938             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0232134512374747691424978642874321434),
939             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00310778180686296328582860464875562636),
940             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000288361770756174705123674838640161693),
941             BOOST_MATH_BIG_CONSTANT(T, 113, 0.177529187194133944622193191942300132e-4),
942             BOOST_MATH_BIG_CONSTANT(T, 113, 0.655068544833064069223029299070876623e-6),
943             BOOST_MATH_BIG_CONSTANT(T, 113, 0.11005507545746069573608988651927452e-7),
944          };
945          result = Y + tools::evaluate_polynomial(P, T(z - 4.5f)) / tools::evaluate_polynomial(Q, T(z - 4.5f));
946          T hi, lo;
947          int expon;
948          hi = floor(ldexp(frexp(z, &expon), 56));
949          hi = ldexp(hi, expon - 56);
950          lo = z - hi;
951          T sq = z * z;
952          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
953          result *= exp(-sq) * exp(-err_sqr) / z;
954       }
955       else if(z < 7.5)
956       {
957          // Maximum Deviation Found:                     1.007e-36
958          // Expected Error Term:                         1.007e-36
959          // Maximum Relative Change in Control Points:   1.027e-03
960          // Max Error found at long double precision =   2.646420e-36
961          static const T Y = 0.5574436187744140625f;
962          static const T P[] = {
963             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000293236907400849056269309713064107674),
964             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00225110719535060642692275221961480162),
965             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00190984458121502831421717207849429799),
966             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000747757733460111743833929141001680706),
967             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000170663175280949889583158597373928096),
968             BOOST_MATH_BIG_CONSTANT(T, 113, 0.246441188958013822253071608197514058e-4),
969             BOOST_MATH_BIG_CONSTANT(T, 113, 0.229818000860544644974205957895688106e-5),
970             BOOST_MATH_BIG_CONSTANT(T, 113, 0.134886977703388748488480980637704864e-6),
971             BOOST_MATH_BIG_CONSTANT(T, 113, 0.454764611880548962757125070106650958e-8),
972             BOOST_MATH_BIG_CONSTANT(T, 113, 0.673002744115866600294723141176820155e-10),
973          };
974          static const T Q[] = {
975             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
976             BOOST_MATH_BIG_CONSTANT(T, 113, 1.12843690320861239631195353379313367),
977             BOOST_MATH_BIG_CONSTANT(T, 113, 0.569900657061622955362493442186537259),
978             BOOST_MATH_BIG_CONSTANT(T, 113, 0.169094404206844928112348730277514273),
979             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0324887449084220415058158657252147063),
980             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00419252877436825753042680842608219552),
981             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00036344133176118603523976748563178578),
982             BOOST_MATH_BIG_CONSTANT(T, 113, 0.204123895931375107397698245752850347e-4),
983             BOOST_MATH_BIG_CONSTANT(T, 113, 0.674128352521481412232785122943508729e-6),
984             BOOST_MATH_BIG_CONSTANT(T, 113, 0.997637501418963696542159244436245077e-8),
985          };
986          result = Y + tools::evaluate_polynomial(P, T(z - 6.5f)) / tools::evaluate_polynomial(Q, T(z - 6.5f));
987          T hi, lo;
988          int expon;
989          hi = floor(ldexp(frexp(z, &expon), 56));
990          hi = ldexp(hi, expon - 56);
991          lo = z - hi;
992          T sq = z * z;
993          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
994          result *= exp(-sq) * exp(-err_sqr) / z;
995       }
996       else if(z < 11.5)
997       {
998          // Maximum Deviation Found:                     8.380e-36
999          // Expected Error Term:                         8.380e-36
1000          // Maximum Relative Change in Control Points:   2.632e-06
