• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1<html>
2<head>
3<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
4<title>Theory behind floating point comparisons</title>
5<link rel="stylesheet" href="../../../../boostbook.css" type="text/css">
6<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7<link rel="home" href="../../../../index.html" title="Boost.Test">
8<link rel="up" href="../floating_point.html" title="Floating point comparison">
9<link rel="prev" href="floating_points_comparison_impl.html" title="Tolerance-based comparisons">
10<link rel="next" href="../strings.html" title="Strings and C-strings comparison">
11</head>
12<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13<table cellpadding="2" width="100%"><tr>
14<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../../../boost.png"></td>
15<td align="center"><a href="../../../../../../../../index.html">Home</a></td>
16<td align="center"><a href="../../../../../../../../libs/libraries.htm">Libraries</a></td>
17<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19<td align="center"><a href="../../../../../../../../more/index.htm">More</a></td>
20</tr></table>
21<hr>
22<div class="spirit-nav">
23<a accesskey="p" href="floating_points_comparison_impl.html"><img src="../../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../floating_point.html"><img src="../../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../../index.html"><img src="../../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../strings.html"><img src="../../../../../../../../doc/src/images/next.png" alt="Next"></a>
24</div>
25<div class="section">
26<div class="titlepage"><div><div><h5 class="title">
27<a name="boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory"></a><a class="link" href="floating_points_comparison_theory.html" title="Theory behind floating point comparisons">Theory
28          behind floating point comparisons</a>
29</h5></div></div></div>
30<p>
31            The following is the most obvious way to compare two floating-point values
32            <code class="computeroutput"><span class="identifier">u</span></code> and <code class="computeroutput"><span class="identifier">v</span></code>
33            for being close at a given absolute tolerance <code class="computeroutput"><span class="identifier">epsilon</span></code>:
34          </p>
35<a name="equ1"></a><pre class="programlisting"><span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span> <span class="special">-</span> <span class="identifier">v</span><span class="special">)</span> <span class="special">&lt;=</span> <span class="identifier">epsilon</span><span class="special">;</span> <span class="comment">// (1)</span>
36</pre>
37<p>
38            However, in many circumstances, this is not what we want. The same absolute
39            tolerance value <code class="computeroutput"><span class="number">0.01</span></code> may
40            be too small to meaningfully compare two values of magnitude <code class="computeroutput"><span class="number">10e12</span></code> and at the same time too little to
41            meaningfully compare values of magnitude <code class="computeroutput"><span class="number">10e-12</span></code>.
42            For examples, see <a class="link" href="floating_points_comparison_theory.html#Squassabia">Squassabia</a>.
43          </p>
44<p>
45            We do not want to apply the same absolute tolerance for huge and tiny
46            numbers. Instead, we would like to scale the <code class="computeroutput"><span class="identifier">epsilon</span></code>
47            with <code class="computeroutput"><span class="identifier">u</span></code> and <code class="computeroutput"><span class="identifier">v</span></code>. The <span class="emphasis"><em>Unit Test Framework</em></span>
48            implements floating-point comparison algorithm that is based on the solution
49            presented in <a class="link" href="floating_points_comparison_theory.html#KnuthII">Knuth</a>:
50          </p>
51<a name="equ2"></a><pre class="programlisting">   <span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span> <span class="special">-</span> <span class="identifier">v</span><span class="special">)</span> <span class="special">&lt;=</span> <span class="identifier">epsilon</span> <span class="special">*</span> <span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span><span class="special">)</span>
52<span class="special">&amp;&amp;</span> <span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span> <span class="special">-</span> <span class="identifier">v</span><span class="special">)</span> <span class="special">&lt;=</span> <span class="identifier">epsilon</span> <span class="special">*</span> <span class="identifier">abs</span><span class="special">(</span><span class="identifier">v</span><span class="special">));</span> <span class="comment">// (2)</span>
53</pre>
54<p>
55            defines a <span class="emphasis"><em>very close with tolerance <code class="computeroutput"><span class="identifier">epsilon</span></code></em></span>
56            relationship between <code class="computeroutput"><span class="identifier">u</span></code>
57            and <code class="computeroutput"><span class="identifier">v</span></code>, while
58          </p>
59<a name="equ3"></a><pre class="programlisting">   <span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span> <span class="special">-</span> <span class="identifier">v</span><span class="special">)</span> <span class="special">&lt;=</span> <span class="identifier">epsilon</span> <span class="special">*</span> <span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span><span class="special">)</span>
60<span class="special">||</span> <span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span> <span class="special">-</span> <span class="identifier">v</span><span class="special">)</span> <span class="special">&lt;=</span> <span class="identifier">epsilon</span> <span class="special">*</span> <span class="identifier">abs</span><span class="special">(</span><span class="identifier">v</span><span class="special">);</span> <span class="comment">// (3)</span>
61</pre>
62<p>
63            defines a <span class="emphasis"><em>close enough with tolerance <code class="computeroutput"><span class="identifier">epsilon</span></code></em></span>
64            relationship between <code class="computeroutput"><span class="identifier">u</span></code>
65            and <code class="computeroutput"><span class="identifier">v</span></code>.
