• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 //  (C) Copyright John Maddock 2006.
3 //  Use, modification and distribution are subject to the
4 //  Boost Software License, Version 1.0. (See accompanying file
5 //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 
7 #ifndef BOOST_MATH_SPECIAL_LEGENDRE_HPP
8 #define BOOST_MATH_SPECIAL_LEGENDRE_HPP
9 
10 #ifdef _MSC_VER
11 #pragma once
12 #endif
13 
14 #include <utility>
15 #include <vector>
16 #include <boost/math/special_functions/math_fwd.hpp>
17 #include <boost/math/special_functions/factorials.hpp>
18 #include <boost/math/tools/roots.hpp>
19 #include <boost/math/tools/config.hpp>
20 #include <boost/math/tools/cxx03_warn.hpp>
21 
22 namespace boost{
23 namespace math{
24 
25 // Recurrence relation for legendre P and Q polynomials:
26 template <class T1, class T2, class T3>
27 inline typename tools::promote_args<T1, T2, T3>::type
legendre_next(unsigned l,T1 x,T2 Pl,T3 Plm1)28    legendre_next(unsigned l, T1 x, T2 Pl, T3 Plm1)
29 {
30    typedef typename tools::promote_args<T1, T2, T3>::type result_type;
31    return ((2 * l + 1) * result_type(x) * result_type(Pl) - l * result_type(Plm1)) / (l + 1);
32 }
33 
34 namespace detail{
35 
36 // Implement Legendre P and Q polynomials via recurrence:
37 template <class T, class Policy>
legendre_imp(unsigned l,T x,const Policy & pol,bool second=false)38 T legendre_imp(unsigned l, T x, const Policy& pol, bool second = false)
39 {
40    static const char* function = "boost::math::legrendre_p<%1%>(unsigned, %1%)";
41    // Error handling:
42    if((x < -1) || (x > 1))
43       return policies::raise_domain_error<T>(
44          function,
45          "The Legendre Polynomial is defined for"
46          " -1 <= x <= 1, but got x = %1%.", x, pol);
47 
48    T p0, p1;
49    if(second)
50    {
51       // A solution of the second kind (Q):
52       p0 = (boost::math::log1p(x, pol) - boost::math::log1p(-x, pol)) / 2;
53       p1 = x * p0 - 1;
54    }
55    else
56    {
57       // A solution of the first kind (P):
58       p0 = 1;
59       p1 = x;
60    }
61    if(l == 0)
62       return p0;
63 
64    unsigned n = 1;
65 
66    while(n < l)
67    {
68       std::swap(p0, p1);
69       p1 = boost::math::legendre_next(n, x, p0, p1);
70       ++n;
71    }
72    return p1;
73 }
74 
75 template <class T, class Policy>
legendre_p_prime_imp(unsigned l,T x,const Policy & pol,T * Pn=0)76 T legendre_p_prime_imp(unsigned l, T x, const Policy& pol, T* Pn
77 #ifdef BOOST_NO_CXX11_NULLPTR
78    = 0
79 #else
80    = nullptr
81 #endif
82 )
83 {
84    static const char* function = "boost::math::legrendre_p_prime<%1%>(unsigned, %1%)";
85    // Error handling:
86    if ((x < -1) || (x > 1))
87       return policies::raise_domain_error<T>(
88          function,
89          "The Legendre Polynomial is defined for"
90          " -1 <= x <= 1, but got x = %1%.", x, pol);
91 
92    if (l == 0)
93     {
94         if (Pn)
95         {
96            *Pn = 1;
97         }
98         return 0;
99     }
100     T p0 = 1;
101     T p1 = x;
102     T p_prime;
103     bool odd = l & 1;
104     // If the order is odd, we sum all the even polynomials:
105     if (odd)
106     {
107         p_prime = p0;
108     }
109     else // Otherwise we sum the odd polynomials * (2n+1)
110     {
111         p_prime = 3*p1;
112     }
113 
114     unsigned n = 1;
115     while(n < l - 1)
116     {
117        std::swap(p0, p1);
118        p1 = boost::math::legendre_next(n, x, p0, p1);
119        ++n;
120        if (odd)
121        {
122           p_prime += (2*n+1)*p1;
123           odd = false;
124        }
125        else
126        {
127            odd = true;
128        }
129     }
130     // This allows us to evaluate the derivative and the function for the same cost.
131     if (Pn)
132     {
133         std::swap(p0, p1);
134         *Pn = boost::math::legendre_next(n, x, p0, p1);
135     }
136     return p_prime;
137 }
138 
139 template <class T, class Policy>
140 struct legendre_p_zero_func
141 {
142    int n;
143    const Policy& pol;
144 
legendre_p_zero_funcboost::math::detail::legendre_p_zero_func145    legendre_p_zero_func(int n_, const Policy& p) : n(n_), pol(p) {}
146 
operator ()boost::math::detail::legendre_p_zero_func147    std::pair<T, T> operator()(T x) const
148    {
149       T Pn;
150       T Pn_prime = detail::legendre_p_prime_imp(n, x, pol, &Pn);
151       return std::pair<T, T>(Pn, Pn_prime);
152    };
153 };
154 
155 template <class T, class Policy>
legendre_p_zeros_imp(int n,const Policy & pol)156 std::vector<T> legendre_p_zeros_imp(int n, const Policy& pol)
157 {
158     using std::cos;
159     using std::sin;
160     using std::ceil;
161     using std::sqrt;
162     using boost::math::constants::pi;
163     using boost::math::constants::half;
164     using boost::math::tools::newton_raphson_iterate;
165 
166     BOOST_ASSERT(n >= 0);
167     std::vector<T> zeros;
168     if (n == 0)
169     {
170         // There are no zeros of P_0(x) = 1.
