• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2021-2022 Huawei Device Co., Ltd.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at
6  *
7  *     http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #ifndef RENDER_SERVICE_CLIENT_CORE_COMMON_RS_VECTOR4_H
17 #define RENDER_SERVICE_CLIENT_CORE_COMMON_RS_VECTOR4_H
18 
19 #include <algorithm>
20 #include <cmath>
21 
22 #include "common/rs_common_def.h"
23 
24 namespace OHOS {
25 namespace Rosen {
26 template<typename T>
27 class Vector4 {
28 public:
29     union {
30         struct {
31             T x_;
32             T y_;
33             T z_;
34             T w_;
35         };
36         T data_[4];
37     };
38 
39     Vector4();
40     Vector4(T value);
41     Vector4(T x, T y, T z, T w);
42     explicit Vector4(const T* array);
43     ~Vector4();
44 
45     Vector4 Normalized() const;
46     T Dot(const Vector4<T>& other) const;
47     T GetSqrLength() const;
48     T GetLength() const;
49     T Normalize();
50     void Identity();
51     bool IsInfinite() const;
52     bool IsIdentity() const;
53     bool IsZero() const;
54     void SetValues(T x, T y, T z, T w);
55     void SetZero();
56     Vector4 operator-() const;
57     Vector4 operator-(const Vector4<T>& other) const;
58     Vector4 operator+(const Vector4<T>& other) const;
59     Vector4 operator/(float scale) const;
60     Vector4 operator*(float scale) const;
61     Vector4 operator*(const Vector4<T>& other) const;
62     Vector4& operator*=(const Vector4<T>& other);
63     Vector4& operator=(const Vector4<T>& other);
64     bool operator==(const Vector4& other) const;
65     bool operator!=(const Vector4& other) const;
66 
67     T operator[](int index) const;
68     T& operator[](int index);
69     T* GetData();
70 
71     void Scale(float arg);
72     void Sub(const Vector4<T>& arg);
73     void Add(const Vector4<T>& arg);
74     void Multiply(const Vector4<T>& arg);
75     void Div(const Vector4<T>& arg);
76     void Negate();
77     void Absolute();
78     static void Min(const Vector4<T>& a, const Vector4<T>& b, Vector4<T>& result);
79     static void Max(const Vector4<T>& a, const Vector4<T>& b, Vector4<T>& result);
80     static void Mix(const Vector4<T>& min, const Vector4<T>& max, T a, Vector4<T>& result);
81 };
82 
83 typedef Vector4<float> Vector4f;
84 typedef Vector4<double> Vector4d;
85 
86 class Quaternion : public Vector4f {
87 public:
Quaternion()88     Quaternion()
89     {
90         Identity();
91     }
Quaternion(float x,float y,float z,float w)92     Quaternion(float x, float y, float z, float w) : Vector4f(x, y, z, w) {}
Quaternion(const Vector4f & other)93     Quaternion(const Vector4f& other) : Vector4f(other) {}
Quaternion(const Vector4f && other)94     Quaternion(const Vector4f&& other) : Vector4f(other) {}
95     Quaternion Slerp(const Quaternion& to, float t);
96     Quaternion Flip() const;
97 };
98 
99 template<typename T>
Vector4()100 Vector4<T>::Vector4()
101 {
102     SetZero();
103 }
104 
105 template<typename T>
Vector4(T value)106 Vector4<T>::Vector4(T value)
107 {
108     data_[0] = value;
109     data_[1] = value;
110     data_[2] = value;
111     data_[3] = value;
112 }
113 
114 template<typename T>
Vector4(T x,T y,T z,T w)115 Vector4<T>::Vector4(T x, T y, T z, T w)
116 {
117     data_[0] = x;
118     data_[1] = y;
119     data_[2] = z;
120     data_[3] = w;
121 }
122 
123 template<typename T>
Vector4(const T * array)124 Vector4<T>::Vector4(const T* array)
125 {
126     std::copy_n(array, std::size(data_), data_);
127 }
128 
129 template<typename T>
~Vector4()130 Vector4<T>::~Vector4()
131 {}
132 
Flip()133 inline Quaternion Quaternion::Flip() const
134 {
135     return { -data_[0], -data_[1], -data_[2], -data_[3] };
136 }
137 
Slerp(const Quaternion & to,float t)138 inline Quaternion Quaternion::Slerp(const Quaternion& to, float t)
139 {
140     constexpr double SLERP_EPSILON = 1e-5;
141     if (t < 0.0 || t > 1.0) {
142         return *this;
143     }
144 
145     auto from = *this;
146 
147     double cosHalfAngle = from.x_ * to.x_ + from.y_ * to.y_ + from.z_ * to.z_ + from.w_ * to.w_;
148     if (cosHalfAngle < 0.0) {
149         // Since the half angle is > 90 degrees, the full rotation angle would
150         // exceed 180 degrees. The quaternions (x, y, z, w) and (-x, -y, -z, -w)
151         // represent the same rotation. Flipping the orientation of either
152         // quaternion ensures that the half angle is less than 90 and that we are
153         // taking the shortest path.