66          </p>
67<p>
68            Both relationships are commutative but are not transitive. The relationship
69            defined in <a class="link" href="floating_points_comparison_theory.html#equ2">(2)</a> is stronger that the relationship
70            defined in <a class="link" href="floating_points_comparison_theory.html#equ3">(3)</a> since <a class="link" href="floating_points_comparison_theory.html#equ2">(2)</a>
71            necessarily implies <a class="link" href="floating_points_comparison_theory.html#equ3">(3)</a>.
72          </p>
73<p>
74            The multiplication in the right side of inequalities may cause an unwanted
75            underflow condition. To prevent this, the implementation is using modified
76            version of <a class="link" href="floating_points_comparison_theory.html#equ2">(2)</a> and <a class="link" href="floating_points_comparison_theory.html#equ3">(3)</a>,
77            which scales the checked difference rather than <code class="computeroutput"><span class="identifier">epsilon</span></code>:
78          </p>
79<a name="equ4"></a><pre class="programlisting">   <span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span> <span class="special">-</span> <span class="identifier">v</span><span class="special">)/</span><span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span><span class="special">)</span> <span class="special">&lt;=</span> <span class="identifier">epsilon</span>
80<span class="special">&amp;&amp;</span> <span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span> <span class="special">-</span> <span class="identifier">v</span><span class="special">)/</span><span class="identifier">abs</span><span class="special">(</span><span class="identifier">v</span><span class="special">)</span> <span class="special">&lt;=</span> <span class="identifier">epsilon</span><span class="special">;</span> <span class="comment">// (4)</span>
81</pre>
82<a name="equ5"></a><pre class="programlisting">   <span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span> <span class="special">-</span> <span class="identifier">v</span><span class="special">)/</span><span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span><span class="special">)</span> <span class="special">&lt;=</span> <span class="identifier">epsilon</span>
83<span class="special">||</span> <span class="identifier">abs</span><span class="special">(</span><span class="identifier">u</span> <span class="special">-</span> <span class="identifier">v</span><span class="special">)/</span><span class="identifier">abs</span><span class="special">(</span><span class="identifier">v</span><span class="special">)</span> <span class="special">&lt;=</span> <span class="identifier">epsilon</span><span class="special">;</span> <span class="comment">// (5)</span>
84</pre>
85<p>
86            This way all underflow and overflow conditions can be guarded safely.
87            The above however, will not work when <code class="computeroutput"><span class="identifier">v</span></code>
88            or <code class="computeroutput"><span class="identifier">u</span></code> is zero. In such
89            cases the solution is to resort to a different algorithm, e.g. <a class="link" href="floating_points_comparison_theory.html#equ1">(1)</a>.
90          </p>
91<h4>
92<a name="boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory.h0"></a>
93            <span class="phrase"><a name="boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory.tolerance_selection_consideratio"></a></span><a class="link" href="floating_points_comparison_theory.html#boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory.tolerance_selection_consideratio">Tolerance
94            selection considerations</a>
95          </h4>
96<p>
97            In case of absence of domain specific requirements the value of tolerance
98            can be chosen as a sum of the predicted upper limits for "relative
99            rounding errors" of compared values. The "rounding" is
100            the operation by which a real value 'x' is represented in a floating-point
101            format with 'p' binary digits (bits) as the floating-point value <span class="bold"><strong>X</strong></span>. The "relative rounding error" is
102            the difference between the real and the floating point values in relation
103            to real value: <code class="computeroutput"><span class="identifier">abs</span><span class="special">(</span><span class="identifier">x</span><span class="special">-</span><span class="identifier">X</span><span class="special">)/</span><span class="identifier">abs</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span></code>.
