• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Chaotic systems and Lyapunov exponents</title>
5<link rel="stylesheet" href="../../../../../../../doc/src/boostbook.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Chapter 1. Boost.Numeric.Odeint">
8<link rel="up" href="../tutorial.html" title="Tutorial">
9<link rel="prev" href="solar_system.html" title="Solar system">
10<link rel="next" href="stiff_systems.html" title="Stiff systems">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../logo.jpg"></td>
15<td align="center"><a href="../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="solar_system.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../tutorial.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="stiff_systems.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="boost_numeric_odeint.tutorial.chaotic_systems_and_lyapunov_exponents"></a><a class="link" href="chaotic_systems_and_lyapunov_exponents.html" title="Chaotic systems and Lyapunov exponents">Chaotic
28      systems and Lyapunov exponents</a>
29</h3></div></div></div>
30<p>
31        In this example we present application of odeint to investigation of the
32        properties of chaotic deterministic systems. In mathematical terms chaotic
33        refers to an exponential growth of perturbations <span class="emphasis"><em>δ x</em></span>.
34        In order to observe this exponential growth one usually solves the equations
35        for the tangential dynamics which is again an ordinary differential equation.
36        These equations are linear but time dependent and can be obtained via
37      </p>
38<p>
39        <span class="emphasis"><em>d δ x / dt = J(x) δ x</em></span>
40      </p>
41<p>
42        where <span class="emphasis"><em>J</em></span> is the Jacobian of the system under consideration.
43        <span class="emphasis"><em>δ x</em></span> can also be interpreted as a perturbation of the original
44        system. In principle <span class="emphasis"><em>n</em></span> of these perturbations exist,
45        they form a hypercube and evolve in the time. The Lyapunov exponents are
46        then defined as logarithmic growth rates of the perturbations. If one Lyapunov
47        exponent is larger then zero the nearby trajectories diverge exponentially
48        hence they are chaotic. If the largest Lyapunov exponent is zero one is usually
49        faced with periodic motion. In the case of a largest Lyapunov exponent smaller
50        then zero convergence to a fixed point is expected. More information's about
51        Lyapunov exponents and nonlinear dynamical systems can be found in many textbooks,
52        see for example: E. Ott "Chaos is Dynamical Systems", Cambridge.
53      </p>
54<p>
55        To calculate the Lyapunov exponents numerically one usually solves the equations
56        of motion for <span class="emphasis"><em>n</em></span> perturbations and orthonormalizes them
57        every <span class="emphasis"><em>k</em></span> steps. The Lyapunov exponent is the average
58        of the logarithm of the stretching factor of each perturbation.
59      </p>
60<p>
61        To demonstrate how one can use odeint to determine the Lyapunov exponents
62        we choose the Lorenz system. It is one of the most studied dynamical systems
63        in the nonlinear dynamics community. For the standard parameters it possesses
64        a strange attractor with non-integer dimension. The Lyapunov exponents take
65        values of approximately 0.9, 0 and -12.