171         return zeros;
172     }
173     int k;
174     if (n & 1)
175     {
176         zeros.resize((n-1)/2 + 1, std::numeric_limits<T>::quiet_NaN());
177         zeros[0] = 0;
178         k = 1;
179     }
180     else
181     {
182         zeros.resize(n/2, std::numeric_limits<T>::quiet_NaN());
183         k = 0;
184     }
185     T half_n = ceil(n*half<T>());
186 
187     while (k < (int)zeros.size())
188     {
189         // Bracket the root: Szego:
190         // Gabriel Szego, Inequalities for the Zeros of Legendre Polynomials and Related Functions, Transactions of the American Mathematical Society, Vol. 39, No. 1 (1936)
191         T theta_nk =  ((half_n - half<T>()*half<T>() - static_cast<T>(k))*pi<T>())/(static_cast<T>(n)+half<T>());
192         T lower_bound = cos( (half_n - static_cast<T>(k))*pi<T>()/static_cast<T>(n + 1));
193         T cos_nk = cos(theta_nk);
194         T upper_bound = cos_nk;
195         // First guess follows from:
196         //  F. G. Tricomi, Sugli zeri dei polinomi sferici ed ultrasferici, Ann. Mat. Pura Appl., 31 (1950), pp. 93-97;
197         T inv_n_sq = 1/static_cast<T>(n*n);
198         T sin_nk = sin(theta_nk);
199         T x_nk_guess = (1 - inv_n_sq/static_cast<T>(8) + inv_n_sq /static_cast<T>(8*n) - (inv_n_sq*inv_n_sq/384)*(39  - 28 / (sin_nk*sin_nk) ) )*cos_nk;
200 
201         boost::uintmax_t number_of_iterations = policies::get_max_root_iterations<Policy>();
202 
203         legendre_p_zero_func<T, Policy> f(n, pol);
204 
205         const T x_nk = newton_raphson_iterate(f, x_nk_guess,
206                                               lower_bound, upper_bound,
207                                               policies::digits<T, Policy>(),
208                                               number_of_iterations);
209 
210         BOOST_ASSERT(lower_bound < x_nk);
211         BOOST_ASSERT(upper_bound > x_nk);
212         zeros[k] = x_nk;
213         ++k;
214     }
215     return zeros;
216 }
217 
218 } // namespace detail
219 
220 template <class T, class Policy>
221 inline typename boost::enable_if_c<policies::is_policy<Policy>::value, typename tools::promote_args<T>::type>::type
legendre_p(int l,T x,const Policy & pol)222    legendre_p(int l, T x, const Policy& pol)
223 {
224    typedef typename tools::promote_args<T>::type result_type;
225    typedef typename policies::evaluation<result_type, Policy>::type value_type;
226    static const char* function = "boost::math::legendre_p<%1%>(unsigned, %1%)";
227    if(l < 0)
228       return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(-l-1, static_cast<value_type>(x), pol, false), function);
229    return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(l, static_cast<value_type>(x), pol, false), function);
230 }
231 
232 
233 template <class T, class Policy>
234 inline typename boost::enable_if_c<policies::is_policy<Policy>::value, typename tools::promote_args<T>::type>::type
legendre_p_prime(int l,T x,const Policy & pol)235    legendre_p_prime(int l, T x, const Policy& pol)
236 {
237    typedef typename tools::promote_args<T>::type result_type;
238    typedef typename policies::evaluation<result_type, Policy>::type value_type;
239    static const char* function = "boost::math::legendre_p_prime<%1%>(unsigned, %1%)";
240    if(l < 0)
241       return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_p_prime_imp(-l-1, static_cast<value_type>(x), pol), function);
242    return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_p_prime_imp(l, static_cast<value_type>(x), pol), function);
243 }
244 
245 template <class T>
246 inline typename tools::promote_args<T>::type
legendre_p(int l,T x)247    legendre_p(int l, T x)
248 {
249    return boost::math::legendre_p(l, x, policies::policy<>());
250 }
251 
252 template <class T>
253 inline typename tools::promote_args<T>::type
legendre_p_prime(int l,T x)254    legendre_p_prime(int l, T x)
255 {
256    return boost::math::legendre_p_prime(l, x, policies::policy<>());
257 }
258 
259 template <class T, class Policy>
legendre_p_zeros(int l,const Policy & pol)260 inline std::vector<T> legendre_p_zeros(int l, const Policy& pol)
261 {
262     if(l < 0)
263         return detail::legendre_p_zeros_imp<T>(-l-1, pol);