154         from = from.Flip();
155         cosHalfAngle = -cosHalfAngle;
156     }
157 
158     // Ensure that acos is well behaved at the boundary.
159     if (cosHalfAngle > 1.0) {
160         cosHalfAngle = 1.0;
161     }
162 
163     double sinHalfAngle = std::sqrt(1.0 - cosHalfAngle * cosHalfAngle);
164     if (sinHalfAngle < SLERP_EPSILON) {
165         // Quaternions share common axis and angle.
166         return *this;
167     }
168 
169     double half_angle = std::acos(cosHalfAngle);
170 
171     float scaleA = std::sin((1.0 - t) * half_angle) / sinHalfAngle;
172     float scaleB = std::sin(t * half_angle) / sinHalfAngle;
173 
174     return (from * scaleA) + (to * scaleB);
175 }
176 
177 template<typename T>
Normalized()178 Vector4<T> Vector4<T>::Normalized() const
179 {
180     Vector4<T> rNormalize(*this);
181     rNormalize.Normalize();
182     return rNormalize;
183 }
184 
185 template<typename T>
Dot(const Vector4<T> & other)186 T Vector4<T>::Dot(const Vector4<T>& other) const
187 {
188     const T* oData = other.data_;
189     T sum = data_[0] * oData[0];
190     sum += data_[1] * oData[1];
191     sum += data_[2] * oData[2];
192     sum += data_[3] * oData[3];
193     return sum;
194 }
195 
196 template<typename T>
GetSqrLength()197 T Vector4<T>::GetSqrLength() const
198 {
199     T sum = data_[0] * data_[0];
200     sum += data_[1] * data_[1];
201     sum += data_[2] * data_[2];
202     sum += data_[3] * data_[3];
203     return sum;
204 }
205 
206 template<typename T>
GetLength()207 T Vector4<T>::GetLength() const
208 {
209     return sqrt(GetSqrLength());
210 }
211 
212 template<typename T>
Normalize()213 T Vector4<T>::Normalize()
214 {
215     T l = GetLength();
216     if (ROSEN_EQ<T>(l, 0.0)) {
217         return (T)0.0;
218     }
219 
220     const T d = 1.0f / l;
221     data_[0] *= d;
222     data_[1] *= d;
223     data_[2] *= d;
224     data_[3] *= d;
225     return l;
226 }
227 
228 template<typename T>
Min(const Vector4<T> & a,const Vector4<T> & b,Vector4<T> & result)229 void Vector4<T>::Min(const Vector4<T>& a, const Vector4<T>& b, Vector4<T>& result)
230 {
231     T* resultData = result.data_;
232     const T* aData = a.data_;
233     const T* bData = b.data_;
234     resultData[3] = std::min(aData[3], bData[3]);
235     resultData[2] = std::min(aData[2], bData[2]);
236     resultData[1] = std::min(aData[1], bData[1]);
237     resultData[0] = std::min(aData[0], bData[0]);
238 }
239 
240 template<typename T>
Max(const Vector4<T> & a,const Vector4<T> & b,Vector4<T> & result)241 void Vector4<T>::Max(const Vector4<T>& a, const Vector4<T>& b, Vector4<T>& result)
242 {
243     T* resultData = result.data_;
244     const T* aData = a.data_;
245     const T* bData = b.data_;
246     resultData[3] = std::max(aData[3], bData[3]);
247     resultData[2] = std::max(aData[2], bData[2]);
248     resultData[1] = std::max(aData[1], bData[1]);
249     resultData[0] = std::max(aData[0], bData[0]);
250 }
251 
252 template<typename T>
Mix(const Vector4<T> & min,const Vector4<T> & max,T a,Vector4<T> & result)253 void Vector4<T>::Mix(const Vector4<T>& min, const Vector4<T>& max, T a, Vector4<T>& result)
