• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Stiff systems</title>
5<link rel="stylesheet" href="../../../../../../../doc/src/boostbook.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../index.html" title="Chapter 1. Boost.Numeric.Odeint">
8<link rel="up" href="../tutorial.html" title="Tutorial">
9<link rel="prev" href="chaotic_systems_and_lyapunov_exponents.html" title="Chaotic systems and Lyapunov exponents">
10<link rel="next" href="complex_state_types.html" title="Complex state types">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../logo.jpg"></td>
15<td align="center"><a href="../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="chaotic_systems_and_lyapunov_exponents.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../tutorial.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="complex_state_types.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h3 class="title">
27<a name="boost_numeric_odeint.tutorial.stiff_systems"></a><a class="link" href="stiff_systems.html" title="Stiff systems">Stiff systems</a>
28</h3></div></div></div>
29<p>
30        An important class of ordinary differential equations are so called stiff
31        system which are characterized by two or more time scales of different order.
32        Examples of such systems are found in chemical systems where reaction rates
33        of individual sub-reaction might differ over large ranges, for example:
34      </p>
35<p>
36        <span class="emphasis"><em>d S<sub>​1</sub> / dt = - 101 S<sub>​2</sub> - 100 S<sub>​1</sub></em></span>
37      </p>
38<p>
39        <span class="emphasis"><em>d S<sub>​2</sub> / dt = S<sub>​1</sub></em></span>
40      </p>
41<p>
42        In order to efficiently solve stiff systems numerically the Jacobian
43      </p>
44<p>
45        <span class="emphasis"><em>J = d f<sub>​i</sub> / d x<sub>​j</sub></em></span>
46      </p>
47<p>
48        is needed. Here is the definition of the above example
49      </p>
50<p>
51</p>
52<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">vector_type</span><span class="special">;</span>
53<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">matrix_type</span><span class="special">;</span>
54
55<span class="keyword">struct</span> <span class="identifier">stiff_system</span>
56<span class="special">{</span>
57    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="comment">/* t */</span> <span class="special">)</span>
58    <span class="special">{</span>
59        <span class="identifier">dxdt</span><span class="special">[</span> <span class="number">0</span> <span class="special">]</span> <span class="special">=</span> <span class="special">-</span><span class="number">101.0</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">0</span> <span class="special">]</span> <span class="special">-</span> <span class="number">100.0</span> <span class="special">*</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">1</span> <span class="special">];</span>
60        <span class="identifier">dxdt</span><span class="special">[</span> <span class="number">1</span> <span class="special">]</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">[</span> <span class="number">0</span> <span class="special">];</span>
61    <span class="special">}</span>
62<span class="special">};</span>
63
64<span class="keyword">struct</span> <span class="identifier">stiff_system_jacobi</span>
65<span class="special">{</span>
66    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span> <span class="comment">/* x */</span> <span class="special">,</span> <span class="identifier">matrix_type</span> <span class="special">&amp;</span><span class="identifier">J</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="special">&amp;</span> <span class="comment">/* t */</span> <span class="special">,</span> <span class="identifier">vector_type</span> <span class="special">&amp;</span><span class="identifier">dfdt</span> <span class="special">)</span>
67    <span class="special">{</span>
68        <span class="identifier">J</span><span class="special">(</span> <span class="number">0</span> <span class="special">,</span> <span class="number">0</span> <span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">101.0</span><span class="special">;</span>
69        <span class="identifier">J</span><span class="special">(</span> <span class="number">0</span> <span class="special">,</span> <span class="number">1</span> <span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">100.0</span><span class="special">;</span>
70        <span class="identifier">J</span><span class="special">(</span> <span class="number">1</span> <span class="special">,</span> <span class="number">0</span> <span class="special">)</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span>
71        <span class="identifier">J</span><span class="special">(</span> <span class="number">1</span> <span class="special">,</span> <span class="number">1</span> <span class="special">)</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
72        <span class="identifier">dfdt</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
73        <span class="identifier">dfdt</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="number">0.0</span><span class="special">;</span>
74    <span class="special">}</span>
75<span class="special">};</span>
76</pre>
77<p>
78      </p>
79<p>
80        The state type has to be a <code class="computeroutput"><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span></code>
81        and the matrix type must by a <code class="computeroutput"><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span></code>
82        since the stiff integrator only accepts these types. However, you might want
83        use non-stiff integrators on this system, too - we will do so later for demonstration.
84        Therefore we want to use the same function also with other state_types, realized
85        by templatizing the <code class="computeroutput"><span class="keyword">operator</span><span class="special">()</span></code>:
86      </p>
87<p>
88</p>
89<pre class="programlisting"><span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">vector_type</span><span class="special">;</span>
90<span class="keyword">typedef</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">numeric</span><span class="special">::</span><span class="identifier">ublas</span><span class="special">::</span><span class="identifier">matrix</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="identifier">matrix_type</span><span class="special">;</span>
91
92<span class="keyword">struct</span> <span class="identifier">stiff_system</span>
93<span class="special">{</span>
94    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">State</span> <span class="special">&gt;</span>
95    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">dxdt</span> <span class="special">,</span> <span class="keyword">double</span> <span class="identifier">t</span> <span class="special">)</span>
96    <span class="special">{</span>
97        <span class="special">...</span>
98    <span class="special">}</span>
99<span class="special">};</span>
100
101<span class="keyword">struct</span> <span class="identifier">stiff_system_jacobi</span>
102<span class="special">{</span>
103    <span class="keyword">template</span><span class="special">&lt;</span> <span class="keyword">class</span> <span class="identifier">State</span> <span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Matrix</span> <span class="special">&gt;</span>
104    <span class="keyword">void</span> <span class="keyword">operator</span><span class="special">()(</span> <span class="keyword">const</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">x</span> <span class="special">,</span> <span class="identifier">Matrix</span> <span class="special">&amp;</span><span class="identifier">J</span> <span class="special">,</span> <span class="keyword">const</span> <span class="keyword">double</span> <span class="special">&amp;</span><span class="identifier">t</span> <span class="special">,</span> <span class="identifier">State</span> <span class="special">&amp;</span><span class="identifier">dfdt</span> <span class="special">)</span>
105    <span class="special">{</span>
106        <span class="special">...</span>
107    <span class="special">}</span>
108<span class="special">};</span>
109</pre>
110<p>
111      </p>
112<p>
113        Now you can use <code class="computeroutput"><span class="identifier">stiff_system</span></code>
114        in combination with <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span></code> or <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">array</span></code>.