1001          // Max Error found at long double precision =   9.849522e-36
1002          static const T Y = 0.56083202362060546875f;
1003          static const T P[] = {
1004             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000282420728751494363613829834891390121),
1005             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00175387065018002823433704079355125161),
1006             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0021344978564889819420775336322920375),
1007             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00124151356560137532655039683963075661),
1008             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000423600733566948018555157026862139644),
1009             BOOST_MATH_BIG_CONSTANT(T, 113, 0.914030340865175237133613697319509698e-4),
1010             BOOST_MATH_BIG_CONSTANT(T, 113, 0.126999927156823363353809747017945494e-4),
1011             BOOST_MATH_BIG_CONSTANT(T, 113, 0.110610959842869849776179749369376402e-5),
1012             BOOST_MATH_BIG_CONSTANT(T, 113, 0.55075079477173482096725348704634529e-7),
1013             BOOST_MATH_BIG_CONSTANT(T, 113, 0.119735694018906705225870691331543806e-8),
1014          };
1015          static const T Q[] = {
1016             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1017             BOOST_MATH_BIG_CONSTANT(T, 113, 1.69889613396167354566098060039549882),
1018             BOOST_MATH_BIG_CONSTANT(T, 113, 1.28824647372749624464956031163282674),
1019             BOOST_MATH_BIG_CONSTANT(T, 113, 0.572297795434934493541628008224078717),
1020             BOOST_MATH_BIG_CONSTANT(T, 113, 0.164157697425571712377043857240773164),
1021             BOOST_MATH_BIG_CONSTANT(T, 113, 0.0315311145224594430281219516531649562),
1022             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00405588922155632380812945849777127458),
1023             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000336929033691445666232029762868642417),
1024             BOOST_MATH_BIG_CONSTANT(T, 113, 0.164033049810404773469413526427932109e-4),
1025             BOOST_MATH_BIG_CONSTANT(T, 113, 0.356615210500531410114914617294694857e-6),
1026          };
1027          result = Y + tools::evaluate_polynomial(P, T(z / 2 - 4.75f)) / tools::evaluate_polynomial(Q, T(z / 2 - 4.75f));
1028          T hi, lo;
1029          int expon;
1030          hi = floor(ldexp(frexp(z, &expon), 56));
1031          hi = ldexp(hi, expon - 56);
1032          lo = z - hi;
1033          T sq = z * z;
1034          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
1035          result *= exp(-sq) * exp(-err_sqr) / z;
1036       }
1037       else
1038       {
1039          // Maximum Deviation Found:                     1.132e-35
1040          // Expected Error Term:                         -1.132e-35
1041          // Maximum Relative Change in Control Points:   4.674e-04
1042          // Max Error found at long double precision =   1.162590e-35
1043          static const T Y = 0.5632686614990234375f;
1044          static const T P[] = {
1045             BOOST_MATH_BIG_CONSTANT(T, 113, 0.000920922048732849448079451574171836943),
1046             BOOST_MATH_BIG_CONSTANT(T, 113, 0.00321439044532288750501700028748922439),
1047             BOOST_MATH_BIG_CONSTANT(T, 113, -0.250455263029390118657884864261823431),
1048             BOOST_MATH_BIG_CONSTANT(T, 113, -0.906807635364090342031792404764598142),
1049             BOOST_MATH_BIG_CONSTANT(T, 113, -8.92233572835991735876688745989985565),
1050             BOOST_MATH_BIG_CONSTANT(T, 113, -21.7797433494422564811782116907878495),
1051             BOOST_MATH_BIG_CONSTANT(T, 113, -91.1451915251976354349734589601171659),
1052             BOOST_MATH_BIG_CONSTANT(T, 113, -144.1279109655993927069052125017673),
1053             BOOST_MATH_BIG_CONSTANT(T, 113, -313.845076581796338665519022313775589),
1054             BOOST_MATH_BIG_CONSTANT(T, 113, -273.11378811923343424081101235736475),
1055             BOOST_MATH_BIG_CONSTANT(T, 113, -271.651566205951067025696102600443452),
1056             BOOST_MATH_BIG_CONSTANT(T, 113, -60.0530577077238079968843307523245547),
1057          };
1058          static const T Q[] = {