264 
265     return detail::legendre_p_zeros_imp<T>(l, pol);
266 }
267 
268 
269 template <class T>
legendre_p_zeros(int l)270 inline std::vector<T> legendre_p_zeros(int l)
271 {
272    return boost::math::legendre_p_zeros<T>(l, policies::policy<>());
273 }
274 
275 template <class T, class Policy>
276 inline typename boost::enable_if_c<policies::is_policy<Policy>::value, typename tools::promote_args<T>::type>::type
legendre_q(unsigned l,T x,const Policy & pol)277    legendre_q(unsigned l, T x, const Policy& pol)
278 {
279    typedef typename tools::promote_args<T>::type result_type;
280    typedef typename policies::evaluation<result_type, Policy>::type value_type;
281    return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_imp(l, static_cast<value_type>(x), pol, true), "boost::math::legendre_q<%1%>(unsigned, %1%)");
282 }
283 
284 template <class T>
285 inline typename tools::promote_args<T>::type
legendre_q(unsigned l,T x)286    legendre_q(unsigned l, T x)
287 {
288    return boost::math::legendre_q(l, x, policies::policy<>());
289 }
290 
291 // Recurrence for associated polynomials:
292 template <class T1, class T2, class T3>
293 inline typename tools::promote_args<T1, T2, T3>::type
legendre_next(unsigned l,unsigned m,T1 x,T2 Pl,T3 Plm1)294    legendre_next(unsigned l, unsigned m, T1 x, T2 Pl, T3 Plm1)
295 {
296    typedef typename tools::promote_args<T1, T2, T3>::type result_type;
297    return ((2 * l + 1) * result_type(x) * result_type(Pl) - (l + m) * result_type(Plm1)) / (l + 1 - m);
298 }
299 
300 namespace detail{
301 // Legendre P associated polynomial:
302 template <class T, class Policy>
legendre_p_imp(int l,int m,T x,T sin_theta_power,const Policy & pol)303 T legendre_p_imp(int l, int m, T x, T sin_theta_power, const Policy& pol)
304 {
305    // Error handling:
306    if((x < -1) || (x > 1))
307       return policies::raise_domain_error<T>(
308       "boost::math::legendre_p<%1%>(int, int, %1%)",
309          "The associated Legendre Polynomial is defined for"
310          " -1 <= x <= 1, but got x = %1%.", x, pol);
311    // Handle negative arguments first:
312    if(l < 0)
313       return legendre_p_imp(-l-1, m, x, sin_theta_power, pol);
314    if(m < 0)
315    {
316       int sign = (m&1) ? -1 : 1;
317       return sign * boost::math::tgamma_ratio(static_cast<T>(l+m+1), static_cast<T>(l+1-m), pol) * legendre_p_imp(l, -m, x, sin_theta_power, pol);
318    }
319    // Special cases:
320    if(m > l)
321       return 0;
322    if(m == 0)
323       return boost::math::legendre_p(l, x, pol);
324 
325    T p0 = boost::math::double_factorial<T>(2 * m - 1, pol) * sin_theta_power;
326 
327    if(m&1)
328       p0 *= -1;
329    if(m == l)
330       return p0;
331 
332    T p1 = x * (2 * m + 1) * p0;
333 
334    int n = m + 1;
335 
336    while(n < l)
337    {
338       std::swap(p0, p1);
339       p1 = boost::math::legendre_next(n, m, x, p0, p1);
340       ++n;
341    }
342    return p1;
343 }
344 
345 template <class T, class Policy>
legendre_p_imp(int l,int m,T x,const Policy & pol)346 inline T legendre_p_imp(int l, int m, T x, const Policy& pol)
347 {
348    BOOST_MATH_STD_USING
349    // TODO: we really could use that mythical "pow1p" function here:
350    return legendre_p_imp(l, m, x, static_cast<T>(pow(1 - x*x, T(abs(m))/2)), pol);
351 }
352 
353 }
354 
355 template <class T, class Policy>
356 inline typename tools::promote_args<T>::type
legendre_p(int l,int m,T x,const Policy & pol)357    legendre_p(int l, int m, T x, const Policy& pol)
358 {
359    typedef typename tools::promote_args<T>::type result_type;
360    typedef typename policies::evaluation<result_type, Policy>::type value_type;
361    return policies::checked_narrowing_cast<result_type, Policy>(detail::legendre_p_imp(l, m, static_cast<value_type>(x), pol), "boost::math::legendre_p<%1%>(int, int, %1%)");
362 }
363 
364 template <class T>
365 inline typename tools::promote_args<T>::type
legendre_p(int l,int m,T x)366    legendre_p(int l, int m, T x)
367 {
368    return boost::math::legendre_p(l, m, x, policies::policy<>());
369 }
370 
371 } // namespace math
372 } // namespace boost
373 
374 #endif // BOOST_MATH_SPECIAL_LEGENDRE_HPP
375