254 {
255     T* resultData = result.data_;
256     const T* minData = min.data_;
257     const T* maxData = max.data_;
258     resultData[3] = minData[3] + a * (maxData[3] - minData[3]);
259     resultData[2] = minData[2] + a * (maxData[2] - minData[2]);
260     resultData[1] = minData[1] + a * (maxData[1] - minData[1]);
261     resultData[0] = minData[0] + a * (maxData[0] - minData[0]);
262 }
263 
264 template<typename T>
GetData()265 inline T* Vector4<T>::GetData()
266 {
267     return data_;
268 }
269 
270 template<typename T>
Identity()271 void Vector4<T>::Identity()
272 {
273     SetValues(0.f, 0.f, 0.f, 1.f);
274 }
275 
276 template<typename T>
IsIdentity()277 bool Vector4<T>::IsIdentity() const
278 {
279     return operator==(Vector4<T>(0.f, 0.f, 0.f, 1.f));
280 }
281 
282 template<typename T>
IsZero()283 bool Vector4<T>::IsZero() const
284 {
285     return ROSEN_EQ<T>(data_[0], 0.f) && ROSEN_EQ<T>(data_[1], 0.f) &&
286            ROSEN_EQ<T>(data_[2], 0.f) && ROSEN_EQ<T>(data_[3], 0.f);
287 }
288 
289 template<typename T>
SetValues(T x,T y,T z,T w)290 void Vector4<T>::SetValues(T x, T y, T z, T w)
291 {
292     data_[0] = x;
293     data_[1] = y;
294     data_[2] = z;
295     data_[3] = w;
296 }
297 
298 template<typename T>
SetZero()299 void Vector4<T>::SetZero()
300 {
301     SetValues(T(0.f), T(0.f), T(0.f), T(0.f));
302 }
303 
304 template<typename T>
305 Vector4<T> Vector4<T>::operator-(const Vector4<T>& other) const
306 {
307     const T* otherData = other.data_;
308 
309     return Vector4<T>(
310         data_[0] - otherData[0], data_[1] - otherData[1], data_[2] - otherData[2], data_[3] - otherData[3]);
311 }
312 
313 template<typename T>
314 Vector4<T> Vector4<T>::operator+(const Vector4<T>& other) const
315 {
316     const T* thisData = data_;
317     const T* otherData = other.data_;
318 
319     return Vector4<T>(
320         thisData[0] + otherData[0], thisData[1] + otherData[1], thisData[2] + otherData[2], thisData[3] + otherData[3]);
321 }
322 
323 template<typename T>
324 Vector4<T> Vector4<T>::operator/(float scale) const
325 {
326     if (ROSEN_EQ<float>(scale, 0)) {
327         return *this;
328     }
329     Vector4<T> clone(data_);
330     clone.Scale(1.0f / scale);
331     return clone;
332 }
333 
334 template<typename T>
335 Vector4<T> Vector4<T>::operator*(float scale) const
336 {
337     Vector4<T> clone(data_);
338     clone.Scale(scale);
339     return clone;
340 }
341 
342 template<typename T>
343 Vector4<T> Vector4<T>::operator*(const Vector4<T>& other) const
344 {
345     Vector4<T> rMult;
346     return rMult *= other;
347 }
348 
349 template<typename T>
350 Vector4<T>& Vector4<T>::operator*=(const Vector4<T>& other)
351 {
352     const T* oData = other.data_;
353     data_[0] *= oData[0];
354     data_[1] *= oData[1];
355     data_[2] *= oData[2];
356     data_[3] *= oData[3];
357     return *this;
358 }
359 
360 template<typename T>
361 Vector4<T>& Vector4<T>::operator=(const Vector4<T>& other)
362 {
363     const T* oData = other.data_;