115        In the example the explicit time derivative of <span class="emphasis"><em>f(x,t)</em></span>
116        is introduced separately in the Jacobian. If <span class="emphasis"><em>df / dt = 0</em></span>
117        simply fill <code class="computeroutput"><span class="identifier">dfdt</span></code> with zeros.
118      </p>
119<p>
120        A well know solver for stiff systems is the Rosenbrock method. It has a step
121        size control and dense output facilities and can be used like all the other
122        steppers:
123      </p>
124<p>
125</p>
126<pre class="programlisting"><span class="identifier">vector_type</span> <span class="identifier">x</span><span class="special">(</span> <span class="number">2</span> <span class="special">,</span> <span class="number">1.0</span> <span class="special">);</span>
127
128<span class="identifier">size_t</span> <span class="identifier">num_of_steps</span> <span class="special">=</span> <span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">make_dense_output</span><span class="special">&lt;</span> <span class="identifier">rosenbrock4</span><span class="special">&lt;</span> <span class="keyword">double</span> <span class="special">&gt;</span> <span class="special">&gt;(</span> <span class="number">1.0e-6</span> <span class="special">,</span> <span class="number">1.0e-6</span> <span class="special">)</span> <span class="special">,</span>
129        <span class="identifier">make_pair</span><span class="special">(</span> <span class="identifier">stiff_system</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">stiff_system_jacobi</span><span class="special">()</span> <span class="special">)</span> <span class="special">,</span>
130        <span class="identifier">x</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">50.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span>
131        <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg2</span> <span class="special">&lt;&lt;</span> <span class="string">" "</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg1</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="string">"\n"</span> <span class="special">);</span>
132</pre>
133<p>
134      </p>
135<p>
136        During the integration 71 steps have been done. Comparing to a classical
137        Runge-Kutta solver this is a very good result. For example the Dormand-Prince
138        5 method with step size control and dense output yields 1531 steps.
139      </p>
140<p>
141</p>
142<pre class="programlisting"><span class="identifier">vector_type</span> <span class="identifier">x2</span><span class="special">(</span> <span class="number">2</span> <span class="special">,</span> <span class="number">1.0</span> <span class="special">);</span>
143
144<span class="identifier">size_t</span> <span class="identifier">num_of_steps2</span> <span class="special">=</span> <span class="identifier">integrate_const</span><span class="special">(</span> <span class="identifier">make_dense_output</span><span class="special">&lt;</span> <span class="identifier">runge_kutta_dopri5</span><span class="special">&lt;</span> <span class="identifier">vector_type</span> <span class="special">&gt;</span> <span class="special">&gt;(</span> <span class="number">1.0e-6</span> <span class="special">,</span> <span class="number">1.0e-6</span> <span class="special">)</span> <span class="special">,</span>
145        <span class="identifier">stiff_system</span><span class="special">()</span> <span class="special">,</span> <span class="identifier">x2</span> <span class="special">,</span> <span class="number">0.0</span> <span class="special">,</span> <span class="number">50.0</span> <span class="special">,</span> <span class="number">0.01</span> <span class="special">,</span>
146        <span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg2</span> <span class="special">&lt;&lt;</span> <span class="string">" "</span> <span class="special">&lt;&lt;</span> <span class="identifier">phoenix</span><span class="special">::</span><span class="identifier">arg_names</span><span class="special">::</span><span class="identifier">arg1</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">&lt;&lt;</span> <span class="string">"\n"</span> <span class="special">);</span>
147</pre>
148<p>
149      </p>
150<p>
151        Note, that we have used <a href="http://www.boost.org/doc/libs/release/libs/phoenix/" target="_top">Boost.Phoenix</a>,
152        a great functional programming library, to create and compose the observer.
153      </p>
154<p>
155        The full example can be found here: <a href="https://github.com/headmyshoulder/odeint-v2/blob/master/examples/stiff_system.cpp" target="_top">stiff_system.cpp</a>
156      </p>
157</div>
158<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
159<td align="left"></td>
160<td align="right"><div class="copyright-footer">Copyright © 2009-2015 Karsten Ahnert and Mario Mulansky<p>
161        Distributed under the Boost Software License, Version 1.0. (See accompanying
162        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
163      </p>
164</div></td>
165</tr></table>
166<hr>
167<div class="spirit-nav">
168<a accesskey="p" href="chaotic_systems_and_lyapunov_exponents.html"><img src="../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../tutorial.html"><img src="../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="complex_state_types.html"><img src="../../../../../../../doc/src/images/next.png" alt="Next"></a>
169</div>
170</body>
171</html>
172