66      </p>
67<p>
68        The implementation of the Lorenz system is
69      </p>
70<p>
71</p>
72<pre class="programlisting"><span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">sigma</span> <span class="special">=</span> <span class="number">10.0</span><span class="special">;</span>
73<span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">R</span> <span class="special">=</span> <span class="number">28.0</span><span class="special">;</span>
74<span class="keyword">const</span> <span class="keyword">double</span> <span class="identifier">b</span> <span class="special">=</span> <span class="number">8.0</span> <span class="special">/</span> <span class="number">3.0</span><span class="special">;</span>
75
76<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="number">3</span> <span class="special">&gt;</span> <span class="identifier">lorenz_state_type</span><span class="special">;</span>
77
78<span class="keyword">void</span> <span class="identifier">lorenz</span><span class="special">(</span> <span class="keyword">const</span> <span class="identifier">lorenz_state_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">lorenz_state_type</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span>
79<span class="special">{</span>
80    <span class="identifier">dxdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">sigma</span> <span class="special">*</span> <span class="special">(</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">);</span>
81    <span class="identifier">dxdt</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">R</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
82    <span class="identifier">dxdt</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">b</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">+</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
83<span class="special">}</span>
84</pre>
85<p>
86        We need also to integrate the set of the perturbations. This is done in parallel
87        to the original system, hence within one system function. Of course, we want
88        to use the above definition of the Lorenz system, hence the definition of
89        the system function including the Lorenz system itself and the perturbation
90        could look like:
91      </p>
92<p>
93</p>
94<pre class="programlisting"><span class="keyword">const</span> <span class="identifier">size_t</span> <span class="identifier">n</span> <span class="special">=</span> <span class="number">3</span><span class="special">;</span>
95<span class="keyword">const</span> <span class="identifier">size_t</span> <span class="identifier">num_of_lyap</span> <span class="special">=</span> <span class="number">3</span><span class="special">;</span>
96<span class="keyword">const</span> <span class="identifier">size_t</span> <span class="identifier">N</span> <span class="special">=</span> <span class="identifier">n</span> <span class="special">+</span> <span class="identifier">n</span><span class="special">*</span><span class="identifier">num_of_lyap</span><span class="special">;</span>
97
98<span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">tr1</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="identifier">N</span> <span class="special">&gt;</span> <span class="identifier">state_type</span><span class="special">;</span>
99<span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">tr1</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">,</span> <span class="identifier">num_of_lyap</span> <span class="special">&gt;</span> <span class="identifier">lyap_type</span><span class="special">;</span>
100
101<span class="keyword">void</span> <span class="identifier">lorenz_with_lyap</span><span class="special">(</span> <span class="keyword">const</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span>
102<span class="special">{</span>
103    <span class="identifier">lorenz</span><span class="special">(</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">dxdt</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">);</span>
104
105    <span class="keyword">for</span><span class="special">(</span> <span class="identifier">size_t</span> <span class="identifier">l</span><span class="special">=</span><span class="number">0</span> <span class="special">;</span> <span class="identifier">l</span><span class="special">&lt;</span><span class="identifier">num_of_lyap</span> <span class="special">;</span> <span class="special">++</span><span class="identifier">l</span> <span class="special">)</span>
106    <span class="special">{</span>
107        <span class="keyword">const</span> <span class="keyword">double</span> <span class="special">*</span><span class="identifier">pert</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">begin</span><span class="special">()</span> <span class="special">+</span> <span class="number">3</span> <span class="special">+</span> <span class="identifier">l</span> <span class="special">*</span> <span class="number">3</span><span class="special">;</span>
108        <span class="keyword">double</span> <span class="special">*</span><span class="identifier">dpert</span> <span class="special">=</span> <span class="identifier">dxdt</span><span class="special">.</span><span class="identifier">begin</span><span class="special">()</span> <span class="special">+</span> <span class="number">3</span> <span class="special">+</span> <span class="identifier">l</span> <span class="special">*</span> <span class="number">3</span><span class="special">;</span>
109        <span class="identifier">dpert</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span> <span class="identifier">sigma</span> <span class="special">*</span> <span class="identifier">pert</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">+</span> <span class="number">10.0</span> <span class="special">*</span> <span class="identifier">pert</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
110        <span class="identifier">dpert</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="special">(</span> <span class="identifier">R</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">)</span> <span class="special">*</span> <span class="identifier">pert</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">pert</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">*</span> <span class="identifier">pert</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