1059             BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
1060             BOOST_MATH_BIG_CONSTANT(T, 113, 3.49040448075464744191022350947892036),
1061             BOOST_MATH_BIG_CONSTANT(T, 113, 34.3563592467165971295915749548313227),
1062             BOOST_MATH_BIG_CONSTANT(T, 113, 84.4993232033879023178285731843850461),
1063             BOOST_MATH_BIG_CONSTANT(T, 113, 376.005865281206894120659401340373818),
1064             BOOST_MATH_BIG_CONSTANT(T, 113, 629.95369438888946233003926191755125),
1065             BOOST_MATH_BIG_CONSTANT(T, 113, 1568.35771983533158591604513304269098),
1066             BOOST_MATH_BIG_CONSTANT(T, 113, 1646.02452040831961063640827116581021),
1067             BOOST_MATH_BIG_CONSTANT(T, 113, 2299.96860633240298708910425594484895),
1068             BOOST_MATH_BIG_CONSTANT(T, 113, 1222.73204392037452750381340219906374),
1069             BOOST_MATH_BIG_CONSTANT(T, 113, 799.359797306084372350264298361110448),
1070             BOOST_MATH_BIG_CONSTANT(T, 113, 72.7415265778588087243442792401576737),
1071          };
1072          result = Y + tools::evaluate_polynomial(P, T(1 / z)) / tools::evaluate_polynomial(Q, T(1 / z));
1073          T hi, lo;
1074          int expon;
1075          hi = floor(ldexp(frexp(z, &expon), 56));
1076          hi = ldexp(hi, expon - 56);
1077          lo = z - hi;
1078          T sq = z * z;
1079          T err_sqr = ((hi * hi - sq) + 2 * hi * lo) + lo * lo;
1080          result *= exp(-sq) * exp(-err_sqr) / z;
1081       }
1082    }
1083    else
1084    {
1085       //
1086       // Any value of z larger than 110 will underflow to zero:
1087       //
1088       result = 0;
1089       invert = !invert;
1090    }
1091 
1092    if(invert)
1093    {
1094       result = 1 - result;
1095    }
1096 
1097    return result;
1098 } // template <class T, class Lanczos>T erf_imp(T z, bool invert, const Lanczos& l, const boost::integral_constant<int, 113>& t)
1099 
1100 template <class T, class Policy, class tag>
1101 struct erf_initializer
1102 {
1103    struct init
1104    {
initboost::math::detail::erf_initializer::init1105       init()
1106       {
1107          do_init(tag());
1108       }
do_initboost::math::detail::erf_initializer::init1109       static void do_init(const boost::integral_constant<int, 0>&){}
do_initboost::math::detail::erf_initializer::init1110       static void do_init(const boost::integral_constant<int, 53>&)
1111       {
1112          boost::math::erf(static_cast<T>(1e-12), Policy());
1113          boost::math::erf(static_cast<T>(0.25), Policy());
1114          boost::math::erf(static_cast<T>(1.25), Policy());
1115          boost::math::erf(static_cast<T>(2.25), Policy());
1116          boost::math::erf(static_cast<T>(4.25), Policy());
1117          boost::math::erf(static_cast<T>(5.25), Policy());
1118       }
do_initboost::math::detail::erf_initializer::init1119       static void do_init(const boost::integral_constant<int, 64>&)
1120       {
1121          boost::math::erf(static_cast<T>(1e-12), Policy());
1122          boost::math::erf(static_cast<T>(0.25), Policy());
1123          boost::math::erf(static_cast<T>(1.25), Policy());
1124          boost::math::erf(static_cast<T>(2.25), Policy());
1125          boost::math::erf(static_cast<T>(4.25), Policy());
1126          boost::math::erf(static_cast<T>(5.25), Policy());
1127       }
do_initboost::math::detail::erf_initializer::init1128       static void do_init(const boost::integral_constant<int, 113>&)
1129       {
1130          boost::math::erf(static_cast<T>(1e-22), Policy());
1131          boost::math::erf(static_cast<T>(0.25), Policy());
1132          boost::math::erf(static_cast<T>(1.25), Policy());
1133          boost::math::erf(static_cast<T>(2.125), Policy());
1134          boost::math::erf(static_cast<T>(2.75), Policy());
1135          boost::math::erf(static_cast<T>(3.25), Policy());
1136          boost::math::erf(static_cast<T>(5.25), Policy());
1137          boost::math::erf(static_cast<T>(7.25), Policy());
1138          boost::math::erf(static_cast<T>(11.25), Policy());
1139          boost::math::erf(static_cast<T>(12.5), Policy());
1140       }