364     data_[0] = oData[0];
365     data_[1] = oData[1];
366     data_[2] = oData[2];
367     data_[3] = oData[3];
368     return *this;
369 }
370 
371 template<typename T>
372 inline bool Vector4<T>::operator==(const Vector4& other) const
373 {
374     const T* oData = other.data_;
375 
376     return (ROSEN_EQ<T>(data_[0], oData[0])) && (ROSEN_EQ<T>(data_[1], oData[1])) &&
377            (ROSEN_EQ<T>(data_[2], oData[2])) && (ROSEN_EQ<T>(data_[3], oData[3]));
378 }
379 
380 template<typename T>
381 inline bool Vector4<T>::operator!=(const Vector4& other) const
382 {
383     return !operator==(other);
384 }
385 
386 template<typename T>
387 Vector4<T> Vector4<T>::operator-() const
388 {
389     return Vector4<T>(-data_[0], -data_[1], -data_[2], -data_[3]);
390 }
391 
392 template<typename T>
393 T Vector4<T>::operator[](int index) const
394 {
395     return data_[index];
396 }
397 
398 template<typename T>
399 T& Vector4<T>::operator[](int index)
400 {
401     return data_[index];
402 }
403 
404 template<typename T>
Scale(float arg)405 void Vector4<T>::Scale(float arg)
406 {
407     data_[3] *= arg;
408     data_[2] *= arg;
409     data_[1] *= arg;
410     data_[0] *= arg;
411 }
412 
413 template<typename T>
Sub(const Vector4<T> & arg)414 void Vector4<T>::Sub(const Vector4<T>& arg)
415 {
416     const T* argData = arg.data_;
417     data_[3] -= argData[3];
418     data_[2] -= argData[2];
419     data_[1] -= argData[1];
420     data_[0] -= argData[0];
421 }
422 
423 template<typename T>
Add(const Vector4<T> & arg)424 void Vector4<T>::Add(const Vector4<T>& arg)
425 {
426     const T* argData = arg.data_;
427     data_[3] += argData[3];
428     data_[2] += argData[2];
429     data_[1] += argData[1];
430     data_[0] += argData[0];
431 }
432 
433 template<typename T>
Multiply(const Vector4<T> & arg)434 void Vector4<T>::Multiply(const Vector4<T>& arg)
435 {
436     const T* argData = arg.data_;
437     data_[3] *= argData[3];
438     data_[2] *= argData[2];
439     data_[1] *= argData[1];
440     data_[0] *= argData[0];
441 }
442 
443 template<typename T>
Div(const Vector4<T> & arg)444 void Vector4<T>::Div(const Vector4<T>& arg)
445 {
446     const T* argData = arg.data_;
447     data_[3] /= argData[3];
448     data_[2] /= argData[2];
449     data_[1] /= argData[1];
450     data_[0] /= argData[0];
451 }
452 
453 template<typename T>
Negate()454 void Vector4<T>::Negate()
455 {
456     data_[3] = -data_[3];
457     data_[2] = -data_[2];
458     data_[1] = -data_[1];
459     data_[0] = -data_[0];
460 }
461 
462 template<typename T>
Absolute()463 void Vector4<T>::Absolute()
464 {
465     data_[3] = abs(data_[3]);
466     data_[2] = abs(data_[2]);
467     data_[1] = abs(data_[1]);
468     data_[0] = abs(data_[0]);
469 }
470 
471 template<typename T>
IsInfinite()472 bool Vector4<T>::IsInfinite() const
473 {
474     return std::isinf(data_[0]) || std::isinf(data_[1]) ||
475         std::isinf(data_[2]) || std::isinf(data_[3]);
476 }
477 } // namespace Rosen
478 } // namespace OHOS
479 #endif // RENDER_SERVICE_CLIENT_CORE_COMMON_RS_VECTOR4_H
480