104            The discrepancy between real and floating point value may be caused by
105            several reasons:
106          </p>
107<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
108<li class="listitem">
109                Type promotion
110              </li>
111<li class="listitem">
112                Arithmetic operations
113              </li>
114<li class="listitem">
115                Conversion from a decimal presentation to a binary presentation
116              </li>
117<li class="listitem">
118                Non-arithmetic operation
119              </li>
120</ul></div>
121<p>
122            The first two operations proved to have a relative rounding error that
123            does not exceed
124          </p>
125<pre class="programlisting"><span class="identifier">half_epsilon</span> <span class="special">=</span> <span class="identifier">half</span> <span class="identifier">of</span> <span class="identifier">the</span> <span class="char">'machine epsilon value'</span>
126</pre>
127<p>
128            for the appropriate floating point type <code class="computeroutput"><span class="identifier">FPT</span></code>
129            <a href="#ftn.boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory.f0" class="footnote" name="boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory.f0"><sup class="footnote">[9]</sup></a>. Conversion to binary presentation, sadly, does not have
130            such requirement. So we can't assume that <code class="computeroutput"><span class="keyword">float</span><span class="special">(</span><span class="number">1.1</span><span class="special">)</span></code>
131            is close to the real number <code class="computeroutput"><span class="number">1.1</span></code>
132            with tolerance <code class="computeroutput"><span class="identifier">half_epsilon</span></code>
133            for float (though for 11./10 we can). Non-arithmetic operations either
134            do not have a predicted upper limit relative rounding errors.
135          </p>
136<div class="note"><table border="0" summary="Note">
137<tr>
138<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../../../../doc/src/images/note.png"></td>
139<th align="left">Note</th>
140</tr>
141<tr><td align="left" valign="top"><p>
142              Note that both arithmetic and non-arithmetic operations might also
143              produce others "non-rounding" errors, such as underflow/overflow,
144              division-by-zero or "operation errors".
145            </p></td></tr>
146</table></div>
147<p>
148            All theorems about the upper limit of a rounding error, including that
149            of <code class="computeroutput"><span class="identifier">half_epsilon</span></code>, refer
150            only to the 'rounding' operation, nothing more. This means that the 'operation
151            error', that is, the error incurred by the operation itself, besides
152            rounding, isn't considered. In order for numerical software to be able
153            to actually predict error bounds, the <span class="bold"><strong>IEEE754</strong></span>
154            standard requires arithmetic operations to be 'correctly or exactly rounded'.
155            That is, it is required that the internal computation of a given operation
156            be such that the floating point result is the exact result rounded to
157            the number of working bits. In other words, it is required that the computation
158            used by the operation itself doesn't introduce any additional errors.
159            The <span class="bold"><strong>IEEE754</strong></span> standard does not require
160            same behavior from most non-arithmetic operation. The underflow/overflow
161            and division-by-zero errors may cause rounding errors with unpredictable
162            upper limits.
163          </p>
164<p>
165            At last be aware that <code class="computeroutput"><span class="identifier">half_epsilon</span></code>
166            rules are not transitive. In other words combination of two arithmetic
167            operations may produce rounding error that significantly exceeds <code class="computeroutput"><span class="number">2</span><span class="special">*</span><span class="identifier">half_epsilon</span></code>.
168            All in all there are no generic rules on how to select the tolerance
169            and users need to apply common sense and domain/ problem specific knowledge
170            to decide on tolerance value.
171          </p>
172<p>
173            To simplify things in most usage cases latest version of algorithm below
174            opted to use percentage values for tolerance specification (instead of
175            fractions of related values). In other words now you use it to check
176            that difference between two values does not exceed x percent.