111        <span class="identifier">dpert</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">*</span> <span class="identifier">pert</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">+</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">*</span> <span class="identifier">pert</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">b</span> <span class="special">*</span> <span class="identifier">pert</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
112    <span class="special">}</span>
113<span class="special">}</span>
114</pre>
115<p>
116      </p>
117<p>
118        The perturbations are stored linearly in the <code class="computeroutput"><span class="identifier">state_type</span></code>
119        behind the state of the Lorenz system. The problem of lorenz() and lorenz_with_lyap() having different
120        state types may be solved putting the Lorenz system inside a functor with
121        templatized arguments:
122      </p>
123<p>
124</p>
125<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">lorenz</span>
126<span class="special">{</span>
127    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">StateIn</span> <span class="special">,</span> <span class="keyword">class</span> <span class="identifier">StateOut</span> <span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Value</span> <span class="special">&gt;</span>
128    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">StateIn</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">StateOut</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="identifier">Value</span> <span class="identifier">t</span> <span class="special">)</span>
129    <span class="special">{</span>
130        <span class="identifier">dxdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">sigma</span> <span class="special">*</span> <span class="special">(</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">);</span>
131        <span class="identifier">dxdt</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">R</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
132        <span class="identifier">dxdt</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">b</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">+</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
133    <span class="special">}</span>
134<span class="special">};</span>
135
136<span class="keyword">void</span> <span class="identifier">lorenz_with_lyap</span><span class="special">(</span> <span class="keyword">const</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span>
137<span class="special">{</span>
138    <span class="identifier">lorenz</span><span class="special">()(</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">dxdt</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">);</span>
139    <span class="special">...</span>
140<span class="special">}</span>
141</pre>
142<p>
143        This works fine and <code class="computeroutput"><span class="identifier">lorenz_with_lyap</span></code>
144        can be used for example via
145</p>
146<pre class="programlisting"><span class="identifier">state_type</span> <span class="identifier">x</span><span class="special">;</span>
147<span class="comment">// initialize x..</span>
148
149<span class="identifier">explicit_rk4</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;</span> <span class="identifier">rk4</span><span class="special">;</span>
150<span class="identifier">integrate_n_steps</span><span class="special">(</span> <span class="identifier">rk4</span> <span class="special">,</span> <span class="identifier">lorenz_with_lyap</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span> <span class="number">1000</span> <span class="special">);</span>
151</pre>
152<p>
153        This code snippet performs 1000 steps with constant step size 0.01.
154      </p>
155<p>
156        A real world use case for the calculation of the Lyapunov exponents of Lorenz
157        system would always include some transient steps, just to ensure that the
158        current state lies on the attractor, hence it would look like
159      </p>
160<p>
161</p>
162<pre class="programlisting"><span class="identifier">state_type</span> <span class="identifier">x</span><span class="special">;</span>
163<span class="comment">// initialize x</span>
164<span class="identifier">explicit_rk4</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">&gt;</span> <span class="identifier">rk4</span><span class="special">;</span>
165<span class="identifier">integrate_n_steps</span><span class="special">(</span> <span class="identifier">rk4</span> <span class="special">,</span> <span class="identifier">lorenz</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span> <span class="number">1000</span> <span class="special">);</span>
166</pre>
167<p>
168        The problem is now, that <code class="computeroutput"><span class="identifier">x</span></code>
169        is the full state containing also the perturbations and <code class="computeroutput"><span class="identifier">integrate_n_steps</span></code>
170        does not know that it should only use 3 elements. In detail, odeint and its
171        steppers determine the length of the system under consideration by determining
172        the length of the state. In the classical solvers, e.g. from Numerical Recipes,
173        the problem was solved by pointer to the state and an appropriate length,
174        something similar to
175      </p>
176<p>
177</p>
178<pre class="programlisting"><span class="keyword">void</span> <span class="identifier">lorenz</span><span class="special">(</span> <span class="keyword">double</span><span class="special">*</span> <span class="identifier">x</span> <span class="special">,</span> <span class="keyword">double</span> <span class="special">*</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span><span class="special">,</span> <span class="keyword">void</span><span class="special">*</span> <span class="identifier">params</span> <span class="special">)</span>
179<span class="special">{</span>
180    <span class="special">...</span>
181<span class="special">}</span>
182
183<span class="keyword">int</span> <span class="identifier">system_length</span> <span class="special">=</span> <span class="number">3</span><span class="special">;</span>
184<span class="identifier">rk4</span><span class="special">(</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">system_length</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">,</span> <span class="identifier">lorenz</span> <span class="special">);</span>
185</pre>
186<p>
187      </p>
188<p>
189        But odeint supports a similar and much more sophisticated concept: <a href="http://www.boost.org/doc/libs/release/libs/range/" target="_top">Boost.Range</a>.