force_instantiateboost::math::detail::erf_initializer::init1141       void force_instantiate()const{}
1142    };
1143    static const init initializer;
force_instantiateboost::math::detail::erf_initializer1144    static void force_instantiate()
1145    {
1146       initializer.force_instantiate();
1147    }
1148 };
1149 
1150 template <class T, class Policy, class tag>
1151 const typename erf_initializer<T, Policy, tag>::init erf_initializer<T, Policy, tag>::initializer;
1152 
1153 } // namespace detail
1154 
1155 template <class T, class Policy>
erf(T z,const Policy &)1156 inline typename tools::promote_args<T>::type erf(T z, const Policy& /* pol */)
1157 {
1158    typedef typename tools::promote_args<T>::type result_type;
1159    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1160    typedef typename policies::precision<result_type, Policy>::type precision_type;
1161    typedef typename policies::normalise<
1162       Policy,
1163       policies::promote_float<false>,
1164       policies::promote_double<false>,
1165       policies::discrete_quantile<>,
1166       policies::assert_undefined<> >::type forwarding_policy;
1167 
1168    BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name());
1169    BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name());
1170    BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name());
1171 
1172    typedef boost::integral_constant<int,
1173       precision_type::value <= 0 ? 0 :
1174       precision_type::value <= 53 ? 53 :
1175       precision_type::value <= 64 ? 64 :
1176       precision_type::value <= 113 ? 113 : 0
1177    > tag_type;
1178 
1179    BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name());
1180 
1181    detail::erf_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); // Force constants to be initialized before main
1182 
1183    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp(
1184       static_cast<value_type>(z),
1185       false,
1186       forwarding_policy(),
1187       tag_type()), "boost::math::erf<%1%>(%1%, %1%)");
1188 }
1189 
1190 template <class T, class Policy>
erfc(T z,const Policy &)1191 inline typename tools::promote_args<T>::type erfc(T z, const Policy& /* pol */)
1192 {
1193    typedef typename tools::promote_args<T>::type result_type;
1194    typedef typename policies::evaluation<result_type, Policy>::type value_type;
1195    typedef typename policies::precision<result_type, Policy>::type precision_type;
1196    typedef typename policies::normalise<
1197       Policy,
1198       policies::promote_float<false>,
1199       policies::promote_double<false>,
1200       policies::discrete_quantile<>,
1201       policies::assert_undefined<> >::type forwarding_policy;
1202 
1203    BOOST_MATH_INSTRUMENT_CODE("result_type = " << typeid(result_type).name());
1204    BOOST_MATH_INSTRUMENT_CODE("value_type = " << typeid(value_type).name());
1205    BOOST_MATH_INSTRUMENT_CODE("precision_type = " << typeid(precision_type).name());
1206 
1207    typedef boost::integral_constant<int,
1208       precision_type::value <= 0 ? 0 :
1209       precision_type::value <= 53 ? 53 :
1210       precision_type::value <= 64 ? 64 :
1211       precision_type::value <= 113 ? 113 : 0
1212    > tag_type;
1213 
1214    BOOST_MATH_INSTRUMENT_CODE("tag_type = " << typeid(tag_type).name());
1215 
1216    detail::erf_initializer<value_type, forwarding_policy, tag_type>::force_instantiate(); // Force constants to be initialized before main
1217 
1218    return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::erf_imp(
1219       static_cast<value_type>(z),
1220       true,
1221       forwarding_policy(),
1222       tag_type()), "boost::math::erfc<%1%>(%1%, %1%)");
1223 }
1224 
1225 template <class T>
erf(T z)1226 inline typename tools::promote_args<T>::type erf(T z)
1227 {
1228    return boost::math::erf(z, policies::policy<>());
1229 }
1230 
1231 template <class T>
erfc(T z)1232 inline typename tools::promote_args<T>::type erfc(T z)
1233 {
1234    return boost::math::erfc(z, policies::policy<>());
1235 }
1236 
1237 } // namespace math
1238 } // namespace boost
1239 
1240 #include <boost/math/special_functions/detail/erf_inv.hpp>
1241 
1242 #endif // BOOST_MATH_SPECIAL_ERF_HPP
1243 
1244 
1245 
1246 
1247