177          </p>
178<p>
179            For more reading about floating-point comparison see references below.
180          </p>
181<h5>
182<a name="boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory.h1"></a>
183            <span class="phrase"><a name="boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory.bibliographic_references"></a></span><a class="link" href="floating_points_comparison_theory.html#boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory.bibliographic_references">Bibliographic
184            references</a>
185          </h5>
186<div class="variablelist">
187<p class="title"><b>Books</b></p>
188<dl class="variablelist">
189<dt><span class="term"><a name="KnuthII"></a>The art of computer programming (vol II)</span></dt>
190<dd><p>
191                  Donald. E. Knuth, 1998, Addison-Wesley Longman, Inc., ISBN 0-201-89684-2,
192                  Addison-Wesley Professional; 3rd edition. (The relevant equations
193                  are in §4.2.2, Eq. 36 and 37.)
194                </p></dd>
195<dt><span class="term">Rounding near zero, in <a href="http://www.amazon.com/Advanced-Arithmetic-Digital-Computer-Kulisch/dp/3211838708" target="_top">Advanced
196              Arithmetic for the Digital Computer</a></span></dt>
197<dd><p>
198                  Ulrich W. Kulisch, 2002, Springer, Inc., ISBN 0-201-89684-2, Springer;
199                  1st edition
200                </p></dd>
201</dl>
202</div>
203<div class="variablelist">
204<p class="title"><b>Periodicals</b></p>
205<dl class="variablelist">
206<dt><span class="term"><a name="Squassabia"></a><a href="https://adtmag.com/articles/2000/03/16/comparing-floats-how-to-determine-if-floating-quantities-are-close-enough-once-a-tolerance-has-been.aspx" target="_top">Comparing
207              Floats: How To Determine if Floating Quantities Are Close Enough Once
208              a Tolerance Has Been Reached</a></span></dt>
209<dd><p>
210                  Alberto Squassabia, in C++ Report (March 2000)
211                </p></dd>
212<dt><span class="term">The Journeyman's Shop: Trap Handlers, Sticky Bits, and Floating-Point
213              Comparisons</span></dt>
214<dd><p>
215                  Pete Becker, in C/C++ Users Journal (December 2000)
216                </p></dd>
217</dl>
218</div>
219<div class="variablelist">
220<p class="title"><b>Publications</b></p>
221<dl class="variablelist">
222<dt><span class="term"><a href="http://dl.acm.org/citation.cfm?id=103163" target="_top">What Every
223              Computer Scientist Should Know About Floating-Point Arithmetic</a></span></dt>
224<dd><p>
225                  David Goldberg, pages 150-230, in Computing Surveys (March 1991),
226                  Association for Computing Machinery, Inc.
227                </p></dd>
228<dt><span class="term"><a href="http://hal.archives-ouvertes.fr/docs/00/07/26/81/PDF/RR-3967.pdf" target="_top">From
229              Rounding Error Estimation to Automatic Correction with Automatic Differentiation</a></span></dt>
230<dd><p>
231                  Philippe Langlois, Technical report, INRIA
232                </p></dd>
233<dt><span class="term"><a href="http://www.cs.berkeley.edu/~wkahan/" target="_top">William Kahan
234              home page</a></span></dt>
235<dd><p>
236                  Lots of information on floating point arithmetics.
237                </p></dd>
238</dl>
239</div>
240<div class="footnotes">
241<br><hr style="width:100; text-align:left;margin-left: 0">
242<div id="ftn.boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory.f0" class="footnote"><p><a href="#boost_test.testing_tools.extended_comparison.floating_point.floating_points_comparison_theory.f0" class="para"><sup class="para">[9] </sup></a>
243              <span class="bold"><strong>machine epsilon value</strong></span> is represented
244              by <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">FPT</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">()</span></code>
245            </p></div>
246</div>
247</div>
248<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
249<td align="left"></td>
250<td align="right"><div class="copyright-footer">Copyright © 2001-2020 Boost.Test contributors<p>
251        Distributed under the Boost Software License, Version 1.0. (See accompanying
252        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
253      </p>
254</div></td>
255</tr></table>
256<hr>
257<div class="spirit-nav">
258<a accesskey="p" href="floating_points_comparison_impl.html"><img src="../../../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../floating_point.html"><img src="../../../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../../../index.html"><img src="../../../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../strings.html"><img src="../../../../../../../../doc/src/images/next.png" alt="Next"></a>
259</div>
260</body>
261</html>
262