190        To make the steppers and the system ready to work with <a href="http://www.boost.org/doc/libs/release/libs/range/" target="_top">Boost.Range</a>
191        the system has to be changed:
192      </p>
193<p>
194</p>
195<pre class="programlisting"><span class="keyword">struct</span> <span class="identifier">lorenz</span>
196<span class="special">{</span>
197    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">State</span> <span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Deriv</span> <span class="special">&gt;</span>
198    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">x_</span> <span class="special">,</span> <span class="identifier">Deriv</span> <span class="special">&amp;</span><span class="identifier">dxdt_</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span> <span class="keyword">const</span>
199    <span class="special">{</span>
200        <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">range_iterator</span><span class="special">&lt;</span> <span class="keyword">const</span> <span class="identifier">State</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">x</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">begin</span><span class="special">(</span> <span class="identifier">x_</span> <span class="special">);</span>
201        <span class="keyword">typename</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">range_iterator</span><span class="special">&lt;</span> <span class="identifier">Deriv</span> <span class="special">&gt;::</span><span class="identifier">type</span> <span class="identifier">dxdt</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">begin</span><span class="special">(</span> <span class="identifier">dxdt_</span> <span class="special">);</span>
202
203        <span class="identifier">dxdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">sigma</span> <span class="special">*</span> <span class="special">(</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">);</span>
204        <span class="identifier">dxdt</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">R</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">-</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">2</span><span class="special">];</span>
205        <span class="identifier">dxdt</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="identifier">b</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">+</span> <span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">];</span>
206    <span class="special">}</span>
207<span class="special">};</span>
208</pre>
209<p>
210      </p>
211<p>
212        This is in principle all. Now, we only have to call <code class="computeroutput"><span class="identifier">integrate_n_steps</span></code>
213        with a range including only the first 3 components of <span class="emphasis"><em>x</em></span>:
214      </p>
215<p>
216</p>
217<pre class="programlisting"><span class="comment">// explicitly choose range_algebra to override default choice of array_algebra</span>
218<span class="identifier">runge_kutta4</span><span class="special">&lt;</span> <span class="identifier">state_type</span> <span class="special">,</span> <span class="keyword">double</span> <span class="special">,</span> <span class="identifier">state_type</span> <span class="special">,</span> <span class="keyword">double</span> <span class="special">,</span> <span class="identifier">range_algebra</span> <span class="special">&gt;</span> <span class="identifier">rk4</span><span class="special">;</span>
219
220<span class="comment">// perform 10000 transient steps</span>
221<span class="identifier">integrate_n_steps</span><span class="special">(</span> <span class="identifier">rk4</span> <span class="special">,</span> <span class="identifier">lorenz</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_pair</span><span class="special">(</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">begin</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">begin</span><span class="special">()</span> <span class="special">+</span> <span class="identifier">n</span> <span class="special">)</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">,</span> <span class="number">10000</span> <span class="special">);</span>
222</pre>
223<p>
224      </p>
225<div class="note"><table border="0" summary="Note">
226<tr>
227<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../doc/src/images/note.png"></td>
228<th align="left">Note</th>
229</tr>
230<tr><td align="left" valign="top"><p>
231          Note that when using <a href="http://www.boost.org/doc/libs/release/libs/range/" target="_top">Boost.Range</a>,
232          we have to explicitly configure the stepper to use the <code class="computeroutput"><span class="identifier">range_algebra</span></code>
233          as otherwise odeint would automatically chose the <code class="computeroutput"><span class="identifier">array_algebra</span></code>,
234          which is incompatible with the usage of <a href="http://www.boost.org/doc/libs/release/libs/range/" target="_top">Boost.Range</a>,
235          because the original state_type is an <code class="computeroutput"><span class="identifier">array</span></code>.
236        </p></td></tr>
237</table></div>
238<p>
239        Having integrated a sufficient number of transients steps we are now able
240        to calculate the Lyapunov exponents:
241      </p>
242<div class="orderedlist"><ol class="orderedlist" type="1">
243<li class="listitem">
244            Initialize the perturbations. They are stored linearly behind the state
245            of the Lorenz system. The perturbations are initialized such that <span class="emphasis"><em>p
246            <sub>​ij</sub> = δ <sub>​ij</sub></em></span>, where <span class="emphasis"><em>p <sub>​ij</sub></em></span> is the <span class="emphasis"><em>j</em></span>-component
247            of the <span class="emphasis"><em>i</em></span>.-th perturbation and <span class="emphasis"><em>δ <sub>​ij</sub></em></span>
248            is the Kronecker symbol.
249          </li>
250<li class="listitem">
251            Integrate 100 steps of the full system with perturbations
252          </li>
253<li class="listitem">
254            Orthonormalize the perturbation using Gram-Schmidt orthonormalization
255            algorithm.
256          </li>
257<li class="listitem">
258            Repeat step 2 and 3. Every 10000 steps write the current Lyapunov exponent.
259          </li>
260</ol></div>
261<p>
262</p>
263<pre class="programlisting"><span class="identifier">fill</span><span class="special">(</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">begin</span><span class="special">()+</span><span class="identifier">n</span> <span class="special">,</span> <span class="identifier">x</span><span class="special">.</span><span class="identifier">end</span><span class="special">()</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">);</span>
264<span class="keyword">for</span><span class="special">(</span> <span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">=</span><span class="number">0</span> <span class="special">;</span> <span class="identifier">i</span><span class="special">&lt;</span><span class="identifier">num_of_lyap</span> <span class="special">;</span> <span class="special">++</span><span class="identifier">i</span> <span class="special">)</span> <span class="identifier">x</span><span class="special">[</span><span class="identifier">n</span><span class="special">+</span><span class="identifier">n</span><span class="special">*</span><span class="identifier">i</span><span class="special">+</span><span class="identifier">i</span><span class="special">]</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span>
265<span class="identifier">fill</span><span class="special">(</span> <span class="identifier">lyap</span><span class="special">.</span><span class="identifier">begin</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">lyap</span><span class="special">.</span><span class="identifier">end</span><span class="special">()</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">);</span>
266
267<span class="keyword">double</span> <span class="identifier">t</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
268<span class="identifier">size_t</span> <span class="identifier">count</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
269<span class="keyword">while</span><span class="special">(</span> <span class="keyword">true</span> <span class="special">)</span>
270<span class="special">{</span>
271
272    <span class="identifier">t</span> <span class="special">=</span> <span class="identifier">integrate_n_steps</span><span class="special">(</span> <span class="identifier">rk4</span> <span class="special">,</span> <span class="identifier">lorenz_with_lyap</span> <span class="special">,</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">t</span> <span class="special">,</span> <span class="identifier">dt</span> <span class="special">,</span> <span class="number">100</span> <span class="special">);</span>
273    <span class="identifier">gram_schmidt</span><span class="special">&lt;</span> <span class="identifier">num_of_lyap</span> <span class="special">&gt;(</span> <span class="identifier">x</span> <span class="special">,</span> <span class="identifier">lyap</span> <span class="special">,</span> <span class="identifier">n</span> <span class="special">);</span>
274    <span class="special">++</span><span class="identifier">count</span><span class="special">;</span>
275
276    <span class="keyword">if</span><span class="special">(</span> <span class="special">!(</span><span class="identifier">count</span> <span class="special">%</span> <span class="number">100000</span><span class="special">)</span> <span class="special">)</span>
277    <span class="special">{</span>
278        <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">t</span><span class="special">;</span>
279        <span class="keyword">for</span><span class="special">(</span> <span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">=</span><span class="number">0</span> <span class="special">;</span> <span class="identifier">i</span><span class="special">&lt;</span><span class="identifier">num_of_lyap</span> <span class="special">;</span> <span class="special">++</span><span class="identifier">i</span> <span class="special">)</span> <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"\t"</span> <span class="special">&lt;&lt;</span> <span class="identifier">lyap</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span> <span class="special">/</span> <span class="identifier">t</span> <span class="special">;</span>
280        <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">endl</span><span class="special">;</span>
281    <span class="special">}</span>
282<span class="special">}</span>
283</pre>
284<p>
285      </p>
286<p>
287        The full code can be found here: <a href="https://github.com/headmyshoulder/odeint-v2/blob/master/examples/chaotic_system.cpp" target="_top">chaotic_system.cpp</a>
288      </p>
289</div>
290<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
291<td align="left"></td>
292<td align="right"><div class="copyright-footer">Copyright © 2009-2015 Karsten Ahnert and Mario Mulansky<p>
293        Distributed under the Boost Software License, Version 1.0. (See accompanying
294        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
295      </p>
296</div></td>
297</tr></table>
298<hr>
299<div class="spirit-nav">
300<a accesskey="p" href="solar_system.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../tutorial.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="stiff_systems.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
301</div>
302</body>
303